Current Medicinal Chemistry - Volume 32, Issue 26, 2025
Volume 32, Issue 26, 2025
-
-
Trends in the Treatment of Chronic Wounds
Authors: Rohit Sharma, Jan Hruska, Lukas Peter, Kristina Randlova and Kamil KucaChronic wounds remain one of the significant burdens to health across the world, mainly in view of diabetes and its natural consequences. This category of lesions includes pressure ulcers, vascular diseases, and surgery-related wounds, which affect millions and pose a major challenge to the healthcare industry. The paper reviews the various physiological mechanisms of wound healing, factors that impede it, and some new treatments emerging at this moment. In contrast, current developments include surgical and non-surgical alternatives like topical dressings, medicated formulations, and skin substitutes. Advanced wound care today covers tissue-engineered skin substitutes, 3D-printed wound dressings, topical medicated formulations, and growth factor-based therapies. These are non-invasive, biocompatible methods that are cost-effective, user-friendly, and more conducive to natural healing than traditional therapies. Hydrogel dressings have high water content to create a moist environment that encourages healing. They also reflect excellent physicochemical and biological properties, which enhance autolytic debridement and reduction of pain due to the moisture retention, biocompatibility, and non-toxicity conferred. Tissue-engineered skin substitutes, comprising allogeneic or autologous cells, wound-healing enhancement bioengineered allogeneic cellular therapies are like the natural skin and encourage regeneration. 3D printing allows the production of customized dressings to aid in better treatment. Newer therapies, including bioengineered allogeneic cellular therapies and fish skin grafting, require more clinical trials to confirm safety and efficacy. With such innovations in wound healing technologies and therapies, the future looks quite promising in managing chronic wounds, enhancing healing, reducing healthcare expenditure, and promoting a better quality of life for patients.
-
-
-
Quassinoids as Promising Anti-cancer Agents
Authors: Tripti Mishra, Saima and Bimal Krishna BanikThe use of current anticancer drugs is hampered by significant side effects and high costs. In the pursuit of safer, more effective, and affordable options, researchers have turned to nature as a valuable source of potential anticancer compounds. Quassinoids, a class of natural terpenoids, have garnered attention for their anticancer properties. This comprehensive review aims to shed light on natural quassinoids and their anticancer effects, offering valuable insights for researchers dedicated to the development of novel anticancer therapeutics.
-
-
-
Molecular Mechanisms and Roles of MiR-136-5p in Human Cancer and Other Disorders
Authors: Xiaoling Chen, Ting Lu, Ying Zheng, Zhiyong Lin, Chaoqi Liu, Ding Yuan and Chengfu YuanBackgroundMiR-136-5p plays a vital function in regulating developmental processes as well as in the pathophysiology of diseases, with a notable record in tumor suppression.
MethodsThis article summarizes the latest findings on the physiological and pathophysiological processes of miR-136-5p in diseases. We searched for relevant studies and selected research articles from the last five years on PubMed with miR-136-5p as the keyword.
ResultsMiR-136-5p represents a class of microRNAs (miRNAs) that are involved in various human maladies, encompassing cancers, cardio-cerebrovascular disease, diabetes, inflammatory disease, tuberous sclerosis, idiopathic pulmonary fibrosis, and polycystic ovary syndrome. Altered expression of miR-136-5p in specific ailments results in downstream gene expression imbalance, influencing cellular behaviors, such as migration, proliferation, and invasion. Furthermore, miR-136-5p is implicated in five signaling pathways, where it is critical in the onset and advancement of a number of illnesses. Additionally, it has the potential to promote drug resistance to a variety of medications.
ConclusionThe current review aims to elucidate the role of miR-136-5p in both cancer progression and non-cancerous disorders, emphasizing dysregulated signaling pathways. It also sheds light on the potential of this miRNA as a prognostic biomarker in cancer, offering valuable insights and directions for future research.
-
-
-
Biosurfactant Nanomicelles and Peptide Integration: Novel Approaches to Targeted Gene Delivery in Colon Cancer Treatment
Authors: Sankha Bhattacharya, Devendra Kumar, Bhuphendra G. Prajapati and Md Meraj AnjumA notable breakthrough in the treatment of colon cancer involves the utilisation of a cutting-edge drug delivery technology known as biosurfactant-derived nanomicelles. These nanomicelles, composed of natural biosurfactant molecules, possess the distinct capability to enclose pharmaceuticals or genetic material, such as DNA, siRNA, or mRNA, within spherical formations. With a size ranging from 10 to 100 nanometers, these nanomicelles exhibit precision targeting capabilities towards colon cancer cells, hence minimising the occurrence of side effects typically associated with treatment. Upon being specifically targeted, the nanomicelles liberate their cargo into cancer cells, resulting in enhanced therapy efficacy. This novel strategy utilises the specific attributes of the tumour microenvironment to administer precise and focused treatment. These nanomicelles improve the absorption by cells and reduce harm to healthy tissues by imitating important nutrients or utilising compounds that specifically target tumours. Furthermore, the incorporation of stimuli-responsive components allows for regulated medication release in reaction to the acidic environment seen in tumours. The review focuses on examining the use of biosurfactants and natural peptides in nanomicellar carriers as ways to fight against colon cancer. Folate-coated nanomicelles incorporating curcumin facilitate precise gene delivery, while the partnership of biosurfactants, such as surfactin from Bacillus subtilis and natural peptides, enables the transportation of particular cyclopeptides into the tumour network. Peptides, similar to bombesin, direct nanomicelles to specific places, while peptides based on curcumin control the release of medicinal substances. While preclinical investigations demonstrate promise, obstacles remain in formulation and regulatory issues. However, biosurfactant-based nanomicelles, particularly folate-coated carriers loaded with curcumin, show tremendous potential in overcoming biological barriers and delivering medicines efficiently to colon cancer cells.
-
-
-
Lysyl Oxidase-like 2 Dysregulation Increases the Risk of Post- Operative Fibrotic Scars Formation in the Female Reproductive Tract: A Novel Therapeutic Target to Reduce Fibrogenesis
The formation of fibrotic bands in the female reproductive system, including the uterus, after abdominal and pelvic surgeries, is an important medical challenge associated with many complications, including infertility and pain. Investigating the role of different molecules involved in fibrosis and adhesion formation may help in the development of new drugs to prevent this disorder. Lysyl oxidase-like 2 (LoxL2) is a copper-dependent enzyme that catalyzes the cross-linking of collagen and elastin fibers in the extracellular matrix (ECM) to stabilize ECM. Dysregulation of LoxL2 activity resulting from tissue hypoxia and inflammation after gynecological surgeries in the female reproductive tract increases collagen fibers cross-linking and promotes fibrosis. It has been shown that targeting LoxL2 by Lox inhibitors may reduce fibrosis. Considering the expression of LoxL2 in female reproductive organs and its dysregulation in hypoxia and inflammation, LoxL2 may have theraputic potential as a drug target in the prevention of adhesions. In this review, we discuss the role of LoxL2 in the promotion of fibrotic processes, focusing on its link with inflammatory and hypoxic conditions. We also justify the use of anti-LoxL2 agents as a potential therapeutic strategy for the prevention of post-surgical scar formation.
-
-
-
Integrated Exploration of Pyranocoumarin Derivatives as Synergistic Inhibitors of Dual-target for Mpro and PLpro Proteins of SARS-CoV- 2 through Molecular Docking, ADMET Analysis, and Molecular Dynamics Simulation
AimsThis study aimed to explore the potential of natural anticoagulant compounds as synergistic inhibitors of the main protease (Mpro) and papain-like protease (PLpro) of SARS-CoV-2 and find effective therapies against SARS-CoV-2 by investigating the inhibitory effects of natural anticoagulant compounds on key viral proteases.
ObjectiveThe objectives of this study were to conduct rigorous virtual screening and molecular docking analyses to evaluate the binding affinities and interactions of selected anticoagulant compounds with Mpro and PLpro, to assess the pharmacokinetic and pharmacodynamic profiles of the compounds to determine their viability for therapeutic use, and to employ molecular dynamics simulations to understand the stability of the identified compounds over time.
MethodsIn this study, a curated collection of natural anticoagulant compounds was conducted. Virtual screening and molecular docking analyses were performed to assess binding affinities and interactions with Mpro and PLpro. Furthermore, pharmacokinetic and pharmacodynamic analyses were carried out to evaluate absorption, distribution, metabolism, and excretion profiles. Molecular dynamics simulations were performed to elucidate compound stability.
ResultsNatural compounds exhibiting significant inhibitory activity against Mpro and PLpro were identified. A dual-target approach was established as a promising strategy for attenuating viral replication and addressing coagulopathic complications associated with SARS-CoV-2 infection.
ConclusionThe study lays a solid foundation for experimental validation and optimization of identified compounds, potentially leading to the development of precise treatments for SARS-CoV-2.
-
-
-
Geniposide Attenuates Oxygen-glucose Deprivation/Recovery-induced Retinal Ganglion Cell Injury via Akt/Nrf-2 Signaling Pathway
Authors: Ming-Hai Hu, Dekun Chen, Xiuyu Wu and Guo-Feng RenBackgroundGlaucoma is an eye disease. Its pathological process involves retinal ischemia-reperfusion (I/R), which causes irreversible blindness in patients. Geniposide (Gen), a bioactive iridoid glycoside extracted from the fruit of gardenia, exhibits many biological effects, such as anti-oxidative stress, anti-inflammation, anti-apoptosis, anti-endoplasmic reticulum stress, and anti-thrombotic effects. However, its therapeutic potential for the retinal I/R injury remains unclear. This study investigated the protective effect of Gen against I/R injury by inhibiting abnormal reactive oxygen species (ROS) and retinal neuron apoptosis.
MethodsWe used oxygen-glucose deprivation/reoxygenation (OGD/R) to induce R28 cells to mimic the pathological process of I/R in glaucoma. We conducted CCK-8 analysis and TUNEL staining to examine cell proliferation and apoptosis in glaucoma. Western blotting was used to assay the expressions of apoptosis and Akt/Nrf-2 pathway-related proteins.
ResultsThe production of ROS was detected by using the corresponding kit. Cell viability decreased, whereas TUNEL staining-positive cells and ROS production increased after the OGD/R injury. The contents of cleaved caspase-3 and Bax/Bcl-2 increased after the OGD/R injury. Treatment with 200 μM of Gen effectively improved the cell viability and suppressed cell apoptosis and ROS production. In addition, Gen could significantly promote the activation of the Akt/Nrf-2 signaling pathway in R28 cells, which was blocked by the inhibition of Akt/Nrf-2. We in vivo verified the neuroprotective effect of Gen by establishing an acute high intraocular pressure (aHIOP) model and obtained similar results to those of the in vitro experimental results.
ConclusionHence, it can be suggested that Gen provides neuroprotection against the OGD/R-induced injury of R28 cells by activating the Akt/Nrf-2 signaling pathway, which is beneficial for the clinical treatment of glaucoma.
-
-
-
The Molecular Characteristics and Therapeutic Implications of O-glycan Synthesis in Pancreatic Cancer by Integrating Transcriptome and Single-cell Data
Authors: Bingqian Huang, Biao Zhang, Jifeng Liu, Tingxin Wang, Yunshu Zhang, Bolin Zhang, Qihang Yuan, Shilin Xia and Dong ShangBackgroundGlycans constitute the primary components of proteins that regulate key carcinogenic processes in cancer progression. This study investigated the significance of O-glycan synthesis in the pathogenesis, outcome, and therapy of pancreatic cancer (PC).
MethodsTranscriptomic data and clinical prognostic information of PC were acquired via TCGA and GEO databases. CSA database was used to obtain single-cell data of PC. The O-glycan biosynthesis signaling pathway and its related genes were acquired via the MSigDB platform. The non-negative matrix factorization (NMF) clustering was utilized to construct the O-glycan biosynthesis-associated molecular subtypes in PC. The LASSO and Cox regression were utilized to build the prognostic prediction model. We utilized real-time quantitative PCR (qRT-PCR) to verify the expressed levels of model genes. Single-cell analysis was utilized to investigate the levels of target genes and O-glycan biosynthesis signaling pathway in the PC tumour microenvironment.
ResultsWe obtained 30 genes related to O-glycan biosynthesis, among which 15 were associated with the prognosis of PC. All PC samples were grouped into two distinct molecular subtypes associated with O-glycan biosynthesis: OGRGcluster C1 and OGRGcluster C2, and compared to OGRGcluster C1. PCs in OGRGcluster C2 had a more advanced clinical stage and pathological grade, worse prognosis, and more active O-glycan biosynthesis function. Immune analysis indicated that naïve B cell, CD8+ T cell, memory-activated CD4+ T cell, and monocytes displayed remarkably higher infiltration levels in OGRGcluster C1 while resting NK cell, macrophages M0, resting dendritic cell, activated dendritic cell, and neutrophils exhibited markedly higher infiltration levels in OGRGcluster C2. OGRGcluster C1 exhibited higher sensitivities to drugs, such as cisplatin, irinotecan, KRAS(G12C) inhibitor-12, oxaliplatin, paclitaxel, and sorafenib. Besides, we built the O-glycan biosynthesis-related prognostic model (including SPRR1B, COL17A1, and ECT2) with a good prediction performance. SPRR1B, COL17A1, and ECT2 were remarkably highly expressed in PC tissues and linked to a poor outcome. Single-cell analysis revealed that O-glycan biosynthesis was observed only in PC, and consistent with this, the target genes were significantly enriched in PC.
ConclusionWe first constructed molecular subtypes and prognostic models related to O-glycan biosynthesis in PC. It is clear that O-glycan biosynthesis is related to the development, prognosis, immune microenvironment, and treatment of PC. This provides new strategies for stratification, diagnosis, and treatment of PC patients.
-
-
-
Cordycepin and Its Structural Derivatives Effectively Suppress the High Expression of Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase in Breast Carcinomas: A Computational Drug Development Approach
BackgroundBreast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.
ObjectivesThe objective of this study is to compare the underlying pharmacological properties of several modified agents to the parental Cordycepin to target and inhibit the EGFR tyrosine kinase high expression, and to discover the inhibitor with the highest affinity for this drug target to treat the breast cancer patients.
MethodsThe Maestro Application of Schrödinger Suite Paid Software was initially employed for conducting extra precision (XP) structure-based virtual screening to evaluate the binding affinity of the Cordycepin and its 500 structural derivatives with the EGFR tyrosine kinase protein structure. In addition, the anti-breast cancer activity of the chosen compounds was assessed by looking at their drug-likeness and ADMET characteristics using Lipinski's rule of five along with Quantitative structure-activity relationship (QSAR) validation, the prediction of cell line anti-cancer, as well as anti-breast cancer activity of top docked scored compounds. Subsequently, the Desmond paid software-based molecular dynamics simulations (MDS) were conducted for a duration of 100 nanoseconds on the promising candidates followed by the binding free energy estimation was performed utilizing MM-GBSA analysis. To determine the stability of the protein-ligand complex, root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), protein-ligand interactions, and other necessary parameters were evaluated from the 100 ns MDS Trajectory.
ResultsBased on the overall analysis of our study, N (6)-octylamine adenosine (CID-194932) reported the optimum inhibitory potential against the EGFR tyrosine kinase protein, followed by Adenosine 5-monophosphate (CID-83862) and Cordycepin (CID-6303), which compared favorably to the control drug Vandetanib (CID-3081361).
ConclusionConsequently, these derivative compounds Cordycepin have the potential to be utilized as lead molecules in the development of highly effective and potent EGFR tyrosine kinase inhibitors for the treatment of breast cancer patients.
-
-
-
Theoretical Modeling of the Interactions of CoFe2O4-BaTiO3 Magnetoelectric Nanoparticles with Cancer and Healthy Cells
Authors: Gençay Sevim, Gizem Değer and Gülay BüyükköroğluIntroductionThe effectiveness of pharmaceutical treatment methods is vital in cancer treatment. In this context, various targeted drug delivery systems are being developed to minimize or eliminate existing deficiencies and harms. This study aimed to model the interaction of MEN-based drug-targeting systems with cancer cells and determine the properties of interacting MENs.
MethodsMagnetoelectric Nanostructures (MENs) have both targeting and nano-electroporation effects due to their ferroic properties. Among these structures, the most used nanoparticles as targeting mechanisms are CoFe2O4-BaTiO3 structures. For this purpose, the electrical field produced by MENs was modeled using MATLAB R2023b, and a theoretical data pool of appropriate physical properties was created. Testing and applying other magnetoelectric materials defined in the literature may be costly and time-consuming.
ResultsThe problems with MENs can be eliminated by performing theoretical simulations of each material before proceeding with laboratory tests.
ConclusionBy simulating the interaction of CoFe2O4-BaTiO3 MENs with cancer cells, physical properties affecting drug targeting were theoretically identified and a data pool of MENs with these properties was created.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)
Most Read This Month
