Skip to content
2000
Volume 32, Issue 26
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

A notable breakthrough in the treatment of colon cancer involves the utilisation of a cutting-edge drug delivery technology known as biosurfactant-derived nanomicelles. These nanomicelles, composed of natural biosurfactant molecules, possess the distinct capability to enclose pharmaceuticals or genetic material, such as DNA, siRNA, or mRNA, within spherical formations. With a size ranging from 10 to 100 nanometers, these nanomicelles exhibit precision targeting capabilities towards colon cancer cells, hence minimising the occurrence of side effects typically associated with treatment. Upon being specifically targeted, the nanomicelles liberate their cargo into cancer cells, resulting in enhanced therapy efficacy. This novel strategy utilises the specific attributes of the tumour microenvironment to administer precise and focused treatment. These nanomicelles improve the absorption by cells and reduce harm to healthy tissues by imitating important nutrients or utilising compounds that specifically target tumours. Furthermore, the incorporation of stimuli-responsive components allows for regulated medication release in reaction to the acidic environment seen in tumours. The review focuses on examining the use of biosurfactants and natural peptides in nanomicellar carriers as ways to fight against colon cancer. Folate-coated nanomicelles incorporating curcumin facilitate precise gene delivery, while the partnership of biosurfactants, such as surfactin from and natural peptides, enables the transportation of particular cyclopeptides into the tumour network. Peptides, similar to bombesin, direct nanomicelles to specific places, while peptides based on curcumin control the release of medicinal substances. While preclinical investigations demonstrate promise, obstacles remain in formulation and regulatory issues. However, biosurfactant-based nanomicelles, particularly folate-coated carriers loaded with curcumin, show tremendous potential in overcoming biological barriers and delivering medicines efficiently to colon cancer cells.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673312968240803104252
2024-08-19
2025-09-06
Loading full text...

Full text loading...

References

  1. RaghaniN.R. ChorawalaM.R. MahadikM. PatelR.B. PrajapatiB.G. ParekhP.S. Revolutionizing cancer treatment: Comprehensive insights into immunotherapeutic strategies.Med. Oncol.20244125110.1007/s12032‑023‑02280‑738195781
    [Google Scholar]
  2. VarshaK. SharmaA. KaurA. MadanJ. PandeyR.S. JainU.K. ChandraR. Natural plant-derived anticancer drugs nanotherapeutics: A review on preclinical to clinical success. Nanostructures for Cancer Therapy FicaiA. GrumezescuA.M. Elsevier201777580910.1016/B978‑0‑323‑46144‑3.00028‑3
    [Google Scholar]
  3. Bueno-ManceboJ. ArtolaA. BarrenaR. Rivero-PinoF. Potential role of sophorolipids in sustainable food systems.Trends Food Sci. Technol.202414310426510.1016/j.tifs.2023.104265
    [Google Scholar]
  4. KapoorD.U. SharmaD. GaurM. PrajapatiB.G. LimmatvapiratS. SriamornsakP. Overcoming solubility challenges: Self-emulsifying systems for enhancing the delivery of poorly water-soluble antiviral drugs.Pharm. Nanotechnol.20241211610.2174/012211738528054123113005545838192138
    [Google Scholar]
  5. FengW. GuoL. FangH. MehariT.G. GuH. WuY. JiaM. HanJ. GuoQ. XuZ. WangK. DittaA. KhanM.K.R. LiF. ChenH. ShenX. WangB. Transcriptomic profiling reveals salt-responsive long non-coding RNAs and their putative target genes for improving salt tolerance in upland cotton (Gossypium hirsutum).Ind. Crops Prod.202421611874410.1016/j.indcrop.2024.118744
    [Google Scholar]
  6. Jerez-LongresC. Gómez-MatosM. BeckerJ. HörnerM. WielandF.G. TimmerJ. WeberW. Engineering a material-genetic interface as safety switch for embedded therapeutic cells.Biomaterials Advances202315021342210.1016/j.bioadv.2023.21342237084636
    [Google Scholar]
  7. WangY. YangJ.S. ZhaoM. ChenJ.Q. XieH.X. YuH.Y. LiuN.H. YiZ.J. LiangH.L. XingL. JiangH.L. Mitochondrial endogenous substance transport-inspired nanomaterials for mitochondria-targeted gene delivery.Adv. Drug Deliv. Rev.202421111535510.1016/j.addr.2024.11535538849004
    [Google Scholar]
  8. ChetoniP. BurgalassiS. ZucchettiE. GranchiC. MinutoloF. TampucciS. MontiD. MAGL inhibitor nanomicellar formulation (MAGL-NanoMicellar) for the development of an antiglaucoma eye drop.Int. J. Pharm.202262512207810.1016/j.ijpharm.2022.12207835932931
    [Google Scholar]
  9. LiuM. LeiJ. YuanK. ZhaoY. ZhangJ. LiD. ZhengH. pH-responsive dual-drug nanomicelles for co-delivery of DOX and Ce6 for combination therapy of tumors.J. Drug Deliv. Sci. Technol.20238910500410.1016/j.jddst.2023.105004
    [Google Scholar]
  10. HuangJ. DaiJ. LiuM. HuangS. WuY. RongD. LiY. ZhaoM. LiY. ZhangJ. WuS. WuQ. Mining of novel target genes through Pan-genome analysis for conventional PCR and Real-Time PCR detection of staphylococcus argenteus in food.Food Control202416411055010.1016/j.foodcont.2024.110550
    [Google Scholar]
  11. RajithaK. NancharaiahY.V. VenugopalanV.P. Inhibition of biofilm formation and settlement of barnacle larvae by a biosurfactant produced from a marine biofilm-forming Exiguobacterium sp. R58.Int. Biodeterior. Biodegradation202418710572410.1016/j.ibiod.2023.105724
    [Google Scholar]
  12. Adel Ali YoussefA. Hayder AbdelrahmanM. GewedaM.M. VarnerC. JoshiP.H. GhongeM. DudhipalaN. SulochanaS.P. GadepalliR.S. MajumdarS. Formulation and in vitro-ex vivo evaluation of cannabidiol and cannabidiol-valine-hemisuccinate loaded lipid-based nanoformulations for ocular applications.Int. J. Pharm.202465712411010.1016/j.ijpharm.2024.12411038604539
    [Google Scholar]
  13. EsmaeiliM. ShahbazS. KamankeshM. ShahinM. Mirzazadeh TekieF.S. FadaviP. BeigiM. MortazaviS.A. DinarvandR. Intracellular delivery of anticancer agents using dual responsive nanomicelles synthesized via RAFT polymerization.Eur. Polym. J.202319811241710.1016/j.eurpolymj.2023.112417
    [Google Scholar]
  14. JiangZ. XuY. FuM. ZhuD. LiN. YangG. Genetically modified cell spheroids for tissue engineering and regenerative medicine.J. Control. Release202335458860510.1016/j.jconrel.2023.01.03336657601
    [Google Scholar]
  15. PanthiV.K. BashyalS. PaudelK.R. Docetaxel-loaded nanoformulations delivery for breast cancer management: Challenges, recent advances, and future perspectives.J. Drug Deliv. Sci. Technol.20249210531410.1016/j.jddst.2023.105314
    [Google Scholar]
  16. IshigamiY. SuzukiS. Development of biochemicals- functionalization of biosurfactants and natural dyes.Prog. Org. Coat.1997311-2516110.1016/S0300‑9440(97)00018‑0
    [Google Scholar]
  17. PourmadadiM. AbbasiP. EshaghiM.M. BakhshiA. Ezra ManicumA.L. RahdarA. PandeyS. JadounS. Díez-PascualA.M. Curcumin delivery and co-delivery based on nanomaterials as an effective approach for cancer therapy.J. Drug Deliv. Sci. Technol.20227810398210.1016/j.jddst.2022.103982
    [Google Scholar]
  18. KumariS. NehraM. JainS. DilbaghiN. ChaudharyG.R. KimK.H. KumarS. Metallosurfactant aggregates: Structures, properties, and potentials for multifarious applications.Adv. Colloid Interface Sci.202432310306510.1016/j.cis.2023.10306538091690
    [Google Scholar]
  19. XueH. JuY. YeX. DaiM. TangC. LiuL. Construction of intelligent drug delivery system based on polysaccharide-derived polymer micelles: A review.Int. J. Biol. Macromol.2024254Pt 312804810.1016/j.ijbiomac.2023.12804837967605
    [Google Scholar]
  20. SorgE.M. JankauskaiteG. JacobsJ. GreerJ. Fernandez-RoblesC. IrwinK.E. GreenbergD.B. Psychiatric co-morbidities and complications of cancer and cancer treatment. Massachusetts general hospital comprehensive clinical psychiatry.3rd ed SternT.A. WilensT.E. FavaM. PhiladelphiaElsevier202551352610.1016/B978‑0‑443‑11844‑9.00046‑1
    [Google Scholar]
  21. Pajic-LijakovicI. EftimieR. MilivojevicM. BordasS.P.A. The dynamics along the biointerface between the epithelial and cancer mesenchymal cells: Modeling consideration.Semin. Cell Dev. Biol.2023147475710.1016/j.semcdb.2022.12.01036631334
    [Google Scholar]
  22. DuY. WangY. CuiT. GeL. YuF. ZhaoM. XuQ. JinM. ChenB. LongX. Efficient production of biosurfactant surfactin by a newly isolated Bacillus subtilis (sp.) 50499 strain from oil-contaminated soil.Food Bioprod. Process.2023142404910.1016/j.fbp.2023.09.002
    [Google Scholar]
  23. Vila-JuliàG. Rubio-MartinezJ. PerezJ.J. Assessment of the bound conformation of bombesin to the BB1 and BB2 receptors.Int. J. Biol. Macromol.202425512784310.1016/j.ijbiomac.2023.12784337956803
    [Google Scholar]
  24. GerickeM. AmaralA.J.R. BudtovaT. De WeverP. GrothT. HeinzeT. HöfteH. HuberA. IkkalaO. KapuśniakJ. KarglR. ManoJ.F. MássonM. MatricardiP. MedronhoB. NorgrenM. NypelöT. NyströmL. RoigA. SauerM. ScholsH.A. van der LindenJ. WrodniggT.M. XuC. YakubovG.E. Stana KleinschekK. FardimP. The european polysaccharide network of excellence (EPNOE) research roadmap 2040: Advanced strategies for exploiting the vast potential of polysaccharides as renewable bioresources.Carbohydr. Polym.202432612163310.1016/j.carbpol.2023.12163338142079
    [Google Scholar]
  25. HayesA.N. TouwaideA. The history of toxicology. Encyclopedia of Toxicology.4th ed WexlerP. OxfordAcademic Press202433334910.1016/B978‑0‑12‑824315‑2.00093‑2
    [Google Scholar]
  26. Leilabadi-AslA. GhalandariB. DivsalarA. KarizakA.Z. HaertléT. DingX. SabouryA.A. GhorbaniF. Co-delivery of 5-fluorouracil and oxali-palladiumvia β-lactoglobulin nano-capsules coated with low methoxyl pectin for colon cancer therapy.J. Drug Deliv. Sci. Technol.20238910501010.1016/j.jddst.2023.105010
    [Google Scholar]
  27. ZierdenH.C. JosyulaA. ShapiroR.L. HsuehH.T. HanesJ. EnsignL.M. Avoiding a sticky situation: Bypassing the mucus barrier for improved local drug delivery.Trends Mol. Med.202127543645010.1016/j.molmed.2020.12.00133414070
    [Google Scholar]
  28. YangY. ZhangJ. LiuY. WuL. LiQ. XuM. WanZ. NgaiT. YangX. pH-dependent micellar properties of edible biosurfactant steviol glycosides and their oil-water interfacial interactions with soy proteins.Food Hydrocoll.202212610747610.1016/j.foodhyd.2021.107476
    [Google Scholar]
  29. SoleymaniM. VelashjerdiM. AsgariM. Preparation of hyaluronic acid-decorated mixed nanomicelles for targeted delivery of hydrophobic drugs to CD44-overexpressing cancer cells.Int. J. Pharm.202159212005210.1016/j.ijpharm.2020.12005233159986
    [Google Scholar]
  30. Di TraniC.A. CirellaA. ArrizabalagaL. AlvarezM. BellaÁ. Fernandez-SendinM. Russo-CabreraJ.S. GomarC. ArdaizN. TeijeiraA. BolañosE. González- GomarizJ. OtanoI. ArandaF. PalenciaB. SeguésA. HuangS. van DuijnhovenS.M.J. van ElsasA. MeleroI. BerraondoP. Intratumoral injection of IL-12-encoding mRNA targeted to CSF1R and PD-L1 exerts potent anti-tumor effects without substantial systemic exposure.Mol. Ther. Nucleic Acids20233359961610.1016/j.omtn.2023.07.02037637207
    [Google Scholar]
  31. S. P.K. BerraondoP. BanerjeeA. SinghP. Promises and challenges for targeting the immunological players in the tumor micro-environment – Critical determinants for NP-based therapy.OpenNano20231010013410.1016/j.onano.2023.100134
    [Google Scholar]
  32. VyawahareA. AnsariM.M. KumarA. AhmadA. MishraR.K. JoriC. NadeemA. SiddiquiN. RazaS.S. KhanR. Enzyme targeted delivery of sivelestat loaded nanomicelle inhibits arthritic severity in experimental arthritis.Life Sci.202333412220610.1016/j.lfs.2023.12220637879159
    [Google Scholar]
  33. WangY. MaR. HuangZ. ZhouY. WangK. XiaoZ. GuoQ. YangD. HanM. ShenS. QianJ. GaoX. LiuZ. ZhouL. YinS. ZhengS. Investigation of lethal thresholds of nanosecond pulsed electric field in rabbit VX2 hepatic tumors through finite element analysis and verification with a single-needle bipolar electrode: A prospective strategy employing three-dimensional comparisons.Comput. Biol. Med.202416810782410.1016/j.compbiomed.2023.10782438086143
    [Google Scholar]
  34. KiyaM. ShigaS. DingP. KoideS. MakabeK. β-Strand-mediated domain-swapping in the absence of hydrophobic core repacking.J. Mol. Biol.2024436216840510.1016/j.jmb.2023.16840538104859
    [Google Scholar]
  35. YadavK. SahuK.K. SuchetaS.P.E. GnanakaniS.P.E. SureP. VijayalakshmiR. SundarV.D. SharmaV. AntilR. JhaM. MinzS. BagchiA. PradhanM. Biomedical applications of nanomaterials in the advancement of nucleic acid therapy: Mechanistic challenges, delivery strategies, and therapeutic applications.Int. J. Biol. Macromol.202324112458210.1016/j.ijbiomac.2023.12458237116843
    [Google Scholar]
  36. ZhangY. ZhaoZ. LiJ. WangQ. FanZ. YuanZ. FengY. FuA. Treatment of colorectal cancer by anticancer and antibacterial effects of hemiprotonic phenanthroline-phenanthroline+ with nanomicelle delivery.J. Asian. Pharm. Sci.202318310080110.1016/j.ajps.2023.10080137274926
    [Google Scholar]
  37. AngM.J.Y. ChanS.Y. GohY.Y. LuoZ. LauJ.W. LiuX. Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics.Adv. Drug Deliv. Rev.202117811390710.1016/j.addr.2021.11390734371084
    [Google Scholar]
  38. JashA. KruegerA. RizviS.S.H. Venturi-based rapid expansion of supercritical solution (Vent-RESS): Synthesis of liposomes for pH-triggered delivery of hydrophilic and lipophilic bioactives.Green Chem.202224135326533710.1039/D2GC00877G36935900
    [Google Scholar]
  39. PatelD.K. KesharwaniR. VermaA. Al-AbbasiF.A. AnwarF. KumarV. Scope of Wnt signaling in the precise diagnosis and treatment of breast cancer.Drug Discov. Today202328710359710.1016/j.drudis.2023.10359737100166
    [Google Scholar]
  40. TaliyanR. KakotyV. SarathlalK.C. KharavtekarS.S. KarennanavarC.R. ChoudharyY.K. SinghviG. RiadiY. DubeyS.K. KesharwaniP. Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimer’s disease.J. Control. Release202234352855010.1016/j.jconrel.2022.01.04435114208
    [Google Scholar]
  41. MoharramnejadM. EhsaniA. ShahiM. GharanliS. SaremiH. MalekshahR.E. BasmenjZ.S. SalmaniS. MohammadiM. MOF as nanoscale drug delivery devices: Synthesis and recent progress in biomedical applications.J. Drug Deliv. Sci. Technol.20238110428510.1016/j.jddst.2023.104285
    [Google Scholar]
  42. NayakV. PatraS. SinghK.R.B. GangulyB. KumarD.N. PandaD. MauryaG.K. SinghJ. MajhiS. SharmaR. PandeyS.S. SinghR.P. KerryR.G. Advancement in precision diagnosis and therapeutic for triple-negative breast cancer: Harnessing diagnostic potential of CRISPR-cas & engineered CAR T-cells mediated therapeutics.Environ. Res.202323511657310.1016/j.envres.2023.11657337437865
    [Google Scholar]
  43. yadavG. SrinivasanG. jainA. Cervical cancer: Novel treatment strategies offer renewed optimism.Pathol. Res. Pract.202415513610.1016/j.prp.2024.15513638271784
    [Google Scholar]
  44. RawalS. PatelM. Bio-nanocarriers for lung cancer management: Befriending the barriers.Nano-Micro Lett.202113114210.1007/s40820‑021‑00630‑634138386
    [Google Scholar]
  45. SubsanguanT. JungcharoenP. KhondeeN. BuachanP. AbeyrathneB.P. NuengchamnongN. PranudtaA. WannapaiboonS. LuepromchaiE. Copper and chromium removal from industrial sludge by a biosurfactant-based washing agent and subsequent recovery by iron oxide nanoparticles.Sci. Rep.20231311860310.1038/s41598‑023‑45729‑537903874
    [Google Scholar]
  46. SarP. GhoshA. ScarsoA. SahaB. Surfactant for better tomorrow: Applied aspect of surfactant aggregates from laboratory to industry.Res. Chem. Intermed.201945126021604110.1007/s11164‑019‑04017‑6
    [Google Scholar]
  47. SoleimanzadehM. TalebiS. JaafariM.R. SayediS.J. EmadzadehM. KianifarH.R. Evaluation of the efficiency of nanomicellar formulation of fat-soluble vitamins in patients with cystic fibrosis: The study protocol for a randomized controlled trial.Trials20242516010.1186/s13063‑023‑07896‑838229125
    [Google Scholar]
  48. FallahnezhadS. Ghorbani-TaherdehiF. SahebkarA. NadimA. KafashzadehM. KafashzadehM. Gorji- ValokolaM. Potential neuroprotective effect of nanomicellar curcumin on learning and memory functions following subacute exposure to bisphenol A in adult male rats.Metab. Brain Dis.20233882691272010.1007/s11011‑023‑01257‑937843661
    [Google Scholar]
  49. WangY. HuJ. WuS. FleishmanJ.S. LiY. XuY. ZouW. WangJ. FengY. ChenJ. WangH. Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of diseases.Signal Transduct. Target. Ther.20238144910.1038/s41392‑023‑01720‑038072908
    [Google Scholar]
  50. Abstracts from the 56th european society of human genetics (ESHG) conference: hybrid posters.Eur. J. Hum. Genet.202432S134979510.1038/s41431‑023‑01482‑x
    [Google Scholar]
  51. IrfanZ. FirdousS.M. CitarasuT. UmaG. ThirumalaikumarE. Isolation and screening of antimicrobial biosurfactants obtained from mangrove plant root–associated bacteria.Naunyn Schmiedebergs Arch. Pharmacol.202439753261327437930391
    [Google Scholar]
  52. SharmaS. BhattacharyaS. JoshiK. SinghS. A shift in focus towards precision oncology, driven by revolutionary nanodiagnostics; revealing mysterious pathways in colorectal carcinogenesis.J. Cancer Res. Clin. Oncol.202314917161571617710.1007/s00432‑023‑05331‑837650995
    [Google Scholar]
  53. DasS. RaoK.V.B. A comprehensive review of biosurfactant production and its uses in the pharmaceutical industry.Arch. Microbiol.202420626010.1007/s00203‑023‑03786‑438197951
    [Google Scholar]
  54. KumbharP.R. KumarP. LasureA. VelayuthamR. MandalD. An updated landscape on nanotechnology-based drug delivery, immunotherapy, vaccinations, imaging, and biomarker detections for cancers: Recent trends and future directions with clinical success.Discover Nano202318115610.1186/s11671‑023‑03913‑638112935
    [Google Scholar]
  55. AliA.S.B.E. OzlerB. BaddalB. Characterization of virulence genes associated with type III secretion system and biofilm formation in Pseudomonas aeruginosa clinical isolates.Curr. Microbiol.2023801238910.1007/s00284‑023‑03498‑437880467
    [Google Scholar]
  56. LiR. LiJ. ZhouX. Lung microbiome: New insights into the pathogenesis of respiratory diseases.Signal Transduct. Target. Ther.2024911910.1038/s41392‑023‑01722‑y38228603
    [Google Scholar]
  57. ChengX. GengJ. WangL. MaX. SuY. ArifM. LiuC. Berberine-loaded mannosylerythritol lipid-B nanomicelles as drug delivery carriers for the treatment of Helicobacter pylori biofilmsin vivo.Eur. J. Pharm. Biopharm.202319310511810.1016/j.ejpb.2023.10.021
    [Google Scholar]
  58. ZhangZ. QiuC. LiX. McClementsD.J. JiaoA. WangJ. JinZ. Advances in research on interactions between polyphenols and biology-based nano-delivery systems and their applications in improving the bioavailability of polyphenols.Trends Food Sci. Technol.202111649250010.1016/j.tifs.2021.08.009
    [Google Scholar]
  59. QaziM.A. WangQ. DaiZ. Sophorolipids bioproduction in the yeast Starmerella bombicola: Current trends and perspectives.Bioresour. Technol.202234612659310.1016/j.biortech.2021.12659334942344
    [Google Scholar]
  60. BaccileN. PoirierA. Le GrielP. PernotP. PalaM. RoelantsS. SoetaertW. StevensC.V. Aqueous self-assembly of a wide range of sophorolipid and glucolipid microbial bioamphiphiles (biosurfactants): Considerations on the structure-properties relationship.Colloids Surf. A Physicochem. Eng. Asp.202367913251810.1016/j.colsurfa.2023.132518
    [Google Scholar]
  61. MichlJ. MonterisiS. WhiteB. BlaszczakW. HulikovaA. AbdullayevaG. BridgesE. YinZ. BodmerW.F. SwietachP. Acid-adapted cancer cells alkalinize their cytoplasm by degrading the acid-loading membrane transporter anion exchanger 2, SLC4A2.Cell Rep.202342611260110.1016/j.celrep.2023.11260137270778
    [Google Scholar]
  62. MadanagopalP. MuthukumarH. ThiruvengadamK. Computational study and design of effective siRNAs to silence structural proteins associated genes of indian SARS- CoV-2 strains.Comput. Biol. Chem.20229810768710.1016/j.compbiolchem.2022.10768735537364
    [Google Scholar]
  63. Fathi-karkanS. ArshadR. RahdarA. RamezaniA. BehzadmehrR. GhotekarS. PandeyS. Recent advancements in the targeted delivery of etoposide nanomedicine for cancer therapy: A comprehensive review.Eur. J. Med. Chem.202325911567610.1016/j.ejmech.2023.11567637499287
    [Google Scholar]
  64. DongsarT.T. DongsarT.S. GuptaN. AlmalkiW.H. SahebkarA. KesharwaniP. Emerging potential of 5-Fluorouracil-loaded chitosan nanoparticles in cancer therapy.J. Drug Deliv. Sci. Technol.20238210437110.1016/j.jddst.2023.104371
    [Google Scholar]
  65. AimaierR. LiH. CaoW. CaoX. ZhangH. YouJ. ZhaoJ. ZhangQ. YinL. MeiQ. ZhangX. WangW. ZhaoH. LiJ. ZhaoH. The secondary metabolites of Bacillus subtilis strain z15 induce apoptosis in hepatocellular carcinoma cells.Probiotics Antimicrob. Proteins202517283284210.1007/s12602‑023‑10181‑437906413
    [Google Scholar]
  66. BhardwajA. PrasadD. MukherjeeS. Role of toll-like receptor in the pathogenesis of oral cancer.Cell Biochem. Biophys.202337853249
    [Google Scholar]
  67. AlzamamiA. Implications of single-cell immune landscape of tumor microenvironment for the colorectal cancer diagnostics and therapy.Med. Oncol.2023401235210.1007/s12032‑023‑02226‑z37950801
    [Google Scholar]
  68. KumariS. RajS. BabuM.A. BhattiG.K. BhattiJ.S. Antibody-drug conjugates in cancer therapy: Innovations, challenges, and future directions.Arch. Pharm. Res.2024471406510.1007/s12272‑023‑01479‑638153656
    [Google Scholar]
  69. WuJ. LinW. WuZ.S. Dynamic DNA nanomachines for amplification imaging of diseased cells based on stimuli-responsive mechanism.Advanced Agrochem.20232320221210.1016/j.aac.2023.06.001
    [Google Scholar]
  70. TianS. YanH. MengZ. JiaM. SunW. HuangS. WangY. ZhouZ. DiaoJ. ZhuW. Prothioconazole and prothioconazole-desthio induced different hepatotoxicities via interfering with glycolipid metabolism in mice.Pestic. Biochem. Physiol.202218010498310.1016/j.pestbp.2021.10498334955176
    [Google Scholar]
  71. YuanJ. WangJ. LiX. ZhangY. XianJ. WangC. ZhangJ. WuC. Amphiphilic small molecule antimicrobials: From cationic antimicrobial peptides (CAMPs) to mechanism-related, structurally-diverse antimicrobials.Eur. J. Med. Chem.202326211589610.1016/j.ejmech.2023.115896
    [Google Scholar]
  72. RileyN.M. WenR.M. BertozziC.R. BrooksJ.D. PitteriS.J. Chapter Four - Measuring the multifaceted roles of mucin-domain glycoproteins in cancer. Advances in Cancer Research. AbbottK.L. DimitroffC.J. Academic Press202383121
    [Google Scholar]
  73. Alamdari-palangiV. JaberiK.R. ShahverdiM. NaeimzadehY. TajbakhshA. KhajehS. RazbanV. FallahiJ. Recent advances and applications of peptide–agent conjugates for targeting tumor cells.J. Cancer Res. Clin. Oncol.202314916152491527310.1007/s00432‑023‑05144‑937581648
    [Google Scholar]
  74. ChehelgerdiM. Behdarvand DehkordiF. ChehelgerdiM. KabiriH. Salehian-DehkordiH. AbdolvandM. SalmanizadehS. RashidiM. NiazmandA. AhmadiS. FeizbakhshanS. KabiriS. VatandoostN. RanjbarnejadT. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy.Mol. Cancer202322118910.1186/s12943‑023‑01873‑038017433
    [Google Scholar]
  75. YangJ. GuoF. ChinH.S. ChenG.B. AngC.H. LinQ. HongW. FuN.Y. Sequential genome-wide CRISPR- Cas9 screens identify genes regulating cell-surface expression of tetraspanins.Cell Rep.202342211206510.1016/j.celrep.2023.11206536724073
    [Google Scholar]
  76. MishraS.K. GaoY.G. ZouX. StephensonD.J. MalininaL. HinchcliffeE.H. ChalfantC.E. BrownR.E. Emerging roles for human glycolipid transfer protein superfamily members in the regulation of autophagy, inflammation, and cell death.Prog. Lipid Res.20207810103110.1016/j.plipres.2020.10103132339554
    [Google Scholar]
  77. UllahA. RazzaqA. AlfaifiM.Y. ElbehairiS.E.I. MenaaF. UllahN. ShehzadiS. NawazT. IqbalH. Sanguinarine attenuates lung cancer progressionvia oxidative stress-induced cell apoptosis.Curr. Mol. Pharmacol.202417e1876142926938310.2174/011876142926938323111906223338389415
    [Google Scholar]
  78. UllahA. UllahN. NawazT. AzizT. Molecular mechanisms of sanguinarine in cancer prevention and treatment, anticancer agents med chem, 23Anticancer Agents Med. Chem.202323776577810.2174/187152062266622083112432136045531
    [Google Scholar]
  79. Rossi-HerringG. BelmonteT. Rivas-UrbinaA. BenítezS. RotllanN. CrespoJ. Llorente-CortésV. Sánchez-QuesadaJ.L. de Gonzalo-CalvoD. Circulating lipoprotein-carried miRNome analysis reveals novel VLDL-enriched microRNAs that strongly correlate with the HDL-microRNA profile.Biomed. Pharmacother.202316211462310.1016/j.biopha.2023.11462337023624
    [Google Scholar]
  80. WangR. ZhangX. FengK. ZengW. WuJ. SunD. LuZ. FengH. DiL. Nanotechnologies meeting natural sources: Engineered lipoproteins for precise brain disease theranostics.Asian J. Pharm. Sci.202318510085710.1016/j.ajps.2023.10085737953874
    [Google Scholar]
  81. JulveJ. Martín-CamposJ.M. Escolà-GilJ.C. Blanco-VacaF. Chylomicrons: Advances in biology, pathology, laboratory testing, and therapeutics.Clin. Chim. Acta201645513414810.1016/j.cca.2016.02.00426868089
    [Google Scholar]
  82. CamposG.A. GarciaV.F.C. Freitas-Dell’AquaC.P. SegabinazziL.G.T.M. MacielL.F.S. AlvarengaM.A. PapaF.O. Dell’AquaJ.A.Jr. Sodium caseinate and cholesterol improve bad cooler stallion fertility.J. Equine Vet. Sci.20209310320110.1016/j.jevs.2020.10320132972672
    [Google Scholar]
  83. TakedaS. HamamukiA. UshirogataK. TakasukaT.E. Binding properties of recombinant LDL receptor and LOX-1 receptor to LDL measured using bio-layer interferometry and atomic force microscopy.Biophys. Chem.202330010706910.1016/j.bpc.2023.10706937385179
    [Google Scholar]
  84. ImranM. BhoyarR.C. JainA. SahanaS. RophinaM. ArvindenV.R. SenthivelV. DivakarM.K. MishraA. JollyB. SharmaD. ScariaV. SivasubbuS. Genetic epidemiology of monogenic dyslipidemia and statin-associated adverse drug phenotypes in Indian population from whole-genomes of 1029 self-declared healthy individuals.Hum. Genet.202439201252
    [Google Scholar]
  85. BellA.S. WagnerJ. RosoffD.B. LohoffF.W. Proprotein convertase subtilisin/kexin type 9 (PCSK9) in the central nervous system.Neurosci. Biobehav. Rev.202314910515510.1016/j.neubiorev.2023.10515537019248
    [Google Scholar]
  86. MardaniR. HamblinM.R. TaghizadehM. BanafsheH.R. NejatiM. MokhtariM. BorranS. DavoodvandiA. KhanH. JaafariM.R. MirzaeiH. Nanomicellar-curcumin exerts its therapeutic effects via affecting angiogenesis, apoptosis, and T cells in a mouse model of melanoma lung metastasis.Pathol. Res. Pract.2020216915308210.1016/j.prp.2020.15308232825950
    [Google Scholar]
  87. BanerjeeM. PanjikarP.C. BhutiaZ.T. BhosleA.A. ChatterjeeA. Micellar nanoreactors for organic transformations with a focus on “dehydration” reactions in water: A decade update.Tetrahedron20218813214210.1016/j.tet.2021.132142
    [Google Scholar]
  88. ZhangH. YuS. WuS. XuM. GaoT. WuQ. XuH. LiuY. Rational design of silver NPs-incorporated quaternized chitin nanomicelle with combinational antibacterial capability for infected wound healing.Int. J. Biol. Macromol.20232241206121610.1016/j.ijbiomac.2022.10.20636306907
    [Google Scholar]
  89. LuP. LiangZ. ZhangZ. YangJ. SongF. ZhouT. LiJ. ZhangJ. Novel nanomicelle butenafine formulation for ocular drug delivery against fungal keratitis: In vitro and In vivo study.Eur. J. Pharm. Sci.202419210662910.1016/j.ejps.2023.10662937918544
    [Google Scholar]
  90. Mousavi JamS.A. TalebiM. AlipourB. KhosroushahiA.Y. The therapeutic effect of potentially probiotic Lactobacillus paracasei on dimethylhydrazine induced colorectal cancer in rats.Food Biosci.20214110109710.1016/j.fbio.2021.101097
    [Google Scholar]
  91. NoomanM.U. Al-kashefA.S. RashadM.M. KhattabA.E.N.A. AhmedK.A. AbbasS.S. Sophorolipids produced by Yarrowia lipolytica grown on Moringa oleifera oil cake protect against acetic acid-induced colitis in rats: Impact on TLR-4/p-JNK/NFκB-p65 pathway.J. Pharm. Pharmacol.202375454455810.1093/jpp/rgac10136680771
    [Google Scholar]
  92. BeckerJ. LiebalU.W. PhanA.N.T. UllmannL. BlankL.M. Renewable carbon sources to biochemicals and -fuels: Contributions of the smut fungi ustilaginaceae.Curr. Opin. Biotechnol.20237910284910.1016/j.copbio.2022.10284936446145
    [Google Scholar]
  93. DissanayakeT. SunX. AbbeyL. BandaraN. Recent advances in lipid-protein conjugate-based delivery systems in nutraceutical, drug, and gene delivery.Food Hydrocolloids for Health2022210005410.1016/j.fhfh.2022.100054
    [Google Scholar]
  94. HanS.R. LeeC.H. ImJ.Y. KimJ.H. KimJ.H. KimS.J. ChoY.W. KimE. KimY. RyuJ.H. JuM.H. JeongJ.S. LeeS.W. Targeted suicide gene therapy for liver cancer based on ribozyme-mediated RNA replacement through post-transcriptional regulation.Mol. Ther. Nucleic Acids20212315416810.1016/j.omtn.2020.10.03633335800
    [Google Scholar]
  95. LiJ. ZhuL. KwokH.F. Nanotechnology-based approaches overcome lung cancer drug resistance through diagnosis and treatment.Drug Resist. Updat.20236610090410.1016/j.drup.2022.10090436462375
    [Google Scholar]
  96. LingK. DouY. YangN. DengL. WangY. LiY. YangL. ChenC. JiangL. DengQ. LiC. LiangZ. ZhangJ. Genome editing mRNA nanotherapies inhibit cervical cancer progression and regulate the immunosuppressive microenvironment for adoptive T-cell therapy.J. Control. Release202336049651310.1016/j.jconrel.2023.07.00737423524
    [Google Scholar]
  97. DinakarY.H. KaroleA. ParvezS. JainV. MudavathS.L. Folate receptor targeted NIR cleavable liposomal delivery system augment penetration and therapeutic efficacy in breast cancer.Biochim. Biophys. Acta, Gen. Subj.20231867913039610.1016/j.bbagen.2023.13039637271407
    [Google Scholar]
  98. ScheerenL.E. Nogueira-LibrelottoD.R. MathesD. PillatM.M. MacedoL.B. MitjansM. VinardellM.P. RolimC.M.B. Multifunctional PLGA nanoparticles combining transferrin-targetability and pH-stimuli sensitivity enhanced doxorubicin intracellular delivery and in vitro antineoplastic activity in MDR tumor cells.Toxicol. In Vitro 20217510519210.1016/j.tiv.2021.10519233984456
    [Google Scholar]
  99. DeckerS. TaschauerA. GepplE. PirhoferV. SchauerM. PöschlS. KoppF. RichterL. EckerG.F. SamiH. OgrisM. Structure-based peptide ligand design for improved epidermal growth factor receptor targeted gene delivery.Eur. J. Pharm. Biopharm.202217621122110.1016/j.ejpb.2022.05.00435584718
    [Google Scholar]
  100. YangM. QinC. TaoL. ChengG. LiJ. LvF. YangN. XingZ. ChuX. HanX. HuoM. YinL. Synchronous targeted delivery of TGF-β siRNA to stromal and tumor cells elicits robust antitumor immunity against triple-negative breast cancer by comprehensively remodeling the tumor microenvironment.Biomaterials202330112225310.1016/j.biomaterials.2023.12225337536040
    [Google Scholar]
  101. SunX. GaoW. LiuY. WangY. WeiC. ShanL. WangT. TianX. BaiJ. pH-responsive morphology shifting peptides coloaded with paclitaxel and sorafenib inhibit angiogenesis and tumor growth.Mater. Des.202423811261910.1016/j.matdes.2023.112619
    [Google Scholar]
  102. KangL. FanB. SunP. HuangW. JinM. WangQ. GaoZ. An effective tumor-targeting strategy utilizing hypoxia-sensitive siRNA delivery system for improved anti- tumor outcome.Acta Biomater.20164434135410.1016/j.actbio.2016.08.02927545812
    [Google Scholar]
  103. DiasM.A.M. NitschkeM. Bacterial-derived surfactants: An update on general aspects and forthcoming applications.Braz. J. Microbiol.202354110312310.1007/s42770‑023‑00905‑736662441
    [Google Scholar]
  104. BhattacharyaS. PrajapatiB.G. SinghS. AnjumM.M. Nanoparticles drug delivery for 5-aminolevulinic acid (5-ALA) in photodynamic therapy (PDT) for multiple cancer treatment: A critical review on biosynthesis, detection, and therapeutic applications.J. Cancer Res. Clin. Oncol.202314919176071763410.1007/s00432‑023‑05429‑z37776358
    [Google Scholar]
  105. TenchovR. BirdR. CurtzeA.E. ZhouQ. Lipid nanoparticles─from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement.ACS Nano20211511169821701510.1021/acsnano.1c0499634181394
    [Google Scholar]
  106. ChoW.Y. NgJ.F. YapW.H. GohB.H. Sophorolipids-bio-based antimicrobial formulating agents for applications in food and health.Basel, SwitzerlandMolecules202227
    [Google Scholar]
  107. MuddinetiO.S. KumariP. GhoshB. BiswasS. Transferrin-modified vitamin-e/lipid based polymeric micelles for improved tumor targeting and anticancer effect of curcumin.Pharm. Res.20183559710.1007/s11095‑018‑2382‑929541866
    [Google Scholar]
  108. TannousJ. SawyerC. HassanM.M. LabbeJ.L. EckertC. Establishment of a genome editing tool using CRISPR-Cas9 ribonucleoprotein complexes in the non-model plant pathogen sphaerulina musiva.Frontiers in Genome Editing20235111027910.3389/fgeed.2023.1110279
    [Google Scholar]
  109. ChatzikleanthousD. O’HaganD.T. AdamoR. Lipid-based nanoparticles for delivery of vaccine adjuvants and antigens: Toward multicomponent vaccines.Mol. Pharm.20211882867288810.1021/acs.molpharmaceut.1c0044734264684
    [Google Scholar]
  110. JanN. MadniA. KhanS. ShahH. AkramF. KhanA. ErtasD. BostanudinM.F. ContagC.H. AshammakhiN. ErtasY.N. Biomimetic cell membrane-coated poly(lactic-co-glycolic acid) nanoparticles for biomedical applications.Bioeng. Transl. Med.202382e1044110.1002/btm2.1044136925703
    [Google Scholar]
  111. DanaH. ChalbataniG.M. MahmoodzadehH. GharagouzloE. KarimlooR. RezaieanO. MoradzadehA. MazraehA. MarmariV. RashnoM.M. MehmandoostN. MoazzenF. EbrahimiM. AbadiS.J. Molecular mechanisms and biological functions of siRNA.Int. J. Biomed. Sci.2017132485710.59566/IJBS.2017.1304828824341
    [Google Scholar]
  112. SantosD. RufinoR. LunaJ. SantosV. SarubboL. Biosurfactants: Multifunctional biomolecules of the 21st century.Int. J. Mol. Sci.201617340110.3390/ijms1703040126999123
    [Google Scholar]
  113. HaiderM. ZakiK.Z. El HamsharyM.R. HussainZ. OriveG. IbrahimH.O. Polymeric nanocarriers: A promising tool for early diagnosis and efficient treatment of colorectal cancer.J. Adv. Res.20223923725510.1016/j.jare.2021.11.00835777911
    [Google Scholar]
  114. AlSawaftahN.M. AwadN.S. PittW.G. HusseiniG.A. pH-responsive nanocarriers in cancer therapy.Polymers (Basel)202214593610.3390/polym1405093635267759
    [Google Scholar]
  115. ZhangY. ZhaoZ. LiJ. WangQ. FanZ. YuanZ. FengY. FuA. Treatment of colorectal cancer by anticancer and antibacterial effects of hemiprotonic phenanthroline-phenanthroline(+) with nanomicelle delivery.Asian J. Pharm. Sci.202318310080110.1016/j.ajps.2023.10080137274926
    [Google Scholar]
  116. CeresaC. FracchiaL. SansoteraA.C. De RienzoM.A.D. BanatI.M. Harnessing the potential of biosurfactants for biomedical and pharmaceutical applications.Pharmaceutics202315812710.3390/pharmaceutics15082156
    [Google Scholar]
  117. OzturkM.R.B. PopaM. RataD.M. CadinoiuA.N. ParfaitF. DelaiteC. AtanaseL.I. SolcanC. DarabaO.M. Drug-loaded polymeric micelles based on smart biocompatible graft copolymers with potential applications for the treatment of glaucoma.Int. J. Mol. Sci.20222316938210.3390/ijms2316938236012646
    [Google Scholar]
  118. NiculescuA.G. GrumezescuA.M. Novel tumor-targeting nanoparticles for cancer treatment-a review.Int. J. Mol. Sci.2022239525310.3390/ijms2309525335563645
    [Google Scholar]
  119. JainD. PrajapatiS.K. JainA. SinghalR. Nano-formulated siRNA-based therapeutic approaches for cancer therapy.Nano Trends2023110000610.1016/j.nwnano.2023.100006
    [Google Scholar]
  120. SunC. TianL. WeiY. ChenP. WuX. JieY. Novel bisdemethoxycurcumin@phytomicelle ophthalmic solution: In vitro formulation appraisal and in vivo prompting rapid corneal wound healing evaluations.Exp. Eye Res.202323410960810.1016/j.exer.2023.10960837517540
    [Google Scholar]
  121. BarclayT.G. ConstantopoulosK. MatisonsJ. Nanotubes self-assembled from amphiphilic molecules via helical intermediates.Chem. Rev.201411420102171029110.1021/cr400085m25290622
    [Google Scholar]
  122. TranK.T.M. NguyenT.D. Lithography-based methods to manufacture biomaterials at small scales.J. Sci. Adv. Mater. Devices20172111410.1016/j.jsamd.2016.12.001
    [Google Scholar]
  123. ChoA.N. JinY. AnY. KimJ. ChoiY.S. LeeJ.S. KimJ. ChoiW.Y. KooD.J. YuW. ChangG.E. KimD.Y. JoS.H. KimJ. KimS.Y. KimY.G. KimJ.Y. ChoiN. CheongE. KimY.J. JeH.S. KangH.C. ChoS.W. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids.Nat. Commun.2021121473010.1038/s41467‑021‑24775‑534354063
    [Google Scholar]
  124. GongG. PanJ. HeY. ShangJ. WangX. ZhangY. ZhangG. WangF. ZhaoG. GuoJ. Self-assembly of nanomicelles with rationally designed multifunctional building blocks for synergistic chemo-photodynamic therapy.Theranostics20221252028204010.7150/thno.6856335265197
    [Google Scholar]
  125. De AguiarA.C. ViganóJ. da Silva AntheroA.G. DiasA.L.B. HubingerM.D. MartínezJ. Supercritical fluids and fluid mixtures to obtain high-value compounds from Capsicum peppers.Food Chem. X20221310022810.1016/j.fochx.2022.10022835128385
    [Google Scholar]
  126. LewińskaA. Domżał-KędziaM. WójtowiczK. BazylińskaU. Surfactin-stabilized poly(D,L-lactide) nanoparticles for potential skin application.Colloids Surf. A Physicochem. Eng. Asp.202264812921610.1016/j.colsurfa.2022.129216
    [Google Scholar]
  127. ZhangA. JungK. LiA. LiuJ. BoyerC. Recent advances in stimuli-responsive polymer systems for remotely controlled drug release.Prog. Polym. Sci.20199910116410.1016/j.progpolymsci.2019.101164
    [Google Scholar]
  128. MokraniA. LiuS. Harnessing CRISPR/Cas9 system to improve economic traits in aquaculture species.Aquaculture202457974027910.1016/j.aquaculture.2023.740279
    [Google Scholar]
  129. BhadauriaV. HanT. LiG. MaW. ZhangM. YangJ. ZhaoW. PengY.L. A gln-tRNA-based CRISPR/Cas9 knockout system enables the functional characterization of genes in the genetically recalcitrant brassica anthracnose fungus colletotrichum higginsianum.Int. J. Biol. Macromol.2024254Pt 312795310.1016/j.ijbiomac.2023.12795337951433
    [Google Scholar]
  130. NorfaezahJ. MasaniM.Y.A. FizreeM.D.P.M.A.A. BahariahB. ShaharuddinN.A. HoC.L. RasidO.A. ParveezG.K.A. DNA-free CRISPR/Cas9 genome editing system for oil palm protoplasts using multiple ribonucleoproteins (RNPs) complexes.Ind. Crops Prod.202420811779510.1016/j.indcrop.2023.117795
    [Google Scholar]
  131. SoeZ.C. PoudelB.K. NguyenH.T. ThapaR.K. OuW. GautamM. PoudelK. JinS.G. JeongJ.H. KuS.K. ChoiH.G. YongC.S. KimJ.O. Folate-targeted nanostructured chitosan/chondroitin sulfate complex carriers for enhanced delivery of bortezomib to colorectal cancer cells.Asian J. Pharm. Sci.2019141405110.1016/j.ajps.2018.09.00432104437
    [Google Scholar]
  132. ZhouW. JiaY. LiuY. ChenY. ZhaoP. Tumor microenvironment-based stimuli-responsive nanoparticles for controlled release of drugs in cancer therapy.Pharmaceutics20221411234610.3390/pharmaceutics1411234636365164
    [Google Scholar]
  133. NikolovaM.P. KumarE.M. ChavaliM.S. Updates on responsive drug delivery based on liposome vehicles for cancer treatment.Pharmaceutics20221410219510.3390/pharmaceutics14102195
    [Google Scholar]
  134. KraithongS. TheppawongA. LeeS. HuangR. Understanding of hydrocolloid functions for enhancing the physicochemical features of rice flour and noodles.Food Hydrocoll.202314210882110.1016/j.foodhyd.2023.108821
    [Google Scholar]
  135. ChenX. QuL. LiH. CuiX. ZhangJ. GuoX. XiaT. WeiC. DingZ. XuJ. ChengH. Optimization of soybean oil content in a soybean oil-based aquafeed for grass carp (Ctenopharyngodon idella) to achieve optimal growth performance, proximate and fatty acid compositions, and lipid metabolism.Aquacult. Rep.20243410191610.1016/j.aqrep.2024.101916
    [Google Scholar]
  136. YangX. LiuX. XuF. JiS. SunY. SongZ. SongJ. WuY. YinJ. Fabrication of microgroove poly(lactic- co-glycolic acid) nerve guide conduit using dry-jet wet spinning for rat laryngeal recurrent nerve regeneration.Mater. Des.202222311115110.1016/j.matdes.2022.111151
    [Google Scholar]
  137. XueJ. LuoY. Protein-polysaccharide nanocomplexes as nanocarriers for delivery of curcumin: A comprehensive review on preparation methods and encapsulation mechanisms.Journal of Future Foods2023329911410.1016/j.jfutfo.2022.12.002
    [Google Scholar]
  138. PalS. ChatterjeeN. DasA.K. McClementsD.J. DharP. Sophorolipids: A comprehensive review on properties and applications.Adv. Colloid Interface Sci.202331310285610.1016/j.cis.2023.10285636827914
    [Google Scholar]
  139. KhanM.S. Jaswanth GowdaB.H. AlmalkiW.H. SinghT. SahebkarA. KesharwaniP. Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment.Drug Discov. Today202429110381910.1016/j.drudis.2023.10381937940034
    [Google Scholar]
  140. StylianopoulouC. Carbohydrates: Chemistry and classification. Encyclopedia of Human Nutrition.4th ed CaballeroB. OxfordAcademic Press202311412510.1016/B978‑0‑12‑821848‑8.00172‑4
    [Google Scholar]
  141. ChenS. MeiH. XuL. ZhanL. YangY. ZhaoD. BaoG. LiX. CaoZ. Impact of fermented feed of soybean hulls and rapeseed cake on immunity, antioxidant capacity, and gut microbiota in Chahua chicken.Poult. Sci.2024103310345110.1016/j.psj.2024.10345138301497
    [Google Scholar]
  142. YeJ. CaoY. LuX. WuF. LiuN. DongY. ShiQ. Self-assembly of DNA-organic hybrid amphiphiles by frame-guided assembly strategies.Giant20221110011310.1016/j.giant.2022.100113
    [Google Scholar]
  143. WangQ. LiuJ. ChenZ. ZhengJ. WangY. DongJ. Targeting metabolic reprogramming in hepatocellular carcinoma to overcome therapeutic resistance: A comprehensive review.Biomed. Pharmacother.202417011602110.1016/j.biopha.2023.11602138128187
    [Google Scholar]
  144. NagS. MitraO. PS. BhattacharjeeA. MohantoS. GowdaB.H.J. KarS. RamaiahS. AnbarasuA. AhmedM.G. Exploring the emerging trends in the synthesis and theranostic paradigms of cerium oxide nanoparticles (CeONPs): A comprehensive review.Mater. Today Chem.20243510189410.1016/j.mtchem.2023.101894
    [Google Scholar]
  145. AziziyanF. FarzamF. DabirmaneshB. KhajehK. Recombinant laccase production: Escherichia coli, Pichia pastoris, and filamentous fungi as microbial factories. Bacterial Laccases; Yadav, D.; Kudanga, T., Eds.; Academic Press, 2024, pp. 25-73. 10.1016/B978‑0‑323‑91889‑3.00002‑9
  146. IslamM.S. KhanM.A.A.K. Computational analysis revealed miRNAs produced by Chikungunya virus target genes associated with antiviral immune responses and cell cycle regulation.Comput. Biol. Chem.20219210746210.1016/j.compbiolchem.2021.10746233640797
    [Google Scholar]
  147. WestarpS. KasparF. NeubauerP. KurreckA. Industrial potential of the enzymatic synthesis of nucleoside analogs: Existing challenges and perspectives.Curr. Opin. Biotechnol.20227810282910.1016/j.copbio.2022.10282936332344
    [Google Scholar]
  148. SanjanwalaD. LondheV. TrivediR. BondeS. SawarkarS. KaleV. PatravaleV. Polysaccharide-based hydrogels for medical devices, implants and tissue engineering: A review.Int. J. Biol. Macromol.2024256Pt 212848810.1016/j.ijbiomac.2023.12848838043653
    [Google Scholar]
  149. BellottiE. CasconeM.G. BarbaniN. RossinD. RastaldoR. GiachinoC. CristalliniC. Targeting cancer cells overexpressing folate receptors with new terpolymer-based nanocapsules: Toward a novel targeted dna delivery system for cancer therapy.Biomedicines202199127510.3390/biomedicines909127534572461
    [Google Scholar]
  150. HongL. LiW. LiY. YinS. Nanoparticle-based drug delivery systems targeting cancer cell surfaces.RSC Advances20231331213652138210.1039/D3RA02969G37465582
    [Google Scholar]
  151. CossuJ. ThoreauF. BoturynD. Multimeric RGD-based strategies for selective drug delivery to tumor tissues.Pharmaceutics202315252510.3390/pharmaceutics1502052536839846
    [Google Scholar]
  152. ChenL.A. YuY.H. TianW.T. LinW.C. GrauffelC. WuC.Y. ChenC.L. LimC. ChuH.M. ChangT.W. PengC.J. Site-specific conjugation of 6 DOTA chelators to a CA19-9-targeting scFv-Fc antibody for imaging and therapy.J. Med. Chem.20236615106041061610.1021/acs.jmedchem.3c0075337462154
    [Google Scholar]
  153. ThomasB.J. GuldenpfennigC. GuanY. WinklerC. BeecherM. BeedyM. BerendzenA.F. MaL. DanielsM.A. BurkeD.H. PorcianiD. Targeting lung cancer with clinically relevant EGFR mutations using anti-EGFR RNA aptamer.Mol. Ther. Nucleic Acids20233410204610.1016/j.omtn.2023.10204637869258
    [Google Scholar]
  154. CavallaroP.A. De SantoM. BelsitoE.L. LongobuccoC. CurcioM. MorelliC. PasquaL. LeggioA. Peptides targeting HER2-positive breast cancer cells and applications in tumor imaging and delivery of chemotherapeutics.Nanomaterials20231317247610.3390/nano1317247637686984
    [Google Scholar]
  155. AzimijouN. Karimi-SoflouR. KarkhanehA. CD44 targeted-chondroitin sulfate nanoparticles: Fine-tuning hydrophobic groups to enhance in vitro pH-responsiveness and in vivo efficacy for advanced breast cancer treatment.Biomaterials Advances2024213776
    [Google Scholar]
  156. ParusA. CiesielskiT. Woźniak-KarczewskaM. ŁawniczakŁ. JanedaM. ŚlachcińskiM. Radzikowska-KujawskaD. OwsianiakM. MarecikR. LoibnerA.P. HeipieperH.J. ChrzanowskiŁ. Critical evaluation of the performance of rhamnolipids as surfactants for (phyto)extraction of Cd, Cu, Fe, Pb and Zn from copper smelter-affected soil.Sci. Total Environ.202491216838210.1016/j.scitotenv.2023.16838237963537
    [Google Scholar]
  157. BahariahB. MasaniM.Y.A. FizreeM.P.M.A.A. RasidO.A. ParveezG.K.A. Multiplex CRISPR/Cas9 gene-editing platform in oil palm targeting mutations in EgFAD2 and EgPAT genes.J. Genet. Eng. Biotechnol.2023211310.1186/s43141‑022‑00459‑536630019
    [Google Scholar]
  158. GehrelsA.M. WagnerA.D. BesselinkM.G. VerhoevenR.H.A. van EijckC.H.J. van LaarhovenH.W.M. WilminkJ.W. van der GeestL.G. Dutch Pancreatic Cancer Group. Gender differences in tumor characteristics, treatment allocation and survival in stage I–III pancreatic cancer: A nationwide study.Eur. J. Cancer202420611411710.1016/j.ejca.2024.11411738781719
    [Google Scholar]
  159. SongY. LuX. WangJ. CaiL. LiuT. WuL. SunL. XuX. GaoC. YangB. Long-term adoptive immunotherapy achieves complete response and bone lesion repair in an elderly patient with macrofocal multiple myeloma.Cancer Pathogenesis and Therapy202431431710.1016/j.cpt.2024.03.001
    [Google Scholar]
  160. GuoC. TangY. LiuZ. ChenC. HuX. ZhangY. Tumor immunological phenotype-derived gene classification predicts prognosis, treatment response, and drug candidates in ovarian cancer.Genes Dis.202411510117310.1016/j.gendis.2023.10117338882011
    [Google Scholar]
  161. BiederstädtA. RezvaniK. How I treat high-risk acute myeloid leukemia using preemptive adoptive cellular immunotherapy.Blood20231411223810.1182/blood.202101241135512203
    [Google Scholar]
  162. GuerraC. KalaitsidouM. KueberuwaG. HawkinsR. EdmondsonR. Engineering strategies to optimise adoptive cell therapy in ovarian cancer.Cancer Treat. Rev.202312110263210.1016/j.ctrv.2023.10263237837788
    [Google Scholar]
  163. XiongD. YuH. SunZ.J. Unlocking T cell exhaustion: Insights and implications for CAR-T cell therapy.Acta Pharm. Sin. B20243416343110.1016/j.apsb.2024.04.022
    [Google Scholar]
  164. TakeuchiY. WangY. SasakiK. SatoO. TsuchikawaT. WangL. AmaishiY. OkamotoS. MinenoJ. HirokawaY. HatanakaK.C. HatanakaY. KatoT. ShikuH. HiranoS. Exhaustion, rather than lack of infiltration and persistence, of CAR-T cells hampers the efficacy of CAR-T therapy in an orthotopic PDAC xenograft model.Biomed. Pharmacother.202417011605210.1016/j.biopha.2023.11605238141280
    [Google Scholar]
  165. AgrawalP. HarishV. MohdS. SinghS.K. TewariD. TatiparthiR. HarshitaS. VishwasS. SutrapuS. DuaK. GulatiM. Role of CRISPR/Cas9 in the treatment of Duchenne muscular dystrophy and its delivery strategies.Life Sci.202333012200310.1016/j.lfs.2023.12200337544379
    [Google Scholar]
  166. JosephT. Kar MahapatraD. EsmaeiliA. PiszczykŁ. HasaninM. KattaliM. HaponiukJ. ThomasS. Nanoparticles: Taking a unique position in medicine.Nanomaterials202313357410.3390/nano1303057436770535
    [Google Scholar]
  167. BadaweyS.E. HeikalL. TelebM. Abu-SerieM. BakrB.A. KhattabS.N. El-KhordaguiL. Biosurfactant-amphiphilized hyaluronic acid: A dual self-assembly anticancer nanoconjugate and drug vector for synergistic chemotherapy.Int. J. Biol. Macromol.2024271Pt 213254510.1016/j.ijbiomac.2024.13254538815938
    [Google Scholar]
  168. ChandlerK. MillarJ. WardG. BoyallC. WhiteT. ReadyJ.D. MaaniR. ChappleK. TempestR. BrealeyJ. DuckettC. Haywood-SmallS. TuregaS. PeakeN. Imaging of light-enhanced extracellular vesicle-mediated delivery of oxaliplatin to colorectal cancer cells via laser ablation, inductively coupled plasma mass spectrometry.Cells20231312438201228
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673312968240803104252
Loading
/content/journals/cmc/10.2174/0109298673312968240803104252
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test