Skip to content
2000
image of The Role of Trace Amine-Associated Receptor 1 (TAAR1) in the Pathophysiology and Treatment of Depression

Abstract

Depression is a chronic and recurrent psychiatric condition believed to result from an interaction between genetic susceptibility and environmental stimuli. Although current therapies prescribed for depression can be effective, it will take several weeks to demonstrate their full effectiveness and is often accompanied by side effects and withdrawal symptoms. In this regard, the discovery of new antidepressant drugs with unique, higher curative effects and fewer adverse reactions is the pursuit of pharmaceuticals. Trace amine-associated receptor 1 (TAAR1), a G-protein coupled receptor (GPCR) that is broadly expressed in the mammalian brain, especially within cortical, limbic, and midbrain monoaminergic regions and activated by “trace amines” (TAs). It is allegedly involved in modulating dopaminergic, serotonergic, and glutamatergic transmission, which makes TAAR1 a new drug target for the treatment of dysfunction of monoamine-related disorders. Moreover, TAAR1 agonists have attracted interest as potential treatments for depression due to their role in regulating monoamine neurotransmission. In fact, Ulotaront (a TAAR1 agonist) is reported to be currently undergoing phase 2/3 clinical trials in order to test its safety and efficacy in the treatment of major depressive disorder (MDD). However, the final results of this Phase 2/3 clinical study have not been announced yet, and the efficacy and safety of Ulotaront in the treatment of depression still need further observation and research. Thus, this article aims to review evidence of the potential role of TAAR1 in the pathophysiology and treatment of depression. Moreover, we briefly summarize the recent findings in the elucidation of behavioral and physiological properties of TAAR1 agonists both in clinical trials and preclinical animal studies. Collectively, these studies will provide a solid foundation for TAAR1 as a novel therapeutic target for depression.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X370669250526115723
2025-06-23
2025-09-18
Loading full text...

Full text loading...

References

  1. Ferrari A.J. Charlson F.J. Norman R.E. Patten S.B. Freedman G. Murray C.J.L. Vos T. Whiteford H.A. Burden of depressive disorders by country, sex, age, and year: Findings from the global burden of disease study 2010. PLoS Med. 2013 10 11 e1001547 10.1371/journal.pmed.1001547 24223526
    [Google Scholar]
  2. Ruderfer D.M. Walsh C.G. Aguirre M.W. Tanigawa Y. Ribeiro J.D. Franklin J.C. Rivas M.A. Significant shared heritability underlies suicide attempt and clinically predicted probability of attempting suicide. Mol. Psychiatry 2020 25 10 2422 2430 10.1038/s41380‑018‑0326‑8 30610202
    [Google Scholar]
  3. Tsuno N. Besset A. Ritchie K. Sleep and depression. J. Clin. Psychiatry 2005 66 10 1254 1269 10.4088/JCP.v66n1008 16259539
    [Google Scholar]
  4. Elliott A.F. Hell M.D. Sheldrick-Michel A. Nielsen B. Cognitive impairment after depression leads to disability. Ugeskr. Laeger 2016 178 45 V05160316 27855769
    [Google Scholar]
  5. Millward L.J. Lutte A. Purvis R.G. Depression and the perpetuation of an incapacitated identity as an inhibitor of return to work. J. Psychiatr. Ment. Health Nurs. 2005 12 5 565 573 10.1111/j.1365‑2850.2005.00875.x 16164507
    [Google Scholar]
  6. Samaan Z. MacQueen G. Depression, migraine, and cardiovascular disease: Sadness really can break your heart. J. Psychosom. Res. 2008 65 2 103 106 10.1016/j.jpsychores.2008.06.008 18655853
    [Google Scholar]
  7. Connor T.J. Leonard B.E. Depression, stress and immunological activation: The role of cytokines in depressive disorders. Life Sci. 1998 62 7 583 606 10.1016/S0024‑3205(97)00990‑9 9472719
    [Google Scholar]
  8. Klengel T. Binder E.B. Epigenetics of stress-related psychiatric disorders and gene × environment interactions. Neuron 2015 86 6 1343 1357 10.1016/j.neuron.2015.05.036 26087162
    [Google Scholar]
  9. Cole J. Costafreda S.G. McGuffin P. Fu C.H.Y. Hippocampal atrophy in first episode depression: A meta-analysis of magnetic resonance imaging studies. J. Affect. Disord. 2011 134 1-3 483 487 10.1016/j.jad.2011.05.057 21745692
    [Google Scholar]
  10. Videbech P. Ravnkilde B. Hippocampal volume and depression: A meta-analysis of MRI studies. Am. J. Psychiatry 2004 161 11 1957 1966 10.1176/appi.ajp.161.11.1957 15514393
    [Google Scholar]
  11. Stockmeier C.A. Mahajan G.J. Konick L.C. Overholser J.C. Jurjus G.J. Meltzer H.Y. Uylings H.B.M. Friedman L. Rajkowska G. Cellular changes in the postmortem hippocampus in major depression. Biol. Psychiatry 2004 56 9 640 650 10.1016/j.biopsych.2004.08.022 15522247
    [Google Scholar]
  12. Zhu R. Fang Y. Li H. Liu Y. Wei J. Zhang S. Wang L. Fan R. Wang L. Li S. Chen T. Psychobiotic Lactobacillus plantarum JYLP-326 relieves anxiety, depression, and insomnia symptoms in test anxious college via modulating the gut microbiota and its metabolism. Front. Immunol. 2023 14 1158137 10.3389/fimmu.2023.1158137 37033942
    [Google Scholar]
  13. Dean J. Keshavan M. The neurobiology of depression: An integrated view. Asian J. Psychiatr. 2017 27 101 111 10.1016/j.ajp.2017.01.025 28558878
    [Google Scholar]
  14. Cuijpers P. van Straten A. Andersson G. van Oppen P. Psychotherapy for depression in adults: A meta-analysis of comparative outcome studies. J. Consult. Clin. Psychol. 2008 76 6 909 922 10.1037/a0013075 19045960
    [Google Scholar]
  15. Fava G.A. Ruini C. Rafanelli C. Finos L. Conti S. Grandi S. Six-year outcome of cognitive behavior therapy for prevention of recurrent depression. Am. J. Psychiatry 2004 161 10 1872 1876 10.1176/ajp.161.10.1872 15465985
    [Google Scholar]
  16. Kennedy S.H. Lam R.W. McIntyre R.S. Tourjman S.V. Bhat V. Blier P. Hasnain M. Jollant F. Levitt A.J. MacQueen G.M. McInerney S.J. McIntosh D. Milev R.V. Müller D.J. Parikh S.V. Pearson N.L. Ravindran A.V. Uher R. CANMAT Depression Work Group Canadian network for mood and anxiety treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder. Can. J. Psychiatry 2016 61 9 540 560 10.1177/0706743716659417 27486148
    [Google Scholar]
  17. Touloumis C. The burden and the challenge of treatment-resistant depression. Psychiatriki 2021 32 Suppl. 1 11 14 10.22365/jpsych.2021.046 34990376
    [Google Scholar]
  18. Boulton A.A. Juorio A.V. Brain trace amines, Chemical and cellular architecture. Springer 1982 189 222 10.1007/978‑1‑4757‑0614‑7_8
    [Google Scholar]
  19. Borowsky B. Adham N. Jones K.A. Raddatz R. Artymyshyn R. Ogozalek K.L. Durkin M.M. Lakhlani P.P. Bonini J.A. Pathirana S. Boyle N. Pu X. Kouranova E. Lichtblau H. Ochoa F.Y. Branchek T.A. Gerald C. Trace amines: Identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad. Sci. USA 2001 98 16 8966 8971 10.1073/pnas.151105198 11459929
    [Google Scholar]
  20. Philips S. Analysis of trace amines: Endogenous levels and the effects of various drugs on tissue concentrations in the rat, Neurobiology of the trace amines: Analytical, physiological, pharmacological, behavioral, and clinical aspects. Springer 1984 127 143
    [Google Scholar]
  21. Burchett S.A. Hicks T.P. The mysterious trace amines: Protean neuromodulators of synaptic transmission in mammalian brain. Prog. Neurobiol. 2006 79 5-6 223 246 10.1016/j.pneurobio.2006.07.003 16962229
    [Google Scholar]
  22. Boulton A.A. Trace amines and mental disorders. Can. J. Neurol. Sci. 1980 7 3 261 263 10.1017/S0317167100023313 7004611
    [Google Scholar]
  23. Davis B.A. Boulton A.A. The trace amines and their acidic metabolites in depression — An overview. Prog. Neuropsychopharmacol. Biol. Psychiatry 1994 18 1 17 45 10.1016/0278‑5846(94)90022‑1 8115671
    [Google Scholar]
  24. Sabelli H. Fink P. Fawcett J. Tom C. Sustained antidepressant effect of PEA replacement. J. Neuropsychiatry Clin. Neurosci. 1996 8 2 168 171 10.1176/jnp.8.2.168 9081552
    [Google Scholar]
  25. Lindemann L. Hoener M.C. A renaissance in trace amines inspired by a novel GPCR family. Trends Pharmacol. Sci. 2005 26 5 274 281 10.1016/j.tips.2005.03.007 15860375
    [Google Scholar]
  26. Grandy D.K. Trace amine-associated receptor 1—Family archetype or iconoclast? Pharmacol. Ther. 2007 116 3 355 390 10.1016/j.pharmthera.2007.06.007 17888514
    [Google Scholar]
  27. Grabiec M. Turlejski K. Djavadian R.L. The partial 5-HT1A receptor agonist buspirone enhances neurogenesis in the opossum (Monodelphis domestica). Eur. Neuropsychopharmacol. 2009 19 6 431 439 10.1016/j.euroneuro.2009.01.013 19249192
    [Google Scholar]
  28. Lindemann L. Ebeling M. Kratochwil N.A. Bunzow J.R. Grandy D.K. Hoener M.C. Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors. Genomics 2005 85 3 372 385 10.1016/j.ygeno.2004.11.010 15718104
    [Google Scholar]
  29. Berry M.D. Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J. Neurochem 2004 90 2 257 271 10.1111/j.1471‑4159.2004.02501.x 15228583
    [Google Scholar]
  30. Lindemann L. Meyer C.A. Jeanneau K. Bradaia A. Ozmen L. Bluethmann H. Bettler B. Wettstein J.G. Borroni E. Moreau J.L. Hoener M.C. Trace amine-associated receptor 1 modulates dopaminergic activity. J. Pharmacol. Exp. Ther. 2008 324 3 948 956 10.1124/jpet.107.132647 18083911
    [Google Scholar]
  31. Espinoza S. Ghisi V. Emanuele M. Leo D. Sukhanov I. Sotnikova T.D. Chieregatti E. Gainetdinov R.R. Postsynaptic D2 dopamine receptor supersensitivity in the striatum of mice lacking TAAR1. Neuropharmacology 2015 93 308 313 10.1016/j.neuropharm.2015.02.010 25721394
    [Google Scholar]
  32. Espinoza S. Lignani G. Caffino L. Maggi S. Sukhanov I. Leo D. Mus L. Emanuele M. Ronzitti G. Harmeier A. Medrihan L. Sotnikova T.D. Chieregatti E. Hoener M.C. Benfenati F. Tucci V. Fumagalli F. Gainetdinov R.R. TAAR1 modulates cortical glutamate NMDA receptor function. Neuropsychopharmacology 2015 40 9 2217 2227 10.1038/npp.2015.65 25749299
    [Google Scholar]
  33. Pitts M.S. McShane J.N. Hoener M.C. Christian S.L. Berry M.D. TAAR1 levels and sub-cellular distribution are cell line but not breast cancer subtype specific. Histochem. Cell Biol. 2019 152 2 155 166 10.1007/s00418‑019‑01791‑7 31111198
    [Google Scholar]
  34. Liu J. Wu R. Li J.X. TAAR1 as an emerging target for the treatment of psychiatric disorders. Pharmacol. Ther. 2024 253 108580 10.1016/j.pharmthera.2023.108580 38142862
    [Google Scholar]
  35. Grandy D.K. Miller G.M. Li J.X. “TAARgeting Addiction”—the alamo bears witness to another revolution. Drug Alcohol Depend. 2016 159 9 16 10.1016/j.drugalcdep.2015.11.014 26644139
    [Google Scholar]
  36. Zhang Y. Zhang X.Q. Niu W.P. Sun M. Zhang Y. Li J.T. Si T.M. Su Y.A. TAAR1 in dentate gyrus is involved in chronic stress-induced impairments in hippocampal plasticity and cognitive function. Prog. Neuropsychopharmacol. Biol. Psychiatry 2024 132 110995 10.1016/j.pnpbp.2024.110995 38514038
    [Google Scholar]
  37. Ren X. Xiong J. Liang L. Chen Y. Zhang G. The potential antidepressant action of duloxetine co-administered with the TAAR1 receptor agonist SEP-363856 in mice. Molecules 2022 27 9 2755 10.3390/molecules27092755 35566106
    [Google Scholar]
  38. Le G.H. Gillissie E.S. Rhee T.G. Cao B. Alnefeesi Y. Guo Z. Di Vincenzo J.D. Jawad M.Y. March A.M. Ramachandra R. Lui L.M.W. McIntyre R.S. Efficacy, safety, and tolerability of ulotaront (SEP-363856, a trace amine-associated receptor 1 agonist) for the treatment of schizophrenia and other mental disorders: A systematic review of preclinical and clinical trials. Expert Opin. Investig. Drugs 2023 32 5 401 415 10.1080/13543784.2023.2206559 37096491
    [Google Scholar]
  39. Underhill S.M. Hullihen P.D. Chen J. Fenollar-Ferrer C. Rizzo M.A. Ingram S.L. Amara S.G. Amphetamines signal through intracellular TAAR1 receptors coupled to Gα13 and GαS in discrete subcellular domains. Mol. Psychiatry 2021 26 4 1208 1223 10.1038/s41380‑019‑0469‑2 31399635
    [Google Scholar]
  40. Zheng Y. Yasuda M. Yamao M. Gokan T. Sejima Y. Nishikawa T. Katayama S. Fermented soybean foods (natto) ameliorate age-related cognitive decline by hippocampal TAAR1-mediated activation of the CaMKII/CREB/BDNF signaling pathway in senescence-accelerated mouse prone 8 (SAMP8). Food Funct. 2023 14 22 10097 10106 10.1039/D3FO03987K 37870125
    [Google Scholar]
  41. Panas M.W. Xie Z. Panas H.N. Hoener M.C. Vallender E.J. Miller G.M. Trace amine associated receptor 1 signaling in activated lymphocytes. J. Neuroimmune Pharmacol. 2012 7 4 866 876 10.1007/s11481‑011‑9321‑4 22038157
    [Google Scholar]
  42. Bradaia A. Trube G. Stalder H. Norcross R.D. Ozmen L. Wettstein J.G. Pinard A. Buchy D. Gassmann M. Hoener M.C. Bettler B. The selective antagonist EPPTB reveals TAAR1-mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system. Proc. Natl. Acad. Sci. USA 2009 106 47 20081 20086 10.1073/pnas.0906522106 19892733
    [Google Scholar]
  43. Yang W. Munhall A.C. Johnson S.W. Dopamine evokes a trace amine receptor-dependent inward current that is regulated by AMP kinase in substantia nigra dopamine neurons. Neuroscience 2020 427 77 91 10.1016/j.neuroscience.2019.11.044 31883822
    [Google Scholar]
  44. Bunzow J.R. Sonders M.S. Arttamangkul S. Harrison L.M. Zhang G. Quigley D.I. Darland T. Suchland K.L. Pasumamula S. Kennedy J.L. Olson S.B. Magenis R.E. Amara S.G. Grandy D.K. Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol. Pharmacol. 2001 60 6 1181 1188 10.1124/mol.60.6.1181 11723224
    [Google Scholar]
  45. Sukhanov I. Caffino L. Efimova E.V. Espinoza S. Sotnikova T.D. Cervo L. Fumagalli F. Gainetdinov R.R. Increased context-dependent conditioning to amphetamine in mice lacking TAAR1. Pharmacol. Res. 2016 103 206 214 10.1016/j.phrs.2015.11.002 26640076
    [Google Scholar]
  46. Pei Y. Asif-Malik A. Canales J.J. Trace amines and the trace amine-associated receptor 1: Pharmacology, neurochemistry, and clinical implications. Front. Neurosci. 2016 10 148 10.3389/fnins.2016.00148 27092049
    [Google Scholar]
  47. Reese E.A. Bunzow J.R. Arttamangkul S. Sonders M.S. Grandy D.K. Trace amine-associated receptor 1 displays species-dependent stereoselectivity for isomers of methamphetamine, amphetamine, and para-hydroxyamphetamine. J. Pharmacol. Exp. Ther. 2007 321 1 178 186 10.1124/jpet.106.115402 17218486
    [Google Scholar]
  48. Shi X. Walter N.A.R. Harkness J.H. Neve K.A. Williams R.W. Lu L. Belknap J.K. Eshleman A.J. Phillips T.J. Janowsky A. Genetic polymorphisms affect mouse and human trace amine-associated receptor 1 function. PLoS One 2016 11 3 e0152581 10.1371/journal.pone.0152581 27031617
    [Google Scholar]
  49. Halff E.F. Rutigliano G. Garcia-Hidalgo A. Howes O.D. Trace amine-associated receptor 1 (TAAR1) agonism as a new treatment strategy for schizophrenia and related disorders. Trends Neurosci. 2023 46 1 60 74 10.1016/j.tins.2022.10.010 36369028
    [Google Scholar]
  50. Espinoza S. Salahpour A. Masri B. Sotnikova T.D. Messa M. Barak L.S. Caron M.G. Gainetdinov R.R. Functional interaction between trace amine-associated receptor 1 and dopamine D2 receptor. Mol. Pharmacol. 2011 80 3 416 425 10.1124/mol.111.073304 21670104
    [Google Scholar]
  51. Leo D. Mus L. Espinoza S. Hoener M.C. Sotnikova T.D. Gainetdinov R.R. Taar1-mediated modulation of presynaptic dopaminergic neurotransmission: Role of D2 dopamine autoreceptors. Neuropharmacology 2014 81 283 291 10.1016/j.neuropharm.2014.02.007 24565640
    [Google Scholar]
  52. Harmeier A. Obermueller S. Meyer C.A. Revel F.G. Buchy D. Chaboz S. Dernick G. Wettstein J.G. Iglesias A. Rolink A. Bettler B. Hoener M.C. Trace amine-associated receptor 1 activation silences GSK3β signaling of TAAR1 and D2R heteromers. Eur. Neuropsychopharmacol. 2015 25 11 2049 2061 10.1016/j.euroneuro.2015.08.011 26372541
    [Google Scholar]
  53. Asif-Malik A. Hoener M.C. Canales J.J. Interaction between the trace amine-associated receptor 1 and the dopamine D2 receptor controls cocaine’s neurochemical actions. Sci. Rep. 2017 7 1 13901 10.1038/s41598‑017‑14472‑z 29066851
    [Google Scholar]
  54. Jope R.S. Glycogen synthase kinase-3 in the etiology and treatment of mood disorders. Front. Mol. Neurosci. 2011 4 16 10.3389/fnmol.2011.00016 21886606
    [Google Scholar]
  55. Gallagher M. Chiba A.A. The amygdala and emotion. Curr. Opin. Neurobiol. 1996 6 2 221 227 10.1016/S0959‑4388(96)80076‑6 8725964
    [Google Scholar]
  56. Boulton A.A. Milward L. Separation, detection and quantitative, analysis of urinary β-phenylethylamine. J. Chromatogr. A 1971 57 2 287 296 10.1016/0021‑9673(71)80042‑0 5575724
    [Google Scholar]
  57. Alnefeesi Y. Tamura J.K. Lui L.M.W. Jawad M.Y. Ceban F. Ling S. Nasri F. Rosenblat J.D. McIntyre R.S. Trace amine-associated receptor 1 (TAAR1): Potential application in mood disorders: A systematic review. Neurosci. Biobehav. Rev. 2021 131 192 210 10.1016/j.neubiorev.2021.09.020 34537265
    [Google Scholar]
  58. Porsolt R.D. Le Pichon M. Jalfre M. Depression: A new animal model sensitive to antidepressant treatments. Nature 1977 266 5604 730 732 10.1038/266730a0 559941
    [Google Scholar]
  59. Kokkinou M. Irvine E.E. Bonsall D.R. Natesan S. Wells L.A. Smith M. Glegola J. Paul E.J. Tossell K. Veronese M. Khadayate S. Dedic N. Hopkins S.C. Ungless M.A. Withers D.J. Howes O.D. Reproducing the dopamine pathophysiology of schizophrenia and approaches to ameliorate it: A translational imaging study with ketamine. Mol. Psychiatry 2021 26 6 2562 2576 10.1038/s41380‑020‑0740‑6 32382134
    [Google Scholar]
  60. Hopkins S.C. Dedic N. Koblan K.S. Effect of TAAR1/5-HT1A agonist SEP-363856 on REM sleep in humans. Transl. Psychiatry 2021 11 1 228 10.1038/s41398‑021‑01331‑9 33879769
    [Google Scholar]
  61. Revel F.G. Moreau J.L. Gainetdinov R.R. Bradaia A. Sotnikova T.D. Mory R. Durkin S. Zbinden K.G. Norcross R. Meyer C.A. Metzler V. Chaboz S. Ozmen L. Trube G. Pouzet B. Bettler B. Caron M.G. Wettstein J.G. Hoener M.C. TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity. Proc. Natl. Acad. Sci. USA 2011 108 20 8485 8490 10.1073/pnas.1103029108 21525407
    [Google Scholar]
  62. Dedic N. Jones P.G. Hopkins S.C. Lew R. Shao L. Campbell J.E. Spear K.L. Large T.H. Campbell U.C. Hanania T. Leahy E. Koblan K.S. SEP-363856, a novel psychotropic agent with a unique, non-D2 receptor mechanism of action. J. Pharmacol. Exp. Ther. 2019 371 1 1 14 10.1124/jpet.119.260281 31371483
    [Google Scholar]
  63. Gottesmann C. Gottesman I. The neurobiological characteristics of rapid eye movement (REM) sleep are candidate endophenotypes of depression, schizophrenia, mental retardation and dementia. Prog. Neurobiol. 2007 81 4 237 250 10.1016/j.pneurobio.2007.01.004 17350744
    [Google Scholar]
  64. Feemster J.C. Westerland S.M. Gossard T.R. Steele T.A. Timm P.C. Jagielski J.T. Strainis E. McCarter S.J. Hopkins S.C. Koblan K.S. St Louis E.K. Treatment with the novel TAAR1 agonist ulotaront is associated with reductions in quantitative polysomnographic REM sleep without atonia in healthy human subjects: Results of a post-hoc analysis. Sleep Med. 2023 101 578 586 10.1016/j.sleep.2022.11.022 36584503
    [Google Scholar]
  65. Sateia M.J. International classification of sleep disorders-third edition: Highlights and modifications. Chest 2014 146 5 1387 1394 10.1378/chest.14‑0970 25367475
    [Google Scholar]
  66. Mombelli S. Ricordeau F. Gillard L. Lecca R. Vidal T. Pereira B. Beudin P. Vitello N. Bastuji H. Peter-Derex L. Fantini M.L. Psychobehavioural profile in narcolepsy type 1 with and without REM sleep behaviour disorder. J. Sleep Res. 2024 33 2 e13925 10.1111/jsr.13925 37222001
    [Google Scholar]
  67. Espinoza S. Leo D. Sotnikova T.D. Shahid M. Kääriäinen T.M. Gainetdinov R.R. Biochemical and functional characterization of the trace amine-associated receptor 1 (TAAR1) agonist RO5263397. Front. Pharmacol. 2018 9 645 10.3389/fphar.2018.00645 29977204
    [Google Scholar]
  68. Sun M. Zhang Y. Zhang X.Q. Zhang Y. Wang X.D. Li J.T. Si T.M. Su Y.A. Dopamine D1 receptor in medial prefrontal cortex mediates the effects of TAAR1 activation on chronic stress-induced cognitive and social deficits. Neuropsychopharmacology 2024 49 8 1341 1351 10.1038/s41386‑024‑01866‑7 38658737
    [Google Scholar]
  69. Zhang Y. Li J.T. Wang H. Niu W.P. Zhang C.C. Zhang Y. Wang X.D. Si T.M. Su Y.A. Role of trace amine‑associated receptor 1 in the medial prefrontal cortex in chronic social stress-induced cognitive deficits in mice. Pharmacol. Res. 2021 167 105571 10.1016/j.phrs.2021.105571 33753244
    [Google Scholar]
  70. Roca M. Vives M. López-Navarro E. García-Campayo J. Gili M. Cognitive impairments and depression: A critical review. Actas Esp. Psiquiatr. 2015 43 5 187 193 26320897
    [Google Scholar]
  71. Grinchii D. Hoener M.C. Khoury T. Dekhtiarenko R. Nejati Bervanlou R. Jezova D. Dremencov E. Effects of acute and chronic administration of trace amine-associated receptor 1 (TAAR1) ligands on in vivo excitability of central monoamine-secreting neurons in rats. Mol. Psychiatry 2022 27 12 4861 4868 10.1038/s41380‑022‑01739‑9 36045279
    [Google Scholar]
  72. Revel F.G. Moreau J-L. Pouzet B. Mory R. Bradaia A. Buchy D. Metzler V. Chaboz S. Groebke Zbinden K. Galley G. Norcross R.D. Tuerck D. Bruns A. Morairty S.R. Kilduff T.S. Wallace T.L. Risterucci C. Wettstein J.G. Hoener M.C. A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic- and antidepressant-like activity, improve cognition and control body weight. Mol. Psychiatry 2013 18 5 543 556 10.1038/mp.2012.57 22641180
    [Google Scholar]
  73. Schwartz M.D. Black S.W. Fisher S.P. Palmerston J.B. Morairty S.R. Hoener M.C. Kilduff T.S. Trace amine-associated receptor 1 regulates wakefulness and EEG spectral composition. Neuropsychopharmacology 2017 42 6 1305 1314 10.1038/npp.2016.216 27658486
    [Google Scholar]
  74. Black S.W. Schwartz M.D. Chen T.M. Hoener M.C. Kilduff T.S. Trace amine-associated receptor 1 agonists as narcolepsy therapeutics. Biol. Psychiatry 2017 82 9 623 633 10.1016/j.biopsych.2016.10.012 27919403
    [Google Scholar]
  75. Revel F.G. Moreau J.L. Gainetdinov R.R. Ferragud A. Velázquez-Sánchez C. Sotnikova T.D. Morairty S.R. Harmeier A. Groebke Zbinden K. Norcross R.D. Bradaia A. Kilduff T.S. Biemans B. Pouzet B. Caron M.G. Canales J.J. Wallace T.L. Wettstein J.G. Hoener M.C. Trace amine-associated receptor 1 partial agonism reveals novel paradigm for neuropsychiatric therapeutics. Biol. Psychiatry 2012 72 11 934 942 10.1016/j.biopsych.2012.05.014 22705041
    [Google Scholar]
  76. Li S.X. Yan S.Y. Bao Y.P. Lian Z. Qu Z. Wu Y.P. Liu Z.M. Depression and alterations in hypothalamic–pituitary–adrenal and hypothalamic–pituitary–thyroid axis function in male abstinent methamphetamine abusers. Hum. Psychopharmacol. 2013 28 5 477 483 10.1002/hup.2335 23913817
    [Google Scholar]
  77. Cotter R. Pei Y. Mus L. Harmeier A. Gainetdinov R.R. Hoener M.C. Canales J.J. The trace amine-associated receptor 1 modulates methamphetamine’s neurochemical and behavioral effects. Front. Neurosci. 2015 9 39 10.3389/fnins.2015.00039 25762894
    [Google Scholar]
  78. Liu J. Johnson B. Wu R. Seaman R. Jr Vu J. Zhu Q. Zhang Y. Li J.X. TA 1 agonists attenuate extended‐access cocaine self‐administration and yohimbine‐induced reinstatement of cocaine‐seeking. Br. J. Pharmacol. 2020 177 15 3403 3414 10.1111/bph.15061 32246467
    [Google Scholar]
  79. Barbosa Méndez S. Salazar-Juárez A. Mirtazapine attenuates anxiety- and depression-like behaviors in rats during cocaine withdrawal. J. Psychopharmacol. 2019 33 5 589 605 10.1177/0269881119840521 31012359
    [Google Scholar]
  80. Bossert J.M. Marchant N.J. Calu D.J. Shaham Y. The reinstatement model of drug relapse: Recent neurobiological findings, emerging research topics, and translational research. Psychopharmacology 2013 229 3 453 476 10.1007/s00213‑013‑3120‑y 23685858
    [Google Scholar]
  81. Nair S.G. Navarre B.M. Cifani C. Pickens C.L. Bossert J.M. Shaham Y. Role of dorsal medial prefrontal cortex dopamine D1-family receptors in relapse to high-fat food seeking induced by the anxiogenic drug yohimbine. Neuropsychopharmacology 2011 36 2 497 510 10.1038/npp.2010.181 20962767
    [Google Scholar]
  82. Liu J.F. Siemian J.N. Seaman R. Jr Zhang Y. Li J.X. Role of TAAR1 within the subregions of the mesocorticolimbic dopaminergic system in cocaine-seeking behavior. J. Neurosci. 2017 37 4 882 892 10.1523/JNEUROSCI.2006‑16.2016 28123023
    [Google Scholar]
  83. Ambroggi F. Ghazizadeh A. Nicola S.M. Fields H.L. Roles of nucleus accumbens core and shell in incentive-cue responding and behavioral inhibition. J. Neurosci. 2011 31 18 6820 6830 10.1523/JNEUROSCI.6491‑10.2011 21543612
    [Google Scholar]
  84. Fuchs R.A. Evans K.A. Parker M.C. See R.E. Differential involvement of the core and shell subregions of the nucleus accumbens in conditioned cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology 2004 176 3-4 459 465 10.1007/s00213‑004‑1895‑6 15138757
    [Google Scholar]
  85. Hart M.E. Suchland K.L. Miyakawa M. Bunzow J.R. Grandy D.K. Scanlan T.S. Trace amine-associated receptor agonists: Synthesis and evaluation of thyronamines and related analogues. J. Med. Chem. 2006 49 3 1101 1112 10.1021/jm0505718 16451074
    [Google Scholar]
  86. Mantas I. Millan M.J. Di Cara B. Groenink L. Veiga S. Cistarelli L. Brocco M. Bertrand M. Svenningsson P. Zhang X. Trace amine-associated receptor 1 contributes to diverse functional actions of O-phenyl-iodotyramine in mice but not to the effects of monoamine-based antidepressants. Int. J. Mol. Sci. 2021 22 16 8907 10.3390/ijms22168907 34445611
    [Google Scholar]
  87. Kong Q. Zhang H. Wang M. Zhang J. Zhang Y. The TAAR1 inhibitor EPPTB suppresses neuronal excitability and seizure activity in mice. Brain Res. Bull. 2021 171 142 149 10.1016/j.brainresbull.2021.03.018 33811954
    [Google Scholar]
  88. Liu J. Meng F. Wang W. Cui M. Wu M. Jiang S. Dai J. Lian H. Li Q. Xu Z. Wang Y. Zhang J. Li C. PPM1F in hippocampal dentate gyrus regulates the depression-related behaviors by modulating neuronal excitability. Exp. Neurol. 2021 340 113657 10.1016/j.expneurol.2021.113657 33639208
    [Google Scholar]
  89. Stalder H. Hoener M.C. Norcross R.D. Selective antagonists of mouse trace amine-associated receptor 1 (mTAAR1): Discovery of EPPTB (RO5212773). Bioorg. Med. Chem. Lett. 2011 21 4 1227 1231 10.1016/j.bmcl.2010.12.075 21237643
    [Google Scholar]
  90. Landucci E. Gencarelli M. Mazzantini C. Laurino A. Pellegrini-Giampietro D.E. Raimondi L. N-(3-Ethoxy-phenyl)-4-pyrrolidin-1-yl-3-trifluoromethyl-benzamide (EPPTB) prevents 3-iodothyronamine (T1AM)-induced neuroprotection against kainic acid toxicity. Neurochem. Int. 2019 129 104460 10.1016/j.neuint.2019.05.004 31075293
    [Google Scholar]
  91. Gencarelli M. Lodovici M. Bellusci L. Raimondi L. Laurino A. Redox properties of 3-iodothyronamine (T1AM) and 3-iodothyroacetic acid (TA1). Int. J. Mol. Sci. 2022 23 5 2718 10.3390/ijms23052718 35269859
    [Google Scholar]
  92. Global Burden of Disease Study 2013 Collaborators Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015 386 9995 743 800 10.1016/S0140‑6736(15)60692‑4 26063472
    [Google Scholar]
  93. Kuvarzin S.R. Sukhanov I. Onokhin K. Zakharov K. Gainetdinov R.R. Unlocking the therapeutic potential of ulotaront as a trace amine-associated receptor 1 agonist for neuropsychiatric disorders. Biomedicines 2023 11 7 1977 10.3390/biomedicines11071977 37509616
    [Google Scholar]
  94. Højlund M. Correll C.U. Ulotaront: A TAAR1/5-HT1A agonist in clinical development for the treatment of schizophrenia. Expert Opin. Investig. Drugs 2022 31 12 1279 1290 10.1080/13543784.2022.2158811 36533396
    [Google Scholar]
  95. Qi W. Guan W. GPR56: A potential therapeutic target for neurological and psychiatric disorders. Biochem. Pharmacol. 2024 226 116395 10.1016/j.bcp.2024.116395 38942087
    [Google Scholar]
  96. Xue Z. Siemian J.N. Johnson B.N. Zhang Y. Li J.X. Methamphetamine-induced impulsivity during chronic methamphetamine treatment in rats: Effects of the TAAR 1 agonist RO5263397. Neuropharmacology 2018 129 36 46 10.1016/j.neuropharm.2017.11.012 29128305
    [Google Scholar]
  97. Ferragud A. Howell A.D. Moore C.F. Ta T.L. Hoener M.C. Sabino V. Cottone P. The trace amine-associated receptor 1 agonist RO5256390 blocks compulsive, binge-like eating in rats. Neuropsychopharmacology 2017 42 7 1458 1470 10.1038/npp.2016.233 27711047
    [Google Scholar]
/content/journals/cn/10.2174/011570159X370669250526115723
Loading
/content/journals/cn/10.2174/011570159X370669250526115723
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: neuropsychiatric disorders ; Depression ; antidepressant ; ulotaront ; signalling pathway ; TAAR1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test