Skip to content
2000
Volume 32, Issue 26
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Glycans constitute the primary components of proteins that regulate key carcinogenic processes in cancer progression. This study investigated the significance of O-glycan synthesis in the pathogenesis, outcome, and therapy of pancreatic cancer (PC).

Methods

Transcriptomic data and clinical prognostic information of PC were acquired TCGA and GEO databases. CSA database was used to obtain single-cell data of PC. The O-glycan biosynthesis signaling pathway and its related genes were acquired the MSigDB platform. The non-negative matrix factorization (NMF) clustering was utilized to construct the O-glycan biosynthesis-associated molecular subtypes in PC. The LASSO and Cox regression were utilized to build the prognostic prediction model. We utilized real-time quantitative PCR (qRT-PCR) to verify the expressed levels of model genes. Single-cell analysis was utilized to investigate the levels of target genes and O-glycan biosynthesis signaling pathway in the PC tumour microenvironment.

Results

We obtained 30 genes related to O-glycan biosynthesis, among which 15 were associated with the prognosis of PC. All PC samples were grouped into two distinct molecular subtypes associated with O-glycan biosynthesis: OGRGcluster C1 and OGRGcluster C2, and compared to OGRGcluster C1. PCs in OGRGcluster C2 had a more advanced clinical stage and pathological grade, worse prognosis, and more active O-glycan biosynthesis function. Immune analysis indicated that naïve B cell, CD8+ T cell, memory-activated CD4+ T cell, and monocytes displayed remarkably higher infiltration levels in OGRGcluster C1 while resting NK cell, macrophages M0, resting dendritic cell, activated dendritic cell, and neutrophils exhibited markedly higher infiltration levels in OGRGcluster C2. OGRGcluster C1 exhibited higher sensitivities to drugs, such as cisplatin, irinotecan, KRAS(G12C) inhibitor-12, oxaliplatin, paclitaxel, and sorafenib. Besides, we built the O-glycan biosynthesis-related prognostic model (including SPRR1B, COL17A1, and ECT2) with a good prediction performance. SPRR1B, COL17A1, and ECT2 were remarkably highly expressed in PC tissues and linked to a poor outcome. Single-cell analysis revealed that O-glycan biosynthesis was observed only in PC, and consistent with this, the target genes were significantly enriched in PC.

Conclusion

We first constructed molecular subtypes and prognostic models related to O-glycan biosynthesis in PC. It is clear that O-glycan biosynthesis is related to the development, prognosis, immune microenvironment, and treatment of PC. This provides new strategies for stratification, diagnosis, and treatment of PC patients.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673293445240409060446
2024-04-24
2025-10-26
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/26/CMC-32-26-10.html?itemId=/content/journals/cmc/10.2174/0109298673293445240409060446&mimeType=html&fmt=ahah

References

  1. EichlerJ. Protein glycosylation.Curr. Biol.2019297R229R23110.1016/j.cub.2019.01.00330939300
    [Google Scholar]
  2. CantarelB. L. CoutinhoP. M. RancurelC. BernardT. LombardV. HenrissatB. The Carbohydrate-Active EnZymes Database (CAZy): An expert resource for glycogenomics.Nucleic Acids Res.2009377D233D23810.1093/nar/gkn663
    [Google Scholar]
  3. HaoY. KingJ.D. HuszczynskiS. KocíncováD. LamJ.S. Five new genes are important for common polysaccharide antigen biosynthesis in Pseudomonas aeruginosa.MBio201341e00631-1210.1128/mBio.00631‑1223341552
    [Google Scholar]
  4. StanleyP. Golgi Glycosylation.Cold Spring Harb. Perspect. Biol.201134a005199a00519910.1101/cshperspect.a00519921441588
    [Google Scholar]
  5. ShuQ. LiM. ShuL. AnZ. WangJ. LvH. YangM. CaiT. HuT. FuY. YangF. Large-scale identification of N-linked intact glycopeptides in human serum using HILIC enrichment and spectral library search.Mol. Cell. Proteomics202019467268910.1074/mcp.RA119.00179132102970
    [Google Scholar]
  6. ChongsaritsinsukJ. SteigmeyerA.D. MahoneyK.E. RosenfeldM.A. LucasT.M. SmithC.M. LiA. InceD. KearnsF.L. BattisonA.S. HollenhorstM.A. Judy ShonD. TiemeyerK.H. AttahV. KwonC. BertozziC.R. FerracaneM.J. LemmonM.A. AmaroR.E. MalakerS.A. Glycoproteomic landscape and structural dynamics of TIM family immune checkpoints enabled by mucinase SmE.Nat. Commun.2023141616910.1038/s41467‑023‑41756‑y37794035
    [Google Scholar]
  7. PolaskyD.A. YuF. TeoG.C. NesvizhskiiA.I. Fast and comprehensive N- and O-glycoproteomics analysis with MSFragger-Glyco.Nat. Methods202017111125113210.1038/s41592‑020‑0967‑933020657
    [Google Scholar]
  8. KoukaT. AkaseS. SogabeI. JinC. KarlssonN.G. Aoki-KinoshitaK.F. Computational modeling of O-linked glycan biosynthesis in CHO cells.Molecules2022276176610.3390/molecules2706176635335136
    [Google Scholar]
  9. MagalhãesA. DuarteH.O. ReisC.A. The role of O-glycosylation in human disease.Mol. Aspects Med.20217910096410.1016/j.mam.2021.10096433775405
    [Google Scholar]
  10. PatsosG. Hebbe-VitonV. Robbe-MasselotC. MasselotD. MartinR.S. GreenwoodR. ParaskevaC. KleinA. GraessmannM. MichalskiJ.C. GallagherT. CorfieldA. O-Glycan inhibitors generate aryl-glycans, induce apoptosis and lead to growth inhibition in colorectal cancer cell lines.Glycobiology200919438239810.1093/glycob/cwn14919122213
    [Google Scholar]
  11. FreitasD. CamposD. GomesJ. PintoF. MacedoJ.A. MatosR. MereiterS. PintoM.T. PolóniaA. GartnerF. MagalhãesA. ReisC.A. O-glycans truncation modulates gastric cancer cell signaling and transcription leading to a more aggressive phenotype.EBioMedicine20194034936210.1016/j.ebiom.2019.01.01730662000
    [Google Scholar]
  12. LinM. ChuangY. WuH. HsuC. LinN. HuangM. LouP. Targeting tumor O-glycosylation modulates cancer–immune-cell crosstalk and enhances anti-PD-1 immunotherapy in head and neck cancer.Mol. Oncol.202418235036810.1002/1878‑0261.13489
    [Google Scholar]
  13. ZhangB. YuanQ. ZhangB. LiS. WangZ. LiuH. MengF. ChenX. ShangD. Characterization of neuroendocrine regulation- and metabolism-associated molecular features and prognostic indicators with aid to clinical chemotherapy and immunotherapy of patients with pancreatic cancer.Front. Endocrinol. (Lausanne)202313107842410.3389/fendo.2022.107842436743929
    [Google Scholar]
  14. ZhangB. HuangB. ZhangX. LiS. ZhuJ. ChenX. SongH. ShangD. PANoptosis-related molecular subtype and prognostic model associated with the immune microenvironment and individualized therapy in pancreatic cancer.Front. Oncol.202313121765410.3389/fonc.2023.121765437519797
    [Google Scholar]
  15. LeekJ.T. JohnsonW.E. ParkerH.S. JaffeA.E. StoreyJ.D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments.Bioinformatics201228688288310.1093/bioinformatics/bts03422257669
    [Google Scholar]
  16. LiberzonA. BirgerC. ThorvaldsdóttirH. GhandiM. MesirovJ.P. TamayoP. The Molecular Signatures Database (MSigDB) hallmark gene set collection.Cell Syst.20151641742510.1016/j.cels.2015.12.00426771021
    [Google Scholar]
  17. GaujouxR. SeoigheC. A flexible R package for nonnegative matrix factorization.BMC Bioinformatics201011136710.1186/1471‑2105‑11‑36720598126
    [Google Scholar]
  18. NewmanA.M. LiuC.L. GreenM.R. GentlesA.J. FengW. XuY. HoangC.D. DiehnM. AlizadehA.A. Robust enumeration of cell subsets from tissue expression profiles.Nat. Methods201512545345710.1038/nmeth.333725822800
    [Google Scholar]
  19. MaeserD. GruenerR.F. HuangR.S. OncoPredict: An R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data.Brief. Bioinform.2021226bbab26010.1093/bib/bbab26034260682
    [Google Scholar]
  20. HuangX. ChiH. GouS. GuoX. LiL. PengG. ZhangJ. XuJ. NianS. YuanQ. An aggrephagy-related LncRNA signature for the prognosis of pancreatic adenocarcinoma.Genes (Basel)202314112410.3390/genes1401012436672865
    [Google Scholar]
  21. ChiH. PengG. WangR. YangF. XieX. ZhangJ. XuK. GuT. YangX. TianG. Cuprotosis programmed-cell-death-related lncrna signature predicts prognosis and immune landscape in PAAD patients.Cells20221121343610.3390/cells1121343636359832
    [Google Scholar]
  22. TangZ. LiC. KangB. GaoG. LiC. ZhangZ. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses.Nucleic Acids Res.201745W1W98w10210.1093/nar/gkx247
    [Google Scholar]
  23. PonténF. SchwenkJ.M. AsplundA. EdqvistP.H.D. The Human Protein Atlas as a proteomic resource for biomarker discovery.J. Intern. Med.2011270542844610.1111/j.1365‑2796.2011.02427.x21752111
    [Google Scholar]
  24. WangY. SongF. ZhuJ. ZhangS. YangY. ChenT. TangB. DongL. DingN. ZhangQ. BaiZ. DongX. ChenH. SunM. ZhaiS. SunY. YuL. LanL. XiaoJ. FangX. LeiH. ZhangZ. ZhaoW. GSA: Genome sequence archive.Geno. Proteomics Bioinform.2017151141810.1016/j.gpb.2017.01.00128387199
    [Google Scholar]
  25. ZhangS. WangY. LiH. ZhiH. ZhaiX. RuanW. ZhangS. XuX. WuH. Tongmai Zhuke decoction restrains the inflammatory reaction of macrophages for carotid artery atherosclerosis by up-regulating lincRNA- Cox2.Biotechnol. Genet. Eng. Rev.202311610.1080/02648725.2023.219648937013943
    [Google Scholar]
  26. PengJ. SunB.F. ChenC.Y. ZhouJ.Y. ChenY.S. ChenH. LiuL. HuangD. JiangJ. CuiG.S. YangY. WangW. GuoD. DaiM. GuoJ. ZhangT. LiaoQ. LiuY. ZhaoY.L. HanD.L. ZhaoY. YangY.G. WuW. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma.Cell Res.201929972573810.1038/s41422‑019‑0195‑y31273297
    [Google Scholar]
  27. ZengZ. LiW. ZhangD. ZhangC. JiangX. GuoR. WangZ. YangC. YanH. ZhangZ. WangQ. HuangR. ZhaoQ. LiB. HuX. GaoL. Development of a chemoresistant risk scoring model for prechemotherapy osteosarcoma using single-cell sequencing.Front. Oncol.20221289328210.3389/fonc.2022.89328235664733
    [Google Scholar]
  28. AndreattaM. CarmonaS.J. UCell: Robust and scalable single-cell gene signature scoring.Comput. Struct. Biotechnol. J.2021193796379810.1016/j.csbj.2021.06.04334285779
    [Google Scholar]
  29. BhuvaD.D. ForoutanM. XieY. LyuR. CursonsJ. DavisM.J. Using singscore to predict mutation status in acute myeloid leukemia from transcriptomic signatures.F1000 Res.2019877610.12688/f1000research.19236.331723419
    [Google Scholar]
  30. JinY. WangZ. HeD. ZhuY. ChenX. CaoK. Identification of novel subtypes based on ssGSEA in immune-related prognostic signature for tongue squamous cell carcinoma.Cancer Med.202110238693870710.1002/cam4.434134668665
    [Google Scholar]
  31. DengC. DengG. ChuH. ChenS. ChenX. LiX. HeY. SunC. ZhangC. Construction of a hypoxia-immune-related prognostic panel based on integrated single- cell and bulk RNA sequencing analyses in gastric cancer.Front. Immunol.202314114032810.3389/fimmu.2023.114032837180146
    [Google Scholar]
  32. ZhangX.L. Roles of glycans and glycopeptides in immune system and immune-related diseases.Curr. Med. Chem.200613101141114710.2174/09298670677636089716719775
    [Google Scholar]
  33. ZhangY. WangL. OcanseyD.K.W. WangB. WangL. XuZ. Mucin-type O-glycans: Barrier, microbiota, and immune anchors in inflammatory bowel disease.J. Inflamm. Res.2021145939595310.2147/JIR.S32760934803391
    [Google Scholar]
  34. HinoS. MizushimaT. KanekoK. KawaiE. KondoT. GendaT. YamadaT. HaseK. NishimuraN. MoritaT. Mucin-derived o-glycans act as endogenous fiber and sustain mucosal immune homeostasis via short-chain fatty acid production in rat cecum.J. Nutr.2020150102656266510.1093/jn/nxaa09732286621
    [Google Scholar]
  35. LanY. HaoC. ZengX. HeY. ZengP. GuoZ. ZhangL. Serum glycoprotein-derived N- and O-linked glycans as cancer biomarkers.Am. J. Cancer Res.20166112390241527904760
    [Google Scholar]
  36. ByrdJ.C. DahiyaR. HuangJ. KimY.S. Inhibition of mucin synthesis by benzyl-α-GalNAc in KATO III gastric cancer and Caco-2 colon cancer cells.Eur. J. Cancer19953191498150510.1016/0959‑8049(95)00248‑H7577079
    [Google Scholar]
  37. ChandrasekaranE.V. ChawdaR. PiskorzC. LockeR.D. TaA. SharadG. OdunsiK. LeleS. MattaK.L. Human ovarian cancer, lymphoma spleen, and bovine milk GlcNAc:β1,4Gal/GalNAc transferases: Two molecular species in ovarian tumor and induction of GalNAcβ1,4Glc synthesis by α-lactalbumin.Carbohydr. Res.2001334210511810.1016/S0008‑6215(01)00150‑111502266
    [Google Scholar]
  38. LiF. DingJ. Sialylation is involved in cell fate decision during development, reprogramming and cancer progression.Protein Cell201910855056510.1007/s13238‑018‑0597‑530478534
    [Google Scholar]
  39. DobieC. SkropetaD. Insights into the role of sialylation in cancer progression and metastasis.Br. J. Cancer20211241769010.1038/s41416‑020‑01126‑733144696
    [Google Scholar]
  40. Martínez-BoschN. Rodriguez-VidaA. JuanpereN. LloretaJ. RoviraA. AlbanellJ. BellmuntJ. NavarroP. Galectins in prostate and bladder cancer: Tumorigenic roles and clinical opportunities.Nat. Rev. Urol.201916743344510.1038/s41585‑019‑0183‑531015643
    [Google Scholar]
  41. CaoD. SongQ. LiJ. JiangY. WangZ. LuS. Opportunities and challenges in targeted therapy and immunotherapy for pancreatic cancer.Expert Rev. Mol. Med.202123e2110.1017/erm.2021.2634906271
    [Google Scholar]
  42. BechardM.E. WordA.E. TranA.V. LiuX. LocasaleJ.W. McDonaldO.G. Pentose conversions support the tumorigenesis of pancreatic cancer distant metastases.Oncogene201837385248525610.1038/s41388‑018‑0346‑529849117
    [Google Scholar]
  43. NieH. HuangP.Q. JiangS.H. YangQ. HuL.P. YangX.M. LiJ. WangY.H. LiQ. ZhangY.F. ZhuL. ZhangY.L. YuY. XiaoG.G. SunY.W. JiJ. ZhangZ.G. The short isoform of PRLR suppresses the pentose phosphate pathway and nucleotide synthesis through the NEK9-Hippo axis in pancreatic cancer.Theranostics20211183898391510.7150/thno.5171233664869
    [Google Scholar]
  44. StantonR.C. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival.IUBMB Life201264536236910.1002/iub.101722431005
    [Google Scholar]
  45. ButeraG. PacchianaR. MullappillyN. MargiottaM. BrunoS. ContiP. RigantiC. DonadelliM. Mutant p53 prevents GAPDH nuclear translocation in pancreatic cancer cells favoring glycolysis and 2-deoxyglucose sensitivity.Biochim. Biophys. Acta Mol. Cell Res.20181865121914192310.1016/j.bbamcr.2018.10.00530296496
    [Google Scholar]
  46. HuangJ. Current developments of targeting the p53 signaling pathway for cancer treatment.Pharmacol. Ther.202122010772010.1016/j.pharmthera.2020.10772033130194
    [Google Scholar]
  47. HinshawD.C. ShevdeL.A. The tumor microenvironment innately modulates cancer progression.Cancer Res.201979184557456610.1158/0008‑5472.CAN‑18‑396231350295
    [Google Scholar]
  48. XiaL. OyangL. LinJ. TanS. HanY. WuN. YiP. TangL. PanQ. RaoS. LiangJ. TangY. SuM. LuoX. YangY. ShiY. WangH. ZhouY. LiaoQ. The cancer metabolic reprogramming and immune response.Mol. Cancer202120112110.1186/s12943‑021‑01316‑833546704
    [Google Scholar]
  49. Downs-CannerS.M. MeierJ. VincentB.G. SerodyJ.S. B cell function in the tumor microenvironment.Annu. Rev. Immunol.202240116919310.1146/annurev‑immunol‑101220‑01560335044794
    [Google Scholar]
  50. RodyA. KarnT. LiedtkeC. PusztaiL. RuckhaeberleE. HankerL. GaetjeR. SolbachC. AhrA. MetzlerD. SchmidtM. MüllerV. HoltrichU. KaufmannM. A clinically relevant gene signature in triple negative and basal-like breast cancer.Breast Cancer Res.2011135R9710.1186/bcr303521978456
    [Google Scholar]
  51. BindeaG. MlecnikB. TosoliniM. KirilovskyA. WaldnerM. ObenaufA.C. AngellH. FredriksenT. LafontaineL. BergerA. BrunevalP. FridmanW.H. BeckerC. PagèsF. SpeicherM.R. TrajanoskiZ. GalonJ. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer.Immunity201339478279510.1016/j.immuni.2013.10.00324138885
    [Google Scholar]
  52. BassezA. VosH. Van DyckL. FlorisG. ArijsI. DesmedtC. BoeckxB. Vanden BemptM. NevelsteenI. LambeinK. PunieK. NevenP. GargA.D. WildiersH. QianJ. SmeetsA. LambrechtsD. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer.Nat. Med.202127582083210.1038/s41591‑021‑01323‑833958794
    [Google Scholar]
  53. OlingyC.E. DinhH.Q. HedrickC.C. Monocyte heterogeneity and functions in cancer.J. Leukoc. Biol.2019106230932210.1002/JLB.4RI0818‑311R30776148
    [Google Scholar]
  54. TerrénI. OrrantiaA. Astarloa-PandoG. Amarilla-IrustaA. ZenarruzabeitiaO. BorregoF. Cytokine-induced memory-like NK cells: From the basics to clinical applications.Front. Immunol.20221388464810.3389/fimmu.2022.88464835603208
    [Google Scholar]
  55. AlbertM.L. PearceS.F.A. FranciscoL.M. SauterB. RoyP. SilversteinR.L. BhardwajN. Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes.J. Exp. Med.199818871359136810.1084/jem.188.7.13599763615
    [Google Scholar]
  56. PaluckaK. BanchereauJ. Cancer immunotherapy via dendritic cells.Nat. Rev. Cancer201212426527710.1038/nrc325822437871
    [Google Scholar]
  57. ZhangJ. SunH. LiuS. HuangW. GuJ. ZhaoZ. QinH. LuoL. YangJ. FangY. GeJ. NiB. WangH. Alteration of tumor-associated macrophage subtypes mediated by KRT6A in pancreatic ductal adenocarcinoma.Aging (Albany NY)202012222321723232
    [Google Scholar]
  58. XuC. SuiS. ShangY. YuZ. HanJ. ZhangG. NtimM. HuM. GongP. ChenH. ZhangX. The landscape of immune cell infiltration and its clinical implications of pancreatic ductal adenocarcinoma.J. Adv. Res.20202413914810.1016/j.jare.2020.03.00932322419
    [Google Scholar]
  59. MutuaV. GershwinL.J. A review of neutrophil extracellular traps (NETs) in disease: potential anti-NETs therapeutics.Clin. Rev. Allergy Immunol.202161219421110.1007/s12016‑020‑08804‑732740860
    [Google Scholar]
  60. TanC. AzizM. WangP. The vitals of NETs.J. Leukoc. Biol.2021110479780810.1002/JLB.3RU0620‑375R33378572
    [Google Scholar]
  61. MasucciM.T. MinopoliM. Del VecchioS. CarrieroM.V. The emerging role of Neutrophil Extracellular Traps (NETs) in tumor progression and metastasis.Front. Immunol.202011174910.3389/fimmu.2020.0174933042107
    [Google Scholar]
  62. de ManF.M. GoeyA.K.L. van SchaikR.H.N. MathijssenR.H.J. BinsS. Individualization of Irinotecan Treatment: A review of pharmacokinetics, pharmacodynamics, and pharmacogenetics.Clin. Pharmacokinet.201857101229125410.1007/s40262‑018‑0644‑729520731
    [Google Scholar]
  63. O’ReillyE.M. LeeJ.W. ZalupskiM. CapanuM. ParkJ. GolanT. TahoverE. LoweryM.A. ChouJ.F. SahaiV. BrennerR. KindlerH.L. YuK.H. ZervoudakisA. VemuriS. StadlerZ.K. DoR.K.G. DhaniN. ChenA.P. KelsenD.P. Randomized, multicenter, Phase II Trial of gemcitabine and cisplatin with or without veliparib in patients with pancreas adenocarcinoma and a germline BRCA/PALB2 mutation.J. Clin. Oncol.202038131378138810.1200/JCO.19.0293131976786
    [Google Scholar]
  64. ParkW. ChawlaA. O’ReillyE.M. Pancreatic Cancer.JAMA2021326985186210.1001/jama.2021.1302734547082
    [Google Scholar]
  65. ThierryC. FrançoiseD. MarcY. OlivierB. RosineG. YvesB. AntoineA. Jean-LucR. SophieG-B. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer.N. Engl. J. Med.201136419181725
    [Google Scholar]
  66. ConroyT. HammelP. HebbarM. Ben AbdelghaniM. WeiA.C. RaoulJ.L. ChonéL. FrancoisE. ArtruP. BiagiJ.J. LecomteT. AssenatE. FarouxR. YchouM. VoletJ. SauvanetA. BreysacherG. Di FioreF. CrippsC. KavanP. TexereauP. Bouhier-LeporrierK. Khemissa-AkouzF. LegouxJ.L. JuzynaB. GourgouS. O’CallaghanC.J. Jouffroy-ZellerC. RatP. MalkaD. CastanF. BachetJ.B. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer.N. Engl. J. Med.2018379252395240610.1056/NEJMoa180977530575490
    [Google Scholar]
  67. SinnM. LierschT. RiessH. GellertK. StübsP. WaldschmidtD. LammertF. MaschmeyerG. BechsteinW. BitzerM. DenzlingerC. HofheinzR. LindigU. GhadimiM. HinkeA. StrieflerJ.K. PelzerU. BischoffS. BahraM. OettleH. CONKO-006: A randomised double-blinded phase IIb-study of additive therapy with gemcitabine + sorafenib/placebo in patients with R1 resection of pancreatic cancer – Final results.Eur. J. Cancer202013817218110.1016/j.ejca.2020.06.03232890813
    [Google Scholar]
  68. SinghR.R. O’ReillyE.M. New treatment strategies for metastatic pancreatic ductal adenocarcinoma.Drugs202080764766910.1007/s40265‑020‑01304‑032306207
    [Google Scholar]
  69. LiuN. MatsumuraH. KatoT. IchinoseS. TakadaA. NamikiT. AsakawaK. MorinagaH. MohriY. De ArcangelisA. Geroges-LabouesseE. NanbaD. NishimuraE.K. Stem cell competition orchestrates skin homeostasis and ageing.Nature2019568775234435010.1038/s41586‑019‑1085‑730944469
    [Google Scholar]
  70. BischofJ. MarchO.P. LiembergerB. HaasS.A. HainzlS. PetkovićI. Leb-ReichlV. IllmerJ. KorotchenkoE. KlauseggerA. HoogA. BinderH.M. GarciaM. DuarteB. StrunkD. LarcherF. ReicheltJ. Guttmann-GruberC. WallyV. HofbauerJ.P. BauerJ.W. CathomenT. KocherT. KollerU. Paired nicking- mediated COL17A1 reframing for junctional epidermolysis bullosa.Mol. Ther.20223082680269210.1016/j.ymthe.2022.04.02035490295
    [Google Scholar]
  71. KozawaK. SekaiM. OhbaK. ItoS. SakoH. MaruyamaT. KakenoM. ShiraiT. KuromiyaK. KamasakiT. KohashiK. TanakaS. IshikawaS. SatoN. AsanoS. SuzukiH. TanimuraN. MukaiY. GotohN. TaninoM. TanakaS. NatsugaK. SogaT. NakamuraT. YabutaY. SaitouM. ItoT. MatsuuraK. TsunodaM. KikumoriT. IidaT. MizutaniY. MiyaiY. KaibuchiK. EnomotoA. FujitaY. The CD44/COL17A1 pathway promotes the formation of multilayered, transformed epithelia.Curr. Biol.2021311430863097.e710.1016/j.cub.2021.04.07834087104
    [Google Scholar]
  72. WuM. LiX. ZhangT. LiuZ. ZhaoY. Identification of a nine-gene signature and establishment of a prognostic nomogram predicting overall survival of pancreatic cancer.Front. Oncol.2019999610.3389/fonc.2019.0099631612115
    [Google Scholar]
  73. AtayS. Integrated transcriptome meta-analysis of pancreatic ductal adenocarcinoma and matched adjacent pancreatic tissues.PeerJ20208e1014110.7717/peerj.1014133194391
    [Google Scholar]
  74. YangJ. LiY. SunZ. FanZ. ShiM. LiuS. MengY. ZhouB. JiangY. ZhanH. COL17A1 facilitates tumor growth and predicts poor prognosis in pancreatic cancer.Biochem. Biophys. Res. Commun.20226321910.1016/j.bbrc.2022.09.04936191371
    [Google Scholar]
  75. MichifuriY. HirohashiY. TorigoeT. MiyazakiA. FujinoJ. TamuraY. TsukaharaT. KanasekiT. KobayashiJ. SasakiT. TakahashiA. NakamoriK. YamaguchiA. HiratsukaH. SatoN. Small proline-rich protein-1B is overexpressed in human oral squamous cell cancer stem-like cells and is related to their growth through activation of MAP kinase signal.Biochem. Biophys. Res. Commun.201343919610210.1016/j.bbrc.2013.08.02123954638
    [Google Scholar]
  76. TesfaigziY. WrightP.S. BelinskyS.A. SPRR1B overexpression enhances entry of cells into the G 0 phase of the cell cycle.Am. J. Physiol. Lung Cell. Mol. Physiol.20032854L889L89810.1152/ajplung.00065.200312832281
    [Google Scholar]
  77. ChenJ. XiaQ. JiangB. ChangW. YuanW. MaZ. LiuZ. ShuX. Prognostic value of cancer stem cell marker ALDH1 expression in colorectal cancer: A systematic review and meta-analysis.PLoS One20151012e014516410.1371/journal.pone.014516426682730
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673293445240409060446
Loading
/content/journals/cmc/10.2174/0109298673293445240409060446
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test