Skip to content
2000
Volume 32, Issue 26
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

The effectiveness of pharmaceutical treatment methods is vital in cancer treatment. In this context, various targeted drug delivery systems are being developed to minimize or eliminate existing deficiencies and harms. This study aimed to model the interaction of MEN-based drug-targeting systems with cancer cells and determine the properties of interacting MENs.

Methods

Magnetoelectric Nanostructures (MENs) have both targeting and nano-electroporation effects due to their ferroic properties. Among these structures, the most used nanoparticles as targeting mechanisms are CoFeO-BaTiO structures. For this purpose, the electrical field produced by MENs was modeled using MATLAB R2023b, and a theoretical data pool of appropriate physical properties was created. Testing and applying other magnetoelectric materials defined in the literature may be costly and time-consuming.

Results

The problems with MENs can be eliminated by performing theoretical simulations of each material before proceeding with laboratory tests.

Conclusion

By simulating the interaction of CoFeO-BaTiO MENs with cancer cells, physical properties affecting drug targeting were theoretically identified and a data pool of MENs with these properties was created.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673348662241210111400
2025-01-14
2025-12-13
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/26/CMC-32-26-12.html?itemId=/content/journals/cmc/10.2174/0109298673348662241210111400&mimeType=html&fmt=ahah

References

  1. FerlayJ. ColombetM. SoerjomataramI. ParkinD.M. PiñerosM. ZnaorA. BrayF. Cancer statistics for the year 2020: An overview.Int. J. Cancer2021149477878910.1002/ijc.3358833818764
    [Google Scholar]
  2. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.2170835020204
    [Google Scholar]
  3. GreenleeR.T. MurrayT. BoldenS. WingoP.A. Cancer statistics, 2000.CA Cancer J. Clin.200050173310.3322/canjclin.50.1.710735013
    [Google Scholar]
  4. WardleJ. RobbK. VernonS. WallerJ. Screening for prevention and early diagnosis of cancer.Am. Psychol.201570211913310.1037/a003735725730719
    [Google Scholar]
  5. SiegelR. DeSantisC. VirgoK. SteinK. MariottoA. SmithT. CooperD. GanslerT. LerroC. FedewaS. LinC. LeachC. CannadyR.S. ChoH. ScoppaS. HacheyM. KirchR. JemalA. WardE. Cancer treatment and survivorship statistics, 2012.CA Cancer J. Clin.201262422024110.3322/caac.2114922700443
    [Google Scholar]
  6. MinkoT. RodriguezR.L. PozharovV. Nanotechnology approaches for personalized treatment of multidrug resistant cancers.Adv. Drug Deliv. Rev.20136513-141880189510.1016/j.addr.2013.09.01724120655
    [Google Scholar]
  7. EstanqueiroM. AmaralM.H. ConceiçãoJ. LoboS.J.M. Nanotechnological carriers for cancer chemotherapy: The state of the art.Colloids Surf. B Biointerfaces201512663164810.1016/j.colsurfb.2014.12.04125591851
    [Google Scholar]
  8. MonsuezJ.J. CharniotJ.C. VignatN. ArtigouJ.Y. Cardiac side-effects of cancer chemotherapy.Int. J. Cardiol.2010144131510.1016/j.ijcard.2010.03.00320399520
    [Google Scholar]
  9. van den BoogaardW.M.C. KomninosD.S.J. VermeijW.P. Chemotherapy side-effects: Not all DNA damage is equal.Cancers202214362710.3390/cancers1403062735158895
    [Google Scholar]
  10. McKnightJ.A. Principles of chemotherapy.Clin. Tech. Small Anim. Pract.2003182677210.1053/svms.2003.3661712831063
    [Google Scholar]
  11. BazakR. HouriM. AchyE.S. KamelS. RefaatT. Cancer active targeting by nanoparticles: A comprehensive review of literature.J. Cancer Res. Clin. Oncol.2015141576978410.1007/s00432‑014‑1767‑325005786
    [Google Scholar]
  12. BertrandN. WuJ. XuX. KamalyN. FarokhzadO.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology.Adv. Drug Deliv. Rev.20146622510.1016/j.addr.2013.11.00924270007
    [Google Scholar]
  13. CravoA.S. MrsnyR.J. A time travel journey through cancer therapies.Canc. Targ. Drug Del. Elu. Dream2013978146147876833510.1007/978‑1‑4614‑7876‑8_1
    [Google Scholar]
  14. LópezB.M. TeijeiroA. RivasJ. Magnetic nanoparticle-based hyperthermia for cancer treatment.Rep. Pract. Oncol. Radiother.201318639740010.1016/j.rpor.2013.09.01124416585
    [Google Scholar]
  15. BeikJ. AbedZ. GhoreishiF.S. NamiH.S. MehrzadiS. ZadehS.A. KamravaS.K. Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications.J. Control. Release201623520522110.1016/j.jconrel.2016.05.06227264551
    [Google Scholar]
  16. KhanI. KhanM. UmarM.N. OhD.H. Nanobiotechnology and its applications in drug delivery system: A review.IET Nanobiotechnol.20159639640010.1049/iet‑nbt.2014.006226647817
    [Google Scholar]
  17. RodzinskiA. GuduruR. LiangP. HadjikhaniA. StewartT. StimphilE. RunowiczC. CoteR. AltmanN. DatarR. KhizroevS. Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles.Sci. Rep.2016612086710.1038/srep2086726875783
    [Google Scholar]
  18. StimphilE. NagesettiA. GuduruR. StewartT. RodzinskiA. LiangP. KhizroevS. Physics considerations in targeted anticancer drug delivery by magnetoelectric nanoparticles.Appl. Phys. Rev.20174202110110.1063/1.4978642
    [Google Scholar]
  19. StewartT.S. NagesettiA. GuduruR. LiangP. StimphilE. HadjikhaniA. SalgueiroL. HorstmyerJ. CaiR. SchallyA. KhizroevS. Magnetoelectric nanoparticles for delivery of antitumor peptides into glioblastoma cells by magnetic fields.Nanomedicine201813442343810.2217/nnm‑2017‑030029345190
    [Google Scholar]
  20. WangA.Z. LangerR. FarokhzadO.C. Nanoparticle delivery of cancer drugs.Annu. Rev. Med.201263118519810.1146/annurev‑med‑040210‑16254421888516
    [Google Scholar]
  21. BriggerI. DubernetC. CouvreurP. Nanoparticles in cancer therapy and diagnosis.Adv. Drug Deliv. Rev.201264243610.1016/j.addr.2012.09.00612204596
    [Google Scholar]
  22. JurgonsR. SeligerC. HilpertA. TrahmsL. OdenbachS. AlexiouC. Drug loaded magnetic nanoparticles for cancer therapy.J. Phys. Condens. Matter20061838S2893S290210.1088/0953‑8984/18/38/S24
    [Google Scholar]
  23. VasirJ.K. LabhasetwarV. Targeted drug delivery in cancer therapy.Technol. Canc. Res. Treat.200544363374
    [Google Scholar]
  24. PetrakK. Essential properties of drug-targeting delivery systems.Drug Discov. Today20051023-241667167310.1016/S1359‑6446(05)03698‑616376827
    [Google Scholar]
  25. MillsJ.K. NeedhamD. Targeted drug delivery.Expert Opin. Ther. Pat.19999111499151310.1517/13543776.9.11.1499
    [Google Scholar]
  26. BaeY.H. ParkK. Targeted drug delivery to tumors: Myths, reality and possibility.J. Control. Release2011153319820510.1016/j.jconrel.2011.06.00121663778
    [Google Scholar]
  27. WhitesideT.L. The tumor microenvironment and its role in promoting tumor growth.Oncogene200827455904591210.1038/onc.2008.27118836471
    [Google Scholar]
  28. AndersonN.M. SimonM.C. The tumor microenvironment.Curr. Biol.20203016R921R92510.1016/j.cub.2020.06.08132810447
    [Google Scholar]
  29. ArnethB. Tumor microenvironment.Medicina20195611510.3390/medicina5601001531906017
    [Google Scholar]
  30. YangS. GaoH. Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy.Pharmacol. Res.20171269710810.1016/j.phrs.2017.05.00428501517
    [Google Scholar]
  31. HeQ. ChenJ. YanJ. CaiS. XiongH. LiuY. PengD. MoM. LiuZ. Tumor microenvironment responsive drug delivery systems.Asian J. Pharm. Sci.202015441644810.1016/j.ajps.2019.08.00332952667
    [Google Scholar]
  32. KhawarI.A. KimJ.H. KuhH.J. Improving drug delivery to solid tumors: Priming the tumor microenvironment.J. Control. Release2015201788910.1016/j.jconrel.2014.12.01825526702
    [Google Scholar]
  33. SureshS. Biomechanics and biophysics of cancer cells.Acta Biomater.20073441343810.1016/j.actbio.2007.04.00217540628
    [Google Scholar]
  34. YadavS. BartonM.J. NguyenN.T. Biophysical properties of cells for cancer diagnosis.J. Biomech.2019861710.1016/j.jbiomech.2019.02.00630803699
    [Google Scholar]
  35. WangM. ThanouM. Targeting nanoparticles to cancer.Pharmacol. Res.2010622909910.1016/j.phrs.2010.03.00520380880
    [Google Scholar]
  36. AttiaM.F. AntonN. WallynJ. OmranZ. VandammeT.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites.J. Pharm. Pharmacol.20197181185119810.1111/jphp.1309831049986
    [Google Scholar]
  37. PatelJ.K. PatelA.P. Passive targeting of nanoparticles to cancer.Surface Modification of Nanoparticles for Targeted Drug Delivery2019125143
    [Google Scholar]
  38. MatsumuraY. MaedaH. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs.Cancer Res.19864612 Pt 1638763922946403
    [Google Scholar]
  39. PattniB.S. TorchilinV.P. Targeted drug delivery systems: Strategies and challenges.Targeted Drug Delivery Concepts and Design2015338
    [Google Scholar]
  40. IyerA.K. KhaledG. FangJ. MaedaH. Exploiting the enhanced permeability and retention effect for tumor targeting.Drug Discov. Today20061117-1881281810.1016/j.drudis.2006.07.00516935749
    [Google Scholar]
  41. MaedaH. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting.Adv. Enzyme Regul.200141118920710.1016/S0065‑2571(00)00013‑311384745
    [Google Scholar]
  42. HeldinC.H. RubinK. PietrasK. ÖstmanA. High interstitial fluid pressure - an obstacle in cancer therapy.Nat. Rev. Cancer200441080681310.1038/nrc145615510161
    [Google Scholar]
  43. CairnsR. PapandreouI. DenkoN. Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment.Mol. Cancer Res.200642617010.1158/1541‑7786.MCR‑06‑000216513837
    [Google Scholar]
  44. LibuttiS.K. TamarkinL. NilubolN. Targeting the invincible barrier for drug delivery in solid cancers: Interstitial fluid pressure.Oncotarget2018987357233572510.18632/oncotarget.2626730515264
    [Google Scholar]
  45. VasirJ. ReddyM. LabhasetwarV. Nanosystems in drug targeting: Opportunities and challenges.Curr. Nanosci.200511476410.2174/1573413052953110
    [Google Scholar]
  46. BasileL. PignatelloR. PassiraniC. Active targeting strategies for anticancer drug nanocarriers.Curr. Drug Deliv.20129325526810.2174/15672011280038908922452402
    [Google Scholar]
  47. DuttaB. BarickK.C. HassanP.A. Recent advances in active targeting of nanomaterials for anticancer drug delivery.Adv. Colloid Interface Sci.202129610250910.1016/j.cis.2021.10250934455211
    [Google Scholar]
  48. TorchilinV.P. Passive and active drug targeting: Drug delivery to tumors as an example.Handb. Exp. Pharmacol.201019719735310.1007/978‑3‑642‑00477‑3_120217525
    [Google Scholar]
  49. AnarjanS.F. Active targeting drug delivery nanocarriers: Ligands.Nano-Structures & Nano-Objects20191910037010.1016/j.nanoso.2019.100370
    [Google Scholar]
  50. LiangX. ChenH. SunN.X. Magnetoelectric materials and devices.APL Mater.20219404111410.1063/5.0044532
    [Google Scholar]
  51. SpaldinN.A. FiebigM. Materials science. The renaissance of magnetoelectric multiferroics.Science2005309573339139210.1126/science.111335716020720
    [Google Scholar]
  52. EerensteinW. MathurN.D. ScottJ.F. Multiferroic and magnetoelectric materials.Nature2006442710475976510.1038/nature0502316915279
    [Google Scholar]
  53. SpaldinN.A. RameshR. Advances in magnetoelectric multiferroics.Nat. Mater.201918320321210.1038/s41563‑018‑0275‑230783227
    [Google Scholar]
  54. YueK. GuduruR. HongJ. LiangP. NairM. KhizroevS. Magneto-electric nanoparticles for non-invasive brain stimulation.PLoS One201279e44040e4404010.1371/journal.pone.004404022957042
    [Google Scholar]
  55. GuduruR. LiangP. RunowiczC. NairM. AtluriV. KhizroevS. Magneto-electric nanoparticles to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells.Sci. Rep.201331295310.1038/srep0295324129652
    [Google Scholar]
  56. HuJ.M. NanC.W. Opportunities and challenges for magnetoelectric devices.APL Mater.20197808090510.1063/1.5112089
    [Google Scholar]
  57. BibesM. BarthélémyA. Towards a magnetoelectric memory.Nat. Mater.20087642542610.1038/nmat218918497843
    [Google Scholar]
  58. BetalS. DuttaM. ShresthaB. CoticaL. TangL. BhallaA. GuoR. Cell permeation using core-shell magnetoelectric nanoparticles.Integr. Ferroelectr.2016174118619410.1080/10584587.2016.1196332
    [Google Scholar]
  59. KaushikA. MoshaieN.R. SinhaR. BhardwajV. AtluriV. JayantR.D. YndartA. KatebB. PalaN. NairM. Investigation of ac-magnetic field stimulated nanoelectroporation of magneto-electric nano-drug-carrier inside CNS cells.Sci. Rep.2017714566310.1038/srep4566328374799
    [Google Scholar]
  60. KhizroevS. Magneto-electric nanoparticles as field-controlled nano-electroporation sites for high specificity.Gynecol. Oncol.201413310510.1016/j.ygyno.2014.03.279
    [Google Scholar]
  61. SmithI.T. ZhangE. YildirimY.A. CamposM.A. MottalebA.M. YildirimB. RamezaniZ. AndreV.L. VandeusenS.A. LiangP. KhizroevS. Nanomedicine and nanobiotechnology applications of magnetoelectric nanoparticles.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2023152e184910.1002/wnan.184936056752
    [Google Scholar]
  62. PoompavaiS. SreeG.V. Dielectric property measurement of breast—tumor phantom model under pulsed electric field treatment.IEEE Trans. Radiat. Plasma Med. Sci.20182660861710.1109/TRPMS.2018.2868818
    [Google Scholar]
  63. BrooksS.A. BrowneL.H.J. CarterT.M. KinchC.E. HallD.M.S. Molecular interactions in cancer cell metastasis.Acta Histochem.2010112132510.1016/j.acthis.2008.11.02219162308
    [Google Scholar]
  64. HassanpourS.H. DehghaniM. Review of cancer from perspective of molecular.J. Cancer Res. Pract.20174412712910.1016/j.jcrpr.2017.07.001
    [Google Scholar]
  65. BertramJ.S. The molecular biology of cancer.Mol. Aspects Med.200021616722310.1016/S0098‑2997(00)00007‑811173079
    [Google Scholar]
  66. LeeJ.S. OhS.J. ChoiH.J. KangJ.H. LeeS.H. HaJ.S. WooS.M. JangH. LeeH. KimS.Y. ATP production relies on fatty acid oxidation rather than glycolysis in pancreatic ductal adenocarcinoma.Cancers2020129247710.3390/cancers1209247732882923
    [Google Scholar]
  67. FiorilloM. ÓzsváriB. SotgiaF. LisantiM.P. High ATP production fuels cancer drug resistance and metastasis: Implications for mitochondrial ATP depletion therapy.Front. Oncol.20211174072010.3389/fonc.2021.74072034722292
    [Google Scholar]
  68. O’GradyS.M. LeeS.Y. Molecular diversity and function of voltage-gated (Kv) potassium channels in epithelial cells.Int. J. Biochem. Cell Biol.20053781578159410.1016/j.biocel.2005.04.00215882958
    [Google Scholar]
  69. KunzelmannK. Ion channels and cancer.J. Membr. Biol.2005205315917310.1007/s00232‑005‑0781‑416362504
    [Google Scholar]
  70. HonaryS. ZahirF. Effect of Zeta potential on the properties of nano-drug delivery systems - a review (Part 1).Trop. J. Pharm. Res.2013122255264
    [Google Scholar]
  71. MokZ.H. The effect of particle size on drug bioavailability in various parts of the body.Pharmaceutical Science Advances2023210003110.1016/j.pscia.2023.100031
    [Google Scholar]
  72. WangJ. Multiferroic materials: Properties, techniques, and applications. Multiferroic materials: Properties.Techniques and Applications2016139210.1201/9781315372532
    [Google Scholar]
  73. EtierM. GaoY. ShvartsmanV.V. ElsukovaA. LandersJ. WendeH. LupascuD.C. Cobalt Ferrite/Barium titanate Core/Shell nanoparticles.20124381115122
    [Google Scholar]
  74. WolframJ. ZhuM. YangY. ShenJ. GentileE. PaolinoD. FrestaM. NieG. ChenC. ShenH. FerrariM. ZhaoY. Safety of nanoparticles in medicine.Curr. Drug Targets201516141671168110.2174/138945011566614080412480826601723
    [Google Scholar]
  75. PatnaikS. GorainB. PadhiS. ChoudhuryH. GabrG.A. MdS. MishraK.D. KesharwaniP. Recent update of toxicity aspects of nanoparticulate systems for drug delivery.Eur. J. Pharm. Biopharm.202116110011910.1016/j.ejpb.2021.02.01033639254
    [Google Scholar]
  76. SevimG. Development and evaluation of multiferroic nanoparticle-based drug delivery system.PhD Thesis, Eskişehir Technical University: Eskişehir2023
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673348662241210111400
Loading
/content/journals/cmc/10.2174/0109298673348662241210111400
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test