Skip to content
2000
Volume 32, Issue 26
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The use of current anticancer drugs is hampered by significant side effects and high costs. In the pursuit of safer, more effective, and affordable options, researchers have turned to nature as a valuable source of potential anticancer compounds. Quassinoids, a class of natural terpenoids, have garnered attention for their anticancer properties. This comprehensive review aims to shed light on natural quassinoids and their anticancer effects, offering valuable insights for researchers dedicated to the development of novel anticancer therapeutics.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673313760240911160930
2024-10-04
2025-10-24
Loading full text...

Full text loading...

References

  1. ParkJ.H. PyunW.Y. ParkH.W. Cancer metabolism: Phenotype, signaling and therapeutic targets.Cells2020910230810.3390/cells9102308 33081387
    [Google Scholar]
  2. PavlovaN.N. ThompsonC.B. The emerging hallmarks of cancer metabolism.Cell Metab.2016231274710.1016/j.cmet.2015.12.006 26771115
    [Google Scholar]
  3. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  4. FangX. DiY.T. ZhangY. XuZ.P. LuY. ChenQ.Q. ZhengQ.T. HaoX.J. Unprecedented quassinoids with promising biological activity from Harrisonia perforata.Angew. Chem. Int. Ed.201554195592559510.1002/anie.201412126 25810025
    [Google Scholar]
  5. PolonskyJ. Quassinoid bitter principles. II.Fortschr. Chem. Org. Naturst.19854722126410.1007/978‑3‑7091‑8790‑6_4 3896993
    [Google Scholar]
  6. XuY. LiuJ. WuY. GuoQ. SunH. ChenG. Natural products against hematological malignancies and identification of their targets.Sci. China Life Sci.201558121191120110.1007/s11427‑015‑4922‑4 26566803
    [Google Scholar]
  7. MoritaH. KishiE. TakeyaK. ItokawaH. IitakaY. Highly oxygenated quassinoids from Eurycoma longifolia.Phytochemistry199333369169610.1016/0031‑9422(93)85475‑7
    [Google Scholar]
  8. RosatiA. QuarantaE. AmmiranteM. TurcoM.C. LeoneA. De FeoV. Quassinoids can induce mitochondrial membrane depolarisation and caspase 3 activation in human cells.Cell Death Differ.200411S2Suppl. 2S216S21810.1038/sj.cdd.4401534 15608695
    [Google Scholar]
  9. WeiC. ChenC. ChengY. ZhuL. WangY. LuoC. HeY. YangZ. JiZ. Ailanthone induces autophagic and apoptotic cell death in human promyelocytic leukemia HL 60 cells.Oncol. Lett.20181633569357610.3892/ol.2018.9101 30127963
    [Google Scholar]
  10. HanF. LiuG. SunC. WeiJ. Ailanthone reverses multidrug resistance by inhibiting the P-glycoprotein-mediated efflux in resistant K562/A02 cells.Cell. Mol. Biol.20186415556110.14715/cmb/2017.64.15.9 30672437
    [Google Scholar]
  11. KupchanS.M. LacadieJ.A. Tumor inhibitors. 101. Dehydroailanthinone, a new antileukemic quassinoid from Pierreodendron kerstingii.J. Org. Chem.197540565465610.1021/jo00893a024 1133628
    [Google Scholar]
  12. HallI.H. LeeK.H. ElgebalyS.A. ImakuraY. SumidaY. WuR.Y. Antitumor agents. XXXIV: Mechanism of action of bruceoside A and brusatol on nucleic acid metabolism of P-388 lymphocytic leukemia cells.J. Pharm. Sci.197968788388710.1002/jps.2600680726 458610
    [Google Scholar]
  13. HallI.H. LeeK.H. OkanoM. SimsD. IbukaT. LiouY.F. ImakuraY. Antitumor agents XLII: Comparison of antileukemic activity of helenalin, brusatol, and bruceantin and their esters on different strains of P-388 lymphocytic leukemic cells.J. Pharm. Sci.198170101147115010.1002/jps.2600701014 7299649
    [Google Scholar]
  14. HallI.H. LiouY.F. OkanoM. LeeK.H. Antitumor agents XLVI: In vitro effects of esters of brusatol, bisbrusatol, and related compounds on nucleic acid and protein synthesis of P-388 lymphocytic leukemia cells.J. Pharm. Sci.198271334534810.1002/jps.2600710321 7069596
    [Google Scholar]
  15. HallI.H. LiouY.F. LeeK.H. ChaneyS.G. WillinghamW.Jr Antitumor agents LIX: Effects of quassinoids on protein synthesis of a number of murine tumors and normal cells.J. Pharm. Sci.198372662663010.1002/jps.2600720612 6875823
    [Google Scholar]
  16. ElgebalyS.A. HallI.H. LeeK.H. SumidaY. ImakuraY. WuR.Y. Antitumor agents. XXXV: Effects of brusatol, bruceoside A, and bruceantin on P-388 lymphocytic leukemia cell respiration.J. Pharm. Sci.197968788789010.1002/jps.2600680727 222889
    [Google Scholar]
  17. LiouY.F. HallI.H. OkanoM. LeeK.H. ChaneyS.G. Antitumor agents XLVIII: Structure-activity relationships of quassinoids as in vitro protein synthesis inhibitors of P-388 lymphocytic leukemia tumor cell metabolism.J. Pharm. Sci.198271443043510.1002/jps.2600710414 7086652
    [Google Scholar]
  18. LeeK.H. OkanoM. HallI.H. BrentD.A. SoltmannB. Antitumor agents XLV: Bisbrusatolyl and brusatolyl esters and related compounds as novel potent antileukemic agents.J. Pharm. Sci.198271333834510.1002/jps.2600710320 7069595
    [Google Scholar]
  19. LeeK.H. ImakuraY. HuangH.C. Bruceoside-A, a novel antileukaemic quassinoid glycoside from Brucea javanica.J. Chem. Soc. Chem. Commun.19772696910.1039/c39770000069
    [Google Scholar]
  20. LeeK.H. ImakuraY. SumidaY. WuR.Y. HallI.H. HuangH.C. Antitumor agents. 33. Isolation and structural elucidation of bruceoside -A and -B, novel antileukemic quassinoid glycosides, and brucein -D and -E from Brucea javanica.J. Org. Chem.197944132180218510.1021/jo01327a031
    [Google Scholar]
  21. KupchanS.M. BrittonR.W. ZieglerM.F. SigelC.W. Bruceantin, a new potent antileukemic simaroubolide from Brucea antidysenterica.J. Org. Chem.197338117817910.1021/jo00941a049 4682660
    [Google Scholar]
  22. KupchanS.M. BrittonR.W. LacadieJ.A. ZieglerM.F. SigelC.W. Tumor inhibitors. 100. Isolation and structural elucidation of bruceantin and bruceantinol, new potent antileukemic quassinoids from Brucea antidysenterica.J. Org. Chem.197540564865410.1021/jo00893a023 1133627
    [Google Scholar]
  23. LuyengiL. SuhN. FongH.H.S. PezzutoJ.M. KinghornA.D. A lignan and four terpenoids from Brucea javanica that induce differentiation with cultured HL-60 promyelocytic leukemia cells.Phytochemistry199643240941210.1016/0031‑9422(96)00258‑0 8862033
    [Google Scholar]
  24. Mata-GreenwoodE. DaeubleJ.F. GriecoP.A. DouJ. McChesneyJ.D. MehtaR.G. KinghornA.D. PezzutoJ.M. Novel esters of glaucarubolone as inducers of terminal differentiation of promyelocytic HL-60 cells and inhibitors of 7,12-dimethylbenz[a]anthracene-induced preneoplastic lesion formation in mouse mammary organ culture.J. Nat. Prod.200164121509151310.1021/np010212p 11754601
    [Google Scholar]
  25. Mata-GreenwoodE. CuendetM. SherD. GustinD. StockW. PezzutoJ.M. Brusatol-mediated induction of leukemic cell differentiation and G1 arrest is associated with down-regulation of c-MYC.Leukemia200216112275228410.1038/sj.leu.2402696 12399973
    [Google Scholar]
  26. CuendetM. GillsJ.J. PezzutoJ.M. Brusatol-induced HL-60 cell differentiation involves NF-κB activation.Cancer Lett.20042061435010.1016/j.canlet.2003.11.011 15019158
    [Google Scholar]
  27. KarathedathS. RajamaniB.M. Musheer AalamS.M. AbrahamA. VaratharajanS. KrishnamurthyP. MathewsV. VelayudhanS.R. BalasubramanianP. Role of NF-E2 related factor 2 (Nrf2) on chemotherapy resistance in acute myeloid leukemia (AML) and the effect of pharmacological inhibition of Nrf2.PLoS One2017125e017722710.1371/journal.pone.0177227 28505160
    [Google Scholar]
  28. PeiY. HwangN. LangF. ZhouL. WongJ.H. SinghR.K. JhaH.C. El-DeiryW.S. DuY. RobertsonE.S. Quassinoid analogs with enhanced efficacy for treatment of hematologic malignancies target the PI3Kγ isoform.Commun. Biol.20203126710.1038/s42003‑020‑0996‑z 32461675
    [Google Scholar]
  29. CuendetM. ChristovK. LantvitD.D. DengY. HedayatS. HelsonL. McChesneyJ.D. PezzutoJ.M. Multiple myeloma regression mediated by bruceantin.Clin. Cancer Res.20041031170117910.1158/1078‑0432.CCR‑0362‑3 14871997
    [Google Scholar]
  30. CuendetM. PezzutoJ.M. Antitumor activity of bruceantin: An old drug with new promise.J. Nat. Prod.200467226927210.1021/np030304+ 14987068
    [Google Scholar]
  31. IssaM.E. BerndtS. CarpentierG. PezzutoJ.M. CuendetM. Bruceantin inhibits multiple myeloma cancer stem cell proliferation.Cancer Biol. Ther.201617996697510.1080/15384047.2016.1210737 27434731
    [Google Scholar]
  32. OkanoM. FukamiyaN. ArataniT. JuichiM. LeeK.H. Antitumor agents, 74. Bruceanol-A and -B, two new antileukemic quassinoids from Brucea antidysenterica.J. Nat. Prod.198548697297510.1021/np50042a017 3841557
    [Google Scholar]
  33. OkanoM. LeeK.H. HallI.H. BoettnerF.E. Antitumor agents. 39. Bruceantinoside-A and -B, novel antileukemic quassinoid glucosides from Brucea antidysenterica.J. Nat. Prod.198144447047410.1021/np50016a013 7288443
    [Google Scholar]
  34. SakakiT. YoshimuraS. TsuyukiT. TakahashiT. HondaT. Yadanzioside P, a new antileukemic quassinoid glycoside from Brucea javanica (L.) merr with the 3-O-(.BETA.-D-glucopyranosyl)bruceantin structure.Chem. Pharm. Bull.198634104447445010.1248/cpb.34.4447 3829175
    [Google Scholar]
  35. SakakiT. YoshimuraS. TsuyukiT. TakahashiT. HondaT. NakanishiT. Structures of Yadanziosides K, M, N, and O, new quassinoid glycosides from Brucea javanica (L.) MERR.Bull. Chem. Soc. Jpn.198659113541354610.1246/bcsj.59.3541
    [Google Scholar]
  36. SakakiT. YoshimuraS. IshibashiM. TsuyukiT. TakahashiT. HondaT. NakanishiT. Structures of new quassinoid glycosides, Yadanziosides A, B, C, D, E, G, H, and new quassinoids, dehydrobrusatol and dehydrobruceantinol from Brucea javanica (L.) MERR.Bull. Chem. Soc. Jpn.19855892680268610.1246/bcsj.58.2680
    [Google Scholar]
  37. YoshimuraS. SakakiT. IshibashiM. TsuyukiT. TakahashiT. HondaT. Constituents of seeds of Brucea javanica. Structures of new bitter principles, Yadanziolides A, B, C, Yadanziosides F, I, J, and L.Bull. Chem. Soc. Jpn.19855892673267910.1246/bcsj.58.2673
    [Google Scholar]
  38. FukamiyaN. OkanoM. TagaharaK. ArataniT. MuramotoY. LeeK.H. Antitumor agents, 90. Bruceantinoside C, a new cytotoxic quassinoid glycoside from Brucea antidysenterica.J. Nat. Prod.19875061075107910.1021/np50054a010 3443857
    [Google Scholar]
  39. OkanoM. FukamiyaN. ToyotaT. TagaharaK. LeeK.H. Antitumor agents, 104. Isolation of yadanziosides M and P from Brucea antidysenterica and identification of bruceantinoside B as a mixture of yadanzioside P and bruceantinoside C.J. Nat. Prod.198952239840110.1021/np50062a033 2746262
    [Google Scholar]
  40. SuB.N. ChangL.C. ParkE.J. CuendetM. SantarsieroB.D. MesecarA.D. MehtaR.G. FongH.H. PezzutoJ.M. KinghornA.D. Bioactive constituents of the seeds of Brucea javanica.Planta Med.200268873073310.1055/s‑2002‑33798 12221597
    [Google Scholar]
  41. ZhangJ.Y. LinM.T. TungH.Y. TangS.L. YiT. ZhangY.Z. TangY.N. ZhaoZ.Z. ChenH.B. BruceineD. Bruceine D induces apoptosis in human chronic myeloid leukemia K562 cells via mitochondrial pathway.Am. J. Cancer Res.201664819826 27186433
    [Google Scholar]
  42. SeidaA.A. KinghornA.D. CordellG.A. FarnsworthN.R. Potential anticancer agents IX. Isolation of a new simaroubolide, 6alpha-tigloyloxychaparrinone, from Ailanthus integrifolia ssp. calycina (Simaroubaceae).Lloydia1978416584587 732541
    [Google Scholar]
  43. PolonskyJ. VaronZ. MorettiC. PettitG.R. HeraldC.L. RideoutJ.A. SahaS.B. KhastgirH.N. The antineoplastic quassinoids of Simaba cuspidata spruce and Ailanthus grandis Prain.J. Nat. Prod.198043450350910.1021/np50010a012 7431025
    [Google Scholar]
  44. MorettiC. BhatnagarS. BeloeilJ.C. PolonskyJ. Two new quassinoids from Simaba multiflora fruits.J. Nat. Prod.198649344044410.1021/np50045a009 3760884
    [Google Scholar]
  45. FrançoisG. DiakanamwaC. TimpermanG. BringmannG. SteenackersT. AtassiG. Van LooverenM. HolenzJ. TassinJ.P. AkéAssi, L.; Vanhaelen-Fastré, R.; Vanhaelen, M. Antimalarial and cytotoxic potential of four quassinoids from Hannoa chlorantha and Hannoa klaineana, and their structure-activity relationships.Int. J. Parasitol.199828463564010.1016/S0020‑7519(98)00008‑3 9602388
    [Google Scholar]
  46. OzekiA. HitotsuyanagiY. HashimotoE. ItokawaH. TakeyaK. de Mello AlvesS. Cytotoxic quassinoids from Simaba cedron.J. Nat. Prod.199861677678010.1021/np980023f 9644063
    [Google Scholar]
  47. HitotsuyanagiY. OzekiA. ItokawaH. de Mello AlvesS. TakeyaK. Cedronolactone E, a novel C(19) quassinoid from Simaba cedron.J. Nat. Prod.200164121583158410.1021/np010364k 11754621
    [Google Scholar]
  48. HajjouliS. ChateauvieuxS. TeitenM.H. OrlikovaB. SchumacherM. DicatoM. ChooC.Y. DiederichM. Eurycomanone and eurycomanol from Eurycoma longifolia Jack as regulators of signaling pathways involved in proliferation, cell death and inflammation.Molecules2014199146491466610.3390/molecules190914649 25230121
    [Google Scholar]
  49. KupchanS.M. LacadieJ.A. HowieG.A. SicklesB.R. Structural requirements for biological activity among antileukemic glaucarubolone ester quassinoids.J. Med. Chem.19761991130113310.1021/jm00231a009 978677
    [Google Scholar]
  50. PolonskyJ. VaronZ. JacqueminH. PettitG.R. The isolation and structure of 13,18-dehydroglaucarubinone, a new antineoplastic quassinoid from Simarouba amara.Experientia19783491122112310.1007/BF01922904 720499
    [Google Scholar]
  51. KimI.H. SuzukiR. HitotsuyanagiY. TakeyaK. Three novel quassinoids, javanicolides A and B, and javanicoside A, from seeds of Brucea javanica.Tetrahedron200359509985998910.1016/j.tet.2003.10.048
    [Google Scholar]
  52. KimI.H. TakashimaS. HitotsuyanagiY. HasudaT. TakeyaK. New quassinoids, javanicolides C and D and javanicosides B-F, from seeds of Brucea javanica.J. Nat. Prod.200467586386810.1021/np030484n 15165151
    [Google Scholar]
  53. KimI.H. HitotsuyanagiY. TakeyaK. Quassinoid glucosides from seeds of Brucea amarissima.Phytochemistry200465233167317310.1016/j.phytochem.2004.08.029 15541747
    [Google Scholar]
  54. PolonskyJ. BhatnagarS. MorettiC. 15-Deacetyl-] sergeolide, a potent antileukemic quassinoid from Picrolemma pseudocoffea.J. Nat. Prod.198447699499610.1021/np50036a014 6533270
    [Google Scholar]
  55. CavalcantiB.C. da CostaP.M. CarvalhoA.A. RodriguesF.A.R. AmorimR.C.N. SilvaE.C.C. PohlitA.M. Costa-LotufoL.V. MoraesM.O. PessoaC. Involvement of intrinsic mitochondrial pathway in neosergeolide-induced apoptosis of human HL-60 leukemia cells: The role of mitochondrial permeability transition pore and DNA damage.Pharm. Biol.201250898099310.3109/13880209.2012.654921 22775415
    [Google Scholar]
  56. PolonskyM.V.T.J. MerienneC. SevenetT. SevenetT. Soularubinone, a new antileukemic quassionoid from Soulamea tomentosa.J. Nat. Prod.198144327928410.1021/np50015a007 7264678
    [Google Scholar]
  57. ZhaoM. LauS.T. LeungP.S. CheC.T. LinZ.X. Seven quassinoids from Fructus bruceae with cytotoxic effects on pancreatic adenocarcinoma cell lines.Phytother. Res.201125121796180010.1002/ptr.3477 21480411
    [Google Scholar]
  58. LuZ. LaiZ.Q. LeungA.W.N. LeungP.S. LiZ.S. LinZ.X. Exploring brusatol as a new anti-pancreatic cancer adjuvant: biological evaluation and mechanistic studies.Oncotarget2017849849748498510.18632/oncotarget.17761 29156697
    [Google Scholar]
  59. XiangY. YeW. HuangC. LouB. ZhangJ. YuD. HuangX. ChenB. ZhouM. Brusatol inhibits growth and induces apoptosis in pancreatic cancer cells via JNK/p38 MAPK/NF-κb/Stat3/Bcl-2 signaling pathway.Biochem. Biophys. Res. Commun.2017487482082610.1016/j.bbrc.2017.04.133 28455228
    [Google Scholar]
  60. XiangY. YeW. HuangC. YuD. ChenH. DengT. ZhangF. LouB. ZhangJ. ShiK. ChenB. ZhouM. Brusatol enhances the chemotherapy efficacy of gemcitabine in pancreatic cancer via the Nrf2 signalling pathway.Oxid. Med. Cell. Longev.2018201811010.1155/2018/2360427 29849873
    [Google Scholar]
  61. LauS.T. LinZ.X. LiaoY. ZhaoM. ChengC.H.K. LeungP.S. BruceinD. Brucein D induces apoptosis in pancreatic adenocarcinoma cell line PANC-1 through the activation of p38-mitogen activated protein kinase.Cancer Lett.20092811425210.1016/j.canlet.2009.02.017 19286308
    [Google Scholar]
  62. LauS.T. LinZ.X. LeungP.S. Role of reactive oxygen species in brucein D-mediated p38-mitogen-activated protein kinase and nuclear factor-κB signalling pathways in human pancreatic adenocarcinoma cells.Br. J. Cancer2010102358359310.1038/sj.bjc.6605487 20068565
    [Google Scholar]
  63. LinZ-X. LinZ.X. LeungP.S. ChenL.H. ZhaoM. LiangJ. Involvement of the mitochondrial pathway in bruceine D-induced apoptosis in Capan-2 human pancreatic adenocarcinoma cells.Int. J. Mol. Med.2012301939910.3892/ijmm.2012.980 22552257
    [Google Scholar]
  64. LaiZ.Q. IpS.P. LiaoH.J. LuZ. XieJ.H. SuZ.R. ChenY.L. XianY.F. LeungP.S. LinZ.X. Brucein D, a naturally occurring tetracyclic triterpene quassinoid, induces apoptosis in pancreatic cancer through ROS-associated PI3K/Akt signaling pathway.Front. Pharmacol.2017893610.3389/fphar.2017.00936 29311937
    [Google Scholar]
  65. ZhangP. TaoW. LuC. FanL. JiangQ. YangC. ShangE. ChengH. CheC. DuanJ. ZhaoM. Bruceine A induces cell growth inhibition and apoptosis through PFKFB4/GSK3β signaling in pancreatic cancer.Pharmacol. Res.202116910565810565810.1016/j.phrs.2021.105658 33992797
    [Google Scholar]
  66. LuC. FanL. ZhangP.F. TaoW.W. YangC.B. ShangE.X. ChenF.Y. CheC.T. ChengH.B. DuanJ.A. ZhaoM. A novel P38α MAPK activator Bruceine A exhibits potent anti-pancreatic cancer activity.Comput. Struct. Biotechnol. J.2021193437345010.1016/j.csbj.2021.06.011 34194669
    [Google Scholar]
  67. YeoD. HuynhN. BeutlerJ.A. ChristophiC. ShulkesA. BaldwinG.S. NikfarjamM. HeH. Glaucarubinone and gemcitabine synergistically reduce pancreatic cancer growth via down-regulation of P21-activated kinases.Cancer Lett.2014346226427210.1016/j.canlet.2014.01.001 24491405
    [Google Scholar]
  68. YeoD. HuynhN. BeutlerJ.A. BaldwinG.S. HeH. NikfarjamM. Glaucarubinone combined with gemcitabine improves pancreatic cancer survival in an immunocompetent orthotopic murine model.J. Invest. Surg.201629636637210.3109/08941939.2016.1160167 27027695
    [Google Scholar]
  69. WangY. WangW.J. SuC. ZhangD.M. XuL.P. HeR.R. WangL. ZhangJ. ZhangX.Q. YeW.C. Cytotoxic quassinoids from Ailanthus altissima.Bioorg. Med. Chem. Lett.201323365465710.1016/j.bmcl.2012.11.116 23290052
    [Google Scholar]
  70. ZhuoZ. HuJ. YangX. ChenM. LeiX. DengL. YaoN. PengQ. ChenZ. YeW. ZhangD. Ailanthone inhibits Huh7 cancer cell growth via cell cycle arrest and apoptosis in vitro and in vivo.Sci. Rep.2015511618510.1038/srep16185 26525771
    [Google Scholar]
  71. OlayanjuA. CoppleI.M. BryanH.K. EdgeG.T. SisonR.L. WongM.W. LaiZ.Q. LinZ.X. DunnK. SandersonC.M. AlghanemA.F. CrossM.J. EllisE.C. Ingelman-SundbergM. MalikH.Z. KitteringhamN.R. GoldringC.E. ParkB.K. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity—implications for therapeutic targeting of Nrf2.Free Radic. Biol. Med.20157820221210.1016/j.freeradbiomed.2014.11.003 25445704
    [Google Scholar]
  72. YeR. DaiN. HeQ. GuoP. XiangY. ZhangQ. HongZ. ZhangQ. Comprehensive anti-tumor effect of brusatol through inhibition of cell viability and promotion of apoptosis caused by autophagy via the PI3K/Akt/MTOR pathway in hepatocellular carcinoma.Biomed. Pharmacol. J.201810596297310.1016/j.biopha.2018.06.065
    [Google Scholar]
  73. MurakamiY. SugiyamaK. EbinumaH. NakamotoN. OjiroK. ChuP. TanikiN. SaitoY. TerataniT. KodaY. SuzukiT. SaitoK. FukasawaM. IkedaM. KatoN. KanaiT. SaitoH. Dual effects of the Nrf2 inhibitor for inhibition of hepatitis C virus and hepatic cancer cells.BMC Cancer201818168010.1186/s12885‑018‑4588‑y 29940898
    [Google Scholar]
  74. LeeJ.H. MohanC.D. DeivasigamaniA. JungY.Y. RangappaS. BasappaS. ChinnathambiA. AlahmadiT.A. AlharbiS.A. GargM. LinZ.X. RangappaK.S. SethiG. HuiK.M. AhnK.S. Brusatol suppresses STAT3-driven metastasis by downregulating epithelial-mesenchymal transition in hepatocellular carcinoma.J. Adv. Res.202026839410.1016/j.jare.2020.07.004 33133685
    [Google Scholar]
  75. WangT. DouY. LinG. LiQ. NieJ. ChenB. XieJ. SuZ. ZengH. ChenJ. XieY. The anti-hepatocellular carcinoma effect of Brucea javanica oil in ascitic tumor-bearing mice: The detection of brusatol and its role.Biomed. Pharmacother.202113411112211112210.1016/j.biopha.2020.111122 33341052
    [Google Scholar]
  76. XiaoZ. Ching ChowS. Han LiC. Chun TangS. TsuiS.K.W. LinZ. ChenY. Role of microRNA-95 in the anticancer activity of Brucein D in hepatocellular carcinoma.Eur. J. Pharmacol.201472814115010.1016/j.ejphar.2014.02.002 24530415
    [Google Scholar]
  77. ChengZ. YuanX. QuY. LiX. WuG. LiC. ZuX. YangN. KeX. ZhouJ. XieN. XuX. LiuS. ShenY. LiH. ZhangW. BruceineD. Bruceine D inhibits hepatocellular carcinoma growth by targeting β-catenin/jagged1 pathways.Cancer Lett.201740319520510.1016/j.canlet.2017.06.014 28645563
    [Google Scholar]
  78. ZakariaY. RahmatA. PihieA. AbdullahN. HoughtonP.J. Eurycomanone induce apoptosis in HepG2 cells via up-regulation of p53.Cancer Cell Int.2009911610.1186/1475‑2867‑9‑16 19508737
    [Google Scholar]
  79. SeoJ. HaJ. KangE. YoonH. LeeS. RyuS.Y. KimK. ChoS. Anti-cancer effects of glaucarubinone in the Hepatocellular Carcinoma cell line Huh7 via regulation of the epithelial-to-mesenchymal transition-associated transcription factor twist1.Int. J. Mol. Sci.2021224170010.3390/ijms22041700 33567682
    [Google Scholar]
  80. PeiX.D. HeS.Q. ShenL.Q. WeiJ.C. LiX.S. WeiY.Y. ZhangY.M. WangX.Y. LinF. HeZ.L. JiangL.H. 14,15β-dihydroxyklaineanone inhibits HepG2 cell proliferation and migration through p38MAPK pathway.J. Pharm. Pharmacol.20207291165117510.1111/jphp.13289 32419149
    [Google Scholar]
  81. DuY.Q. BaiM. YuX.Q. LvT.M. LinB. HuangX.X. SongS.J. Quassinoids from the root barks of Ailanthus altissima: Isolation, configurational assignment, and cytotoxic activities.Chin. J. Chem.202139487988610.1002/cjoc.202000558
    [Google Scholar]
  82. SharmaA. MishraT. ThackerG. MishraM. NarenderT. TrivediA.K. Chebulinic acid inhibits MDA‐MB‐231 breast cancer metastasis and promotes cell death through down regulation of SOD1 and induction of autophagy.Cell Biol. Int.202044122553256910.1002/cbin.11463 32902904
    [Google Scholar]
  83. FerlayJ. ColombetM. SoerjomataramI. ParkinD.M. PiñerosM. ZnaorA. BrayF. Cancer statistics for the year 2020: An overview.Int. J. Cancer2021149477878910.1002/ijc.33588 33818764
    [Google Scholar]
  84. Al-MahmoodS. SapiezynskiJ. GarbuzenkoO.B. MinkoT. Metastatic and triple-negative breast cancer: Challenges and treatment options.Drug Deliv. Transl. Res.2018851483150710.1007/s13346‑018‑0551‑3 29978332
    [Google Scholar]
  85. WangR. LuY. LiH. SunL. YangN. ZhaoM. ZhangM. ShiQ. Antitumor activity of the Ailanthus altissima bark phytochemical ailanthone against breast cancer MCF 7 cells.Oncol. Lett.20181546022602810.3892/ol.2018.8039 29552229
    [Google Scholar]
  86. YeQ.M. BaiL.L. HuS.Z. TianH.Y. RuanL.J. TanY.F. HuL.P. YeW.C. ZhangD.M. JiangR.W. Isolation, chemotaxonomic significance and cytotoxic effects of quassinoids from Brucea javanica.Fitoterapia2015105667210.1016/j.fitote.2015.06.004 26071073
    [Google Scholar]
  87. ChandrasekaranJ. BalasubramaniamJ. SellamuthuA. RaviA. An in vitro study on the reversal of epithelial to mesenchymal transition by brusatol and its synergistic properties in triple-negative breast cancer cells.J. Pharm. Pharmacol.202173674975710.1093/jpp/rgab018 33769483
    [Google Scholar]
  88. do AmaralL.A. de SouzaG.H.O. SantosM.R. SaidY.L.V. de SouzaB.B. OliveiraR.J. dos SantosE.F. Walker-256 tumor: Experimental model, implantation sites and number of cells for ascitic and solid tumor development. Brazil.Arch. Biol. Technol.201962e19180284
    [Google Scholar]
  89. LuoC. WangY. WeiC. ChenY. JiZ. The anti migration and anti invasion effects of Bruceine D in human triple negative breast cancer MDA MB 231 cells.Exp. Ther. Med.201919127327910.3892/etm.2019.8187 31853299
    [Google Scholar]
  90. TianS. JingR. ZhangW. Network-based approach to identify the antiproliferative mechanisms of Bruceine D in breast cancer from the cancer genome Atlas.Front. Oncol.202010100110.3389/fonc.2020.01001 32714860
    [Google Scholar]
  91. MohanC.D. LiewY.Y. JungY.Y. RangappaS. PreethamH.D. ChinnathambiA. AlahmadiT.A. AlharbiS.A. LinZ.X. RangappaK.S. AhnK.S. BruceinD. Brucein D modulates MAPK signaling cascade to exert multi-faceted anti-neoplastic actions against breast cancer cells.Biochimie202118214015110.1016/j.biochi.2021.01.009 33484785
    [Google Scholar]
  92. BadalS.A.M. Asuncion ValenzuelaM.M. ZylstraD. HuangG. VendantamP. FrancisS. QuituguaA. AmisL.H. DavisW. TzengT.R.J. JacobsH. GangemiD.J. RanerG. RowlandL. WootenJ. CampbellP. BrantleyE. DelgodaR. Glaucarubulone glucoside from Castela macrophylla suppresses MCF‐7 breast cancer cell growth and attenuates benzo[ a]pyrene‐mediated CYP1A gene induction.J. Appl. Toxicol.201737787388310.1002/jat.3436 28138972
    [Google Scholar]
  93. CachetN. Ho-A-KwieF. RivaudM. HouëlE. DeharoE. BourdyG. JullianV. Picrasin K, a new quassinoid from Quassia amara L. (Simaroubaceae).Phytochem. Lett.20125116216410.1016/j.phytol.2011.12.001
    [Google Scholar]
  94. NiZ. YaoC. ZhuX. GongC. XuZ. WangL. LiS. ZouC. ZhuS. Ailanthone inhibits non-small cell lung cancer cell growth through repressing DNA replication via downregulating RPA1.Br. J. Cancer2017117111621163010.1038/bjc.2017.319 29024939
    [Google Scholar]
  95. ZhouY. LiY. NiH.M. DingW.X. ZhongH. Nrf2 but not autophagy inhibition is associated with the survival of wild-type epidermal growth factor receptor non-small cell lung cancer cells.Toxicol. Appl. Pharmacol.201631014014910.1016/j.taap.2016.09.010 27639429
    [Google Scholar]
  96. SunX. WangQ. WangY. DuL. XuC. LiuQ. Brusatol enhances the radiosensitivity of A549 cells by promoting ROS production and enhancing DNA damage.Int. J. Mol. Sci.201617799710.3390/ijms17070997 27347930
    [Google Scholar]
  97. VartanianS. MaT.P. LeeJ. HavertyP.M. KirkpatrickD.S. YuK. StokoeD. Application of mass spectrometry profiling to establish brusatol as an inhibitor of global protein synthesis.Mol. Cell. Proteomics20161541220123110.1074/mcp.M115.055509 26711467
    [Google Scholar]
  98. HarderB. TianW. La ClairJ.J. TanA.C. OoiA. ChapmanE. ZhangD.D. Brusatol overcomes chemoresistance through inhibition of protein translation.Mol. Carcinog.20175651493150010.1002/mc.22609 28019675
    [Google Scholar]
  99. LiuP. WuD. DuanJ. XiaoH. ZhouY. ZhaoL. FengY. NRF2 regulates the sensitivity of human NSCLC cells to cystine deprivation-induced ferroptosis via FOCAD-FAK signaling pathway.Redox Biol.20203710170210.1016/j.redox.2020.101702 32898818
    [Google Scholar]
  100. SunX. WangY. JiK. LiuY. KongY. NieS. LiN. HaoJ. XieY. XuC. DuL. LiuQ. NRF2 preserves genomic integrity by facilitating ATR activation and G2 cell cycle arrest.Nucleic Acids Res.202048169109912310.1093/nar/gkaa631 32729622
    [Google Scholar]
  101. XieJ. LaiZ. ZhengX. LiaoH. XianY. LiQ. WuJ. IpS. XieY. ChenJ. SuZ. LinZ. YangX. Apoptotic activities of brusatol in human non-small cell lung cancer cells: Involvement of ROS-mediated mitochondrial-dependent pathway and inhibition of Nrf2-mediated antioxidant response.Toxicology202145115268010.1016/j.tox.2021.152680 33465425
    [Google Scholar]
  102. TanB. HuangY. LanL. ZhangB. YeL. YanW. WangF. LinN. BruceineD. Bruceine D induces apoptosis in human non-small cell lung cancer cells through regulating JNK pathway.Biomed. Pharmacother.201911710908910908910.1016/j.biopha.2019.109089 31226632
    [Google Scholar]
  103. XieJ.H. LaiZ.Q. ZhengX.H. XianY.F. LiQ. IpS.P. XieY.L. ChenJ.N. SuZ.R. LinZ.X. YangX.B. Apoptosis induced by bruceine D in human non small cell lung cancer cells involves mitochondrial ROS mediated death signaling.Int. J. Mol. Med.20194462015202610.3892/ijmm.2019.4363 31638181
    [Google Scholar]
  104. FanJ. RenD. WangJ. LiuX. ZhangH. WuM. YangG. BruceineD. Bruceine D induces lung cancer cell apoptosis and autophagy via the ROS/MAPK signaling pathway in vitro and in vivo.Cell Death Dis.202011212610.1038/s41419‑020‑2317‑3 32071301
    [Google Scholar]
  105. ZhaoL. WenQ. YangG. HuangZ. ShenT. LiH. RenD. Apoptosis induction of dehydrobruceine B on two kinds of human lung cancer cell lines through mitochondrial-dependent pathway.Phytomedicine201623211412210.1016/j.phymed.2015.12.019 26926172
    [Google Scholar]
  106. HuangZ. YangG. ShenT. WangX. LiH. RenD. DehydrobruceineB. Dehydrobruceine B enhances the cisplatin-induced cytotoxicity through regulation of the mitochondrial apoptotic pathway in lung cancer A549 cells.Biomed. Pharmacother.20178962363110.1016/j.biopha.2017.02.055 28262615
    [Google Scholar]
  107. WongP.F. CheongW.F. ShuM.H. TehC.H. ChanK.L. AbuBakarS. Eurycomanone suppresses expression of lung cancer cell tumor markers, prohibitin, annexin 1 and endoplasmic reticulum protein 28.Phytomedicine201219213814410.1016/j.phymed.2011.07.001 21903368
    [Google Scholar]
  108. DukaewN. ChairatvitK. PitchakarnP. ImsumranA. KarinchaiJ. TuntiwechapikulW. WongnoppavichA. Inactivation of AKT/NF κB signaling by eurycomalactone decreases human NSCLC cell viability and improves the chemosensitivity to cisplatin.Oncol. Rep.20204441441145410.3892/or.2020.7710 32945500
    [Google Scholar]
  109. DukaewN. KonishiT. ChairatvitK. AutsavaprompornN. SoonthornchareonnonN. WongnoppavichA. Enhancement of radiosensitivity by eurycomalactone in human NSCLC cells through G2/M cell cycle arrest and delayed DNA double-strand break repair.Oncol. Res.202028216117510.3727/096504019X15736439848765 31727206
    [Google Scholar]
  110. DuttS.S. GaoA.C. Molecular mechanisms of castration-resistant prostate cancer progression.Future Oncol.2009591403141310.2217/fon.09.117 19903068
    [Google Scholar]
  111. HeY. PengS. WangJ. ChenH. CongX. ChenA. HuM. QinM. WuH. GaoS. WangL. WangX. YiZ. LiuM. Ailanthone targets p23 to overcome MDV3100 resistance in castration-resistant prostate cancer.Nat. Commun.2016711312210.1038/ncomms13122 27959342
    [Google Scholar]
  112. PengS. YiZ. LiuM. Ailanthone: A new potential drug for castration-resistant prostate cancer.Chin. J. Cancer20173612510.1186/s40880‑017‑0194‑7 28257652
    [Google Scholar]
  113. SkA. TeR. Nanoparticle formulation of brusatol: A novel therapeutic option for cancers.J. Pharm. Drug Deliv. Res.20187110.4172/2325‑9604.1000174
    [Google Scholar]
  114. MoonS.J. JeongB.C. KimH.J. LimJ.E. KimH.J. KwonG.Y. JackmanJ.A. KimJ.H. Bruceantin targets HSP90 to overcome resistance to hormone therapy in castration-resistant prostate cancer.Theranostics202111295897310.7150/thno.51478 33391515
    [Google Scholar]
  115. Moladje DonkweS. HappiE. WansiJ. Ndjakou LentaB. DevkotaK. NeumannB. StammlerH.G. SewaldN. Oxidative burst inhibitory and cytotoxic activity of constituents of the fruits of Odyendyea gabonensis.Planta Med.201278181949195610.1055/s‑0032‑1327878 23136063
    [Google Scholar]
  116. ChenY. ZhuL. YangX. WeiC. ChenC. HeY. JiZ. Ailanthone induces G2/M cell cycle arrest and apoptosis of SGC-7901 human gastric cancer cells.Mol. Med. Rep.20171656821682710.3892/mmr.2017.7491 28901518
    [Google Scholar]
  117. ChenH. JiangT. ChenH. SuJ. WangX. CaoY. LiQ. Brusatol reverses lipopolysaccharide-induced epithelial-mesenchymal transformation and induces apoptosis through PI3K/Akt/NF-кB pathway in human gastric cancer SGC-7901 cells.Anticancer Drugs202132439440410.1097/CAD.0000000000001022 33229902
    [Google Scholar]
  118. HuangY. YangY. XuY. MaQ. GuoF. ZhaoY. TaoY. LiM. GuoJ. Nrf2/HO-1 axis regulates the angiogenesis of gastric cancer via targeting VEGF.Cancer Manag. Res.2021133155316910.2147/CMAR.S292461 33889021
    [Google Scholar]
  119. LiL. DongZ. ShiP. TanL. XuJ. HuangP. WangZ. CuiH. YangL. BruceineD. Bruceine D inhibits cell proliferation through downregulating LINC01667/MicroRNA-138-5p/Cyclin E1 axis in gastric cancer.Front. Pharmacol.20201158496010.3389/fphar.2020.584960 33390953
    [Google Scholar]
  120. SemenzaG.L. Targeting HIF-1 for cancer therapy.Nat. Rev. Cancer200331072173210.1038/nrc1187 13130303
    [Google Scholar]
  121. LuY. WangB. ShiQ. WangX. WangD. ZhuL. Brusatol inhibits HIF-1 signaling pathway and suppresses glucose uptake under hypoxic conditions in HCT116 cells.Sci. Rep.2016613912310.1038/srep39123 27982118
    [Google Scholar]
  122. OhE.T. KimC.W. KimH.G. LeeJ.S. ParkH.J. Brusatol-mediated inhibition of c-MYC increases HIF-1α degradation and causes cell death in colorectal cancer under hypoxia.Theranostics20177143415343110.7150/thno.20861 28912885
    [Google Scholar]
  123. PollardP. YangM. SuH. SogaT. KrancK. Prolyl hydroxylase domain enzymes: Important regulators of cancer metabolism.Hypoxia2014212714210.2147/HP.S47968 27774472
    [Google Scholar]
  124. ChenH.M. LaiZ.Q. LiaoH.J. XieJ.H. XianY.F. ChenY.L. IpS.P. LinZ.X. SuZ.R. Synergistic antitumor effect of brusatol combined with cisplatin on colorectal cancer cells.Int. J. Mol. Med.20184131447145410.3892/ijmm.2018.3372 29328398
    [Google Scholar]
  125. EvansJ.P. WiniarskiB.K. SuttonP.A. JonesR.P. ResselL. DuckworthC.A. PritchardD.M. LinZ.X. FretwellV.L. TweedleE.M. CostelloE. GoldringC.E. CoppleI.M. ParkB.K. PalmerD.H. KitteringhamN.R. The Nrf2 inhibitor brusatol is a potent antitumour agent in an orthotopic mouse model of colorectal cancer.Oncotarget2018943271042711610.18632/oncotarget.25497 29930754
    [Google Scholar]
  126. VerdinaA. Di SegniM. AmoreoC. SperdutiI. BuglioniS. MottoleseM. Di RoccoG. SodduS. HIPK2 is a potential predictive marker of a favorable response for adjuvant chemotherapy in stage II colorectal cancer.Oncol. Rep.202045389991010.3892/or.2020.7912 33650652
    [Google Scholar]
  127. WeiN. LiJ. FangC. ChangJ. XirouV. SyrigosN.K. MarksB.J. ChuE. SchmitzJ.C. Targeting colon cancer with the novel STAT3 inhibitor bruceantinol.Oncogene201938101676168710.1038/s41388‑018‑0547‑y 30348989
    [Google Scholar]
  128. HuynhN. BeutlerJ.A. ShulkesA. BaldwinG.S. HeH. Glaucarubinone inhibits colorectal cancer growth by suppression of hypoxia-inducible factor 1α and β-catenin via a p-21 activated kinase 1-dependent pathway.Biochim. Biophys. Acta Mol. Cell Res.20151853115716510.1016/j.bbamcr.2014.10.013 25409929
    [Google Scholar]
  129. GriecoP.A. MoherE.D. SeyaM. HuffmanJ.C. GriecoH.J. A quassinoid (peninsularinone) and a steroid from Castela peninsularis.Phytochemistry19943751451145410.1016/S0031‑9422(00)90431‑X
    [Google Scholar]
  130. YanF. SubramanianB. NakeffA. BarderT.J. ParusS.J. LubmanD.M. A comparison of drug-treated and untreated HCT-116 human colon adenocarcinoma cells using a 2-D liquid separation mapping method based upon chromatofocusing PI fractionation.Anal. Chem.200375102299230810.1021/ac020678s 12918970
    [Google Scholar]
  131. SubramanianB. MediaJ. NakeffA. ValerioteF. Protein informatics-based analysis of the mechanism of action of peninsularinone: A novel solid-tumor selective anticancer drug.Cancer Res.200666327327
    [Google Scholar]
  132. O’NeillM.J. BrayD.H. BoardmanP. PhillipsonJ.D. WarhurstD.C. PetersW. SuffnessM. Plants as sources of antimalarial drugs: in vitro antimalarial activities of some quassinoids.Antimicrob. Agents Chemother.198630110110410.1128/AAC.30.1.101 3530122
    [Google Scholar]
  133. LeeJ.H. RangappaS. MohanC.D.; Basappa, ; Sethi, G.; Lin, Z-X.; Rangappa, K.S.; Ahn, K.S. Brusatol, a Nrf2 inhibitor targets STAT3 signaling cascade in head and neck squamous cell carcinoma.Biomolecules201991055010.3390/biom9100550 31575007
    [Google Scholar]
  134. GuoS. ZhangJ. WeiC. LuZ. CaiR. PanD. ZhangH. LiangB. ZhangZ. Anticancer effects of brusatol in nasopharyngeal carcinoma through suppression of the Akt/mTOR signaling pathway.Cancer Chemother. Pharmacol.20208561097110810.1007/s00280‑020‑04083‑3 32449143
    [Google Scholar]
  135. ChumkaewP. SrisawatT. Antimalarial and cytotoxic quassinoids from the roots of Brucea javanica.J. Asian Nat. Prod. Res.201719324725310.1080/10286020.2016.1205040 27380205
    [Google Scholar]
  136. AndersonM. O’NeillM. PhillipsonJ. WarhurstD. In vitro cytotoxicity of a series of quassinoids from Brucea javanica fruits against KB cells.Planta Med.1991571626410.1055/s‑2006‑960020 2062960
    [Google Scholar]
  137. KarthikeyanS. HotiS.L. NazeerY. HegdeH.V. Glaucarubinone sensitizes KB cells to paclitaxel by inhibiting ABC transporters via ROS-dependent and p53-mediated activation of apoptotic signaling pathways.Oncotarget2106727423534237310.18632/oncotarget.9865 27304668
    [Google Scholar]
  138. MorettiC. DeharoE. SauvainM. JardelC. Timon DavidP. GasquetM. Antimalarial activity of cedronin.J. Ethnopharmacol.1994431576110.1016/0378‑8741(94)90117‑1 7967650
    [Google Scholar]
  139. KitagawaI. MahmudT. YokotaK. NakagawaS. MayumiT. KobayashiM. ShibuyaH. Indonesian medicinal plants. XVII. Characterization of quassinoids from the stems of Quassia indica.Chem. Pharm. Bull. (Tokyo)199644112009201410.1248/cpb.44.2009 8945767
    [Google Scholar]
  140. WellerM. WickW. AldapeK. BradaM. BergerM. PfisterS.M. NishikawaR. RosenthalM. WenP.Y. StuppR. ReifenbergerG. Glioma.Nat. Rev. Dis. Primers2015111501710.1038/nrdp.2015.17 27188790
    [Google Scholar]
  141. DevkotaK.P. WilsonJ.A. HenrichC.J. McMahonJ.B. ReillyK.M. BeutlerJ.A. Compounds from Simarouba berteroana which inhibit proliferation of NF1-defective cancer cells.Phytochem. Lett.20147424510.1016/j.phytol.2013.09.007 24443661
    [Google Scholar]
  142. WangR. XuQ. LiuL. LiangX. ChengL. ZhangM. ShiQ. Antitumour activity of 2-dihydroailanthone from the bark of Ailanthus altissima against U251.Pharm. Biol.20165491641164810.3109/13880209.2015.1110827 26956770
    [Google Scholar]
  143. YangP. SunD. JiangF. Ailanthone promotes human vestibular schwannoma cell apoptosis and autophagy by downregulation of miR-21.Oncol. Res.201826694194810.3727/096504018X15149775533331 29298734
    [Google Scholar]
  144. LiuX. XuH. ZhangY. WangP. GaoW. Brusatol inhibits amyloid‐β‐induced neurotoxicity in U‐251 cells via regulating the Nrf2/HO‐1 pathway.J. Cell. Biochem.20191206105561056310.1002/jcb.28341 30629288
    [Google Scholar]
  145. LiuY. LuY. CelikuO. LiA. WuQ. ZhouY. YangC. Targeting IDH1-mutated malignancies with NRF2 blockade.J. Natl. Cancer Inst.2019111101033104110.1093/jnci/djy230 30759236
    [Google Scholar]
  146. WangS. HuH. ZhongB. ShiD. QingX. ChengC. DengX. ZhangZ. ShaoZ. BruceineD. Bruceine D inhibits tumor growth and stem cell‐like traits of osteosarcoma through inhibition of STAT3 signaling pathway.Cancer Med.20198177345735810.1002/cam4.2612 31631559
    [Google Scholar]
  147. MiyakeK. TezukaY. AwaleS. LiF. KadotaS. Quassinoids from Eurycoma longifolia.J. Nat. Prod.200972122135214010.1021/np900486f 19919052
    [Google Scholar]
  148. DagaM. PizzimentiS. DianzaniC. CucciM.A. CavalliR. GrattarolaM. FerraraB. ScariotV. TrottaF. BarreraG. Ailanthone inhibits cell growth and migration of cisplatin resistant bladder cancer cells through down-regulation of Nrf2, YAP, and c-MYC expression.Phytomedicine20195615616410.1016/j.phymed.2018.10.034 30668336
    [Google Scholar]
  149. OukilS. KasmiR. MokraniK. García-ZapirainB. Automatic segmentation and melanoma detection based on color and texture features in dermoscopic images.Skin Res. Technol.202228220321110.1111/srt.13111 34779062
    [Google Scholar]
  150. WangM. ShiG. BianC. NisarM.F. GuoY. WuY. LiW. HuangX. JiangX. BartschJ.W. JiP. ZhongJ.L. UVA irradiation enhances brusatol-mediated inhibition of melanoma growth by downregulation of the Nrf2-mediated antioxidant response.Oxid. Med. Cell. Longev.2018201811510.1155/2018/9742154 29670684
    [Google Scholar]
  151. WangY. WangY. ZhangZ. ParkJ.Y. GuoD. LiaoH. YiX. ZhengY. ZhangD. ChambersS.K. ZhengW. Mechanism of progestin resistance in endometrial precancer/cancer through Nrf2-AKR1C1 pathway.Oncotarget201679103631037210.18632/oncotarget.7004 26824415
    [Google Scholar]
  152. NeumannH.P.H. YoungW.F.Jr EngC. Pheochromocytoma and Paraganglioma.N. Engl. J. Med.2019381655256510.1056/NEJMra1806651 31390501
    [Google Scholar]
  153. LiuY. PangY. CaisovaV. DingJ. YuD. ZhouY. HuynhT.T. GhayeeH. PacakK. YangC. Targeting NRF2-governed glutathione synthesis for SDHB-mutated pheochromocytoma and paraganglioma.Cancers202012228010.3390/cancers12020280 31979226
    [Google Scholar]
  154. FukamiyaN. LeeK.H. MuhammadI. MurakamiC. OkanoM. HarveyI. PelletierJ. Structure–activity relationships of quassinoids for eukaryotic protein synthesis.Cancer Lett.20052201374810.1016/j.canlet.2004.04.023 15737686
    [Google Scholar]
  155. ItokawaH. KishiE. MoritaH. TakeyaK. Cytotoxic quassinoids and tirucallane-type triterpenes from the woods of Eurycoma longifolia.Chem. Pharm. Bull.19924041053105510.1248/cpb.40.1053 1525934
    [Google Scholar]
  156. YangX.L. YuanY.L. ZhangD.M. LiF. YeW.C. Shinjulactone O, a new quassinoid from the root bark of Ailanthus altissima.Nat. Prod. Res.201428181432143710.1080/14786419.2014.909418 24967875
    [Google Scholar]
  157. CucciM.A. GrattarolaM. DianzaniC. DamiaG. RicciF. RoettoA. TrottaF. BarreraG. PizzimentiS. Ailanthone increases oxidative stress in CDDP-resistant ovarian and bladder cancer cells by inhibiting of Nrf2 and YAP expression through a post-translational mechanism.Free Radic. Biol. Med.202015012513510.1016/j.freeradbiomed.2020.02.021 32101771
    [Google Scholar]
  158. RenD. VilleneuveN.F. JiangT. WuT. LauA. ToppinH.A. ZhangD.D. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism.Proc. Natl. Acad. Sci. USA201110841433143810.1073/pnas.1014275108 21205897
    [Google Scholar]
  159. LiuJ.Q. WangC.F. LiX.Y. ChenJ.C. LiY. QiuM.H. One new pregnane glycoside from the seeds of cultivated Brucea javanica.Arch. Pharm. Res.20113481297130010.1007/s12272‑011‑0809‑5 21910051
    [Google Scholar]
  160. YangY. TianZ. GuoR. RenF. Nrf2 inhibitor, brusatol in combination with trastuzumab exerts synergistic antitumor activity in HER2-positive cancers by inhibiting Nrf2/HO-1 and HER2-AKT/ERK1/2 pathways.Oxid. Med. Cell. Longev.2020202011410.1155/2020/9867595 32765809
    [Google Scholar]
  161. ZhangJ. FangX. LiZ. ChanH.F. LinZ. WangY. ChenM. Redox-sensitive micelles composed of disulfide-linked Pluronic-linoleic acid for enhanced anticancer efficiency of brusatol.Int. J. Nanomedicine20181393995610.2147/IJN.S130696 29491708
    [Google Scholar]
  162. ChenX. YinT. ZhangB. SunB. ChenJ. XiaoT. WangB. LiM. YangJ. FanX. Inhibitory effects of brusatol delivered using glycosaminoglycan placental chondroitin sulfate A modified nanoparticles on the proliferation, migration and invasion of cancer cells.Int. J. Mol. Med.202046281782710.3892/ijmm.2020.4627 32626948
    [Google Scholar]
  163. ToyotaT. FukamiyaN. OkanoM. TagaharaK. ChangJ.J. LeeK.H. Antitumor agents, 118. The isolation and characterization of bruceanic acid A, its methyl ester, and the new bruceanic acids B, C, and D, from Brucea antidysenterica.J. Nat. Prod.19905361526153210.1021/np50072a020 2089121
    [Google Scholar]
  164. FukamiyaN. OkanoM. TagaharaK. ArataniT. LeeK.H. Antitumor agents, 93. Bruceanol C, a new cytotoxic quassinoid from Brucea antidysenterica.J. Nat. Prod.198851234935210.1021/np50056a031 3379416
    [Google Scholar]
  165. ImamuraK. FukamiyaN. OkanoM. TagaharaK. LeeK.H. BruceanolsD. BruceanolsD. E, and F three new cytotoxic quassinoids from Brucea antidysenterica.J. Nat. Prod.199356122091209710.1021/np50102a010 8133299
    [Google Scholar]
  166. ImamuraK. FukamiyaN. NakamuraM. OkanoM. TagaharaK. LeeK.H. Bruceanols G and H cytotoxic quassinoids from Brucea antidysenterica.J. Nat. Prod.199558121915191910.1021/np50126a019 8691212
    [Google Scholar]
  167. PanL. ChinY.W. ChaiH.B. NinhT.N. SoejartoD.D. KinghornA.D. Bioactivity-guided isolation of cytotoxic constituents of Brucea javanica collected in Vietnam.Bioorg. Med. Chem.20091762219222410.1016/j.bmc.2008.10.076 19026551
    [Google Scholar]
  168. KimJ.A. LauE.K. PanL. De BlancoE.J. NF-kappaB inhibitors from Brucea javanica exhibiting intracellular effects on reactive oxygen species.Anticancer Res.201030932953300 20944100
    [Google Scholar]
  169. KlockeJ.A. ArisawaM. HandaS.S. KinghornA.D. CordellG.A. FarnsworthN.R. Growth inhibitory, insecticidal and antifeedant effects of some antileukemic and cytotoxic quassinoids on two species of agricultural pests.Experientia198541337938210.1007/BF02004516 3972085
    [Google Scholar]
  170. ChenH. BaiJ. FangZ.F. YuS.S. MaS.G. XuS. LiY. QuJ. RenJ.H. LiL. SiY.K. ChenX.G. Indole alkaloids and quassinoids from the stems of Brucea mollis.J. Nat. Prod.201174112438244510.1021/np200712y 22070654
    [Google Scholar]
  171. SuZ. HaoJ. XuZ. HuangR. ZhangN. QiuS. A new quassinoid from fruits of Brucea javanica.Nat. Prod. Res.201327212016202110.1080/14786419.2013.821119 23886455
    [Google Scholar]
  172. LiuJ.H. ZhaoN. ZhangG.J. YuS.S. WuL.J. QuJ. MaS.G. ChenX.G. ZhangT.Q. BaiJ. ChenH. FangZ.F. ZhaoF. TangW.B. Bioactive quassinoids from the seeds of Brucea javanica.J. Nat. Prod.201275468368810.1021/np200920c 22506620
    [Google Scholar]
  173. FukamiyaN. OkanoM. MiyamotoM. TagaharaK. LeeK.H. Antitumor agents, 127. Bruceoside C, a new cytotoxic quassinoid glucoside, and related compounds from Brucea javanica.J. Nat. Prod.199255446847510.1021/np50082a011 1512598
    [Google Scholar]
  174. OhnishiS. FukamiyaN. OkanoM. TagaharaK. LeeK.H. BruceosidesD. BruceosidesD. E, and F, three new cytotoxic quassinoid glucosides from Brucea javanica.J. Nat. Prod.19955871032103810.1021/np50121a007 7561896
    [Google Scholar]
  175. CoombesP.H. NaidooD. MulhollandD.A. RandrianarivelojosiaM. Quassinoids from the leaves of the Madagascan simaroubaceae Samadera madagascariensis.Phytochemistry200566232734273910.1016/j.phytochem.2005.09.005 16253298
    [Google Scholar]
  176. KardonoL.B.S. AngerhoferC.K. TsauriS. PadmawinataK. PezzutoJ.M. KinghornA.D. Cytotoxic and antimalarial constituents of the roots of Eurycoma longifolia.J. Nat. Prod.19915451360136710.1021/np50077a020 1800638
    [Google Scholar]
  177. KuoP.C. DamuA.G. LeeK.H. WuT.S. Cytotoxic and antimalarial constituents from the roots of Eurycoma longifolia.Bioorg. Med. Chem.200412353754410.1016/j.bmc.2003.11.017 14738962
    [Google Scholar]
  178. MiyakeK. LiF. TezukaY. AwaleS. KadotaS. Cytotoxic activity of quassinoids from Eurycoma longifolia.Nat. Prod. Commun.2010571934578X100050010.1177/1934578X1000500704 20734929
    [Google Scholar]
  179. MengD. LiX. HanL. ZhangL. AnW. LiX. Four new quassinoids from the roots of Eurycoma longifolia Jack.Fitoterapia20149210511010.1016/j.fitote.2013.10.009 24513570
    [Google Scholar]
  180. ParkS. NhiemN.X. KiemP.V. MinhC.V. TaiB.H. KimN. YooH.H. SongJ.H. KoH.J. KimS.H. Five new quassinoids and cytotoxic constituents from the roots of Eurycoma longifolia.Bioorg. Med. Chem. Lett.201424163835384010.1016/j.bmcl.2014.06.058 25066952
    [Google Scholar]
  181. HandaS.S. KinghornA.D. CordellG.A. FarnsworthN.R. Plant anticancer agents XXV. Constituents of Soulamea soulameoides.J. Nat. Prod.198346335936410.1021/np50027a011 6619884
    [Google Scholar]
  182. DouJ. McChesneyJ.D. SindelarR.D. GoinsD.K. WalkerL.A. A new quassinoid from Castela texana.J. Nat. Prod.1996591737610.1021/np960013j 8984156
    [Google Scholar]
  183. de MesquitaM.L. de PaulaJ.E. PessoaC. de MoraesM.O. Costa-LotufoL.V. GrougnetR. MichelS. TillequinF. EspindolaL.S. Cytotoxic activity of Brazilian Cerrado plants used in traditional medicine against cancer cell lines.J. Ethnopharmacol.2009123343944510.1016/j.jep.2009.03.018 19501276
    [Google Scholar]
  184. UsamiY. Nakagawa-GotoK. LangJ.Y. KimY. LaiC.Y. GotoM. SakuraiN. TaniguchiM. AkiyamaT. Morris-NatschkeS.L. BastowK.F. CraggG. NewmanD.J. FujitakeM. TakeyaK. HungM.C. LeeE.Y.H.P. LeeK.H. Antitumor Agents. 282. 2′-(R)-O-acetylglaucarubinone, a quassinoid from Odyendyea gabonensis as a potential anti-breast and anti-ovarian cancer agent.J. Nat. Prod.20107391553155810.1021/np100406d 20738103
    [Google Scholar]
  185. ChenH. BaiJ. FangZ.F. MaS.G. YuS.S. ChenX.G. Chemical constituents from stems of Brucea mollis and their cytotoxic activity.Zhongguo Zhongyao Zazhi201338142321232410.4268/cjcmm20131421 24199564
    [Google Scholar]
  186. TungM.H.T. DucH.V. HuongT.T. DuongN.T. PhuongT. ThaoT. TaiB.H. KimY.H. BachT.T. CuongN.M. Cytotoxic compounds from Brucea mollis.Sci. Pharm.201381381983110.3797/scipharm.1206‑02 24106661
    [Google Scholar]
  187. TischlerM. CardellinaJ.H. Ii; Boyd, M.R.; Cragg, G.M. Cytotoxic quassinoids from Cedronia granatensis.J. Nat. Prod.199255566767110.1021/np50083a018 1517739
    [Google Scholar]
  188. SilvaE.C.C. CavalcantiB.C. AmorimR.C.N. LucenaJ.F. QuadrosD.S. TadeiW.P. MontenegroR.C. Costa-LotufoL.V. PessoaC. MoraesM.O. NunomuraR.C.S. NunomuraS.M. MeloM.R.S. Andrade-NetoV.F. SilvaL.F.R. VieiraP.P.R. PohlitA.M. Biological activity of neosergeolide and isobrucein B (and two semi-synthetic derivatives) isolated from the Amazonian medicinal plant Picrolemma sprucei (Simaroubaceae).Mem. Inst. Oswaldo Cruz20091041485610.1590/S0074‑02762009000100008 19274376
    [Google Scholar]
  189. MuhammadI. BedirE. KhanS.I. TekwaniB.L. KhanI.A. TakamatsuS. PelletierJ. WalkerL.A. A new antimalarial quassinoid from Simaba orinocensis.J. Nat. Prod.200467577277710.1021/np030524n 15165136
    [Google Scholar]
  190. KupchanS.M. StreelmanD.R. Quassimarin, a new antileukemic quassinoid from Quassia amara.J. Org. Chem.197641213481348210.1021/jo00883a038 978297
    [Google Scholar]
  191. WinN.N. NgweH. AbeI. MoritaH. Naturally occurring Vpr inhibitors from medicinal plants of Myanmar.J. Nat. Med.201771457958910.1007/s11418‑017‑1104‑7 28681118
    [Google Scholar]
  192. WinN.N. ItoT.; Ismail; Kodama, T.; Win, Y.Y.; Tanaka, M.; Okamoto, Y.; Imagawa, H.; Ngwe, H.; Asakawa, Y.; Abe, I.; Morita, H. Picrajavanicins H–M, new quassinoids from Picrasma javanica collected in Myanmar and their antiproliferative activities.Tetrahedron201672574675210.1016/j.tet.2015.12.030
    [Google Scholar]
  193. SuZ. MaZ. LiuK. LiT. ZhouB. Quassilactones A and B, structural characterization of a new class of norquassinoids from Brucea javanica.J. Nat. Med.202074359960510.1007/s11418‑020‑01407‑8 32279206
    [Google Scholar]
  194. Del MoralI.C. ReyesJ. Vivas-MejiaP. OspinaC. Antitumor activity of Simarouba tulae extracts in a panel of cancer cell lines.FASEB J.201832S110.1096/fasebj.2018.32.1_supplement.656.10
    [Google Scholar]
  195. MendezB. ReyesJ. CondeI. RamosZ. LozadaE. CruzA.M. AsencioG. CarvajalA. DharmawardhaneS. Piñero-CruzD.M. HernándezE. VivasP. OspinaC.A. Simalikalactone D, a potential anticancer compound from Simarouba tulae, an endemic plant of puerto rico.Plants2020919310.3390/plants9010093 31940804
    [Google Scholar]
  196. CachetN. HoakwieF. BertaniS. BourdyG. DeharoE. StienD. HouelE. GornitzkaH. FillauxJ. ChevalleyS. ValentinA. JullianV. Antimalarial activity of simalikalactone E, a new quassinoid from Quassia amara L. (Simaroubaceae).Antimicrob. Agents Chemother.200953104393439810.1128/AAC.00951‑09 19667291
    [Google Scholar]
  197. RobertG. JullianV. JacquelA. GinetC. DufiesM. TorinoS. PottierA. PeyradeF. Tartare-DeckertS. BourdyG. DeharoE. AubergerP. SimalikalactoneE. SimalikalactoneE. SkE), a new weapon in the armamentarium of drugs targeting cancers that exhibit constitutive activation of the ERK pathway.Oncotarget20123121688169910.18632/oncotarget.791 23518796
    [Google Scholar]
  198. LumonadioL. AtassiG. VanhaelenM. Vanhaelen-FastreR. Antitumor activity of quassinoids from Hannoa klaineana.J. Ethnopharmacol.1991311596510.1016/0378‑8741(91)90144‑3 2030594
    [Google Scholar]
  199. JinX. JinH.R. LeeD. LeeJ.H. KimS.K. LeeJ.J. A quassinoid 6α-tigloyloxychaparrinone inhibits hypoxia-inducible factor-1 pathway by inhibition of eukaryotic translation initiation factor 4E phosphorylation.Eur. J. Pharmacol.20085921-3414710.1016/j.ejphar.2008.06.104 18639543
    [Google Scholar]
  200. WaniM.C. TaylorH.L. ThompsonJ.B. WallM.E. Plant antitumor agents. XVI. 6 alpha-senecioyloxy-chaparrinone, a new antileukemic quassinoid from Simaba multiflora.Lloydia1978416578583 732540
    [Google Scholar]
  201. ArisawaM. KinghornA.D. CordellG.A. FarnsworthN.R. Plant anticancer agents. XXIII. 6 α-senecioyloxy-] chaparrin, a new antileukemic quassinoid from Simaba multiflora.J. Nat. Prod.198346221822110.1021/np50026a015 6875576
    [Google Scholar]
  202. MoherE.D. ReillyM. GriecoP.A. CorbettT.H. ValerioteF.A. Synthetic studies on quassinoids: Transformation of (−)-Glaucarubolone into (−)-Peninsularinone. In vivo antitumor evaluation of (−)-Glaucarubolone, (−)-Chaparrinone, and (−)-Peninsularinone.J. Org. Chem.199863103508351010.1021/jo980039a
    [Google Scholar]
  203. ShoyamaY. TungN.H. UtoT. HaiN.T. LiG. Quassinoids from the root of Eurycoma longifolia and their antiproliferative activity on human cancer cell lines.Pharmacogn. Mag.2017135145946210.4103/pm.pm_353_16 28839372
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673313760240911160930
Loading
/content/journals/cmc/10.2174/0109298673313760240911160930
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; chemotherapy; cytotoxic; Quassinoids; signalling pathways; Simaroubaceae
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test