Skip to content
2000
Volume 32, Issue 26
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The formation of fibrotic bands in the female reproductive system, including the uterus, after abdominal and pelvic surgeries, is an important medical challenge associated with many complications, including infertility and pain. Investigating the role of different molecules involved in fibrosis and adhesion formation may help in the development of new drugs to prevent this disorder. Lysyl oxidase-like 2 (LoxL2) is a copper-dependent enzyme that catalyzes the cross-linking of collagen and elastin fibers in the extracellular matrix (ECM) to stabilize ECM. Dysregulation of LoxL2 activity resulting from tissue hypoxia and inflammation after gynecological surgeries in the female reproductive tract increases collagen fibers cross-linking and promotes fibrosis. It has been shown that targeting LoxL2 by Lox inhibitors may reduce fibrosis. Considering the expression of LoxL2 in female reproductive organs and its dysregulation in hypoxia and inflammation, LoxL2 may have theraputic potential as a drug target in the prevention of adhesions. In this review, we discuss the role of LoxL2 in the promotion of fibrotic processes, focusing on its link with inflammatory and hypoxic conditions. We also justify the use of anti-LoxL2 agents as a potential therapeutic strategy for the prevention of post-surgical scar formation.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673306240240612055116
2024-06-27
2025-09-08
Loading full text...

Full text loading...

References

  1. ShabanianS. KhazaieM. FernsG.A. ArjmandM.H. Local renin-angiotensin system molecular mechanisms in intrauterine adhesions formation following gynecological operations, new strategy for novel treatment.J. Obstet. Gynaecol.20224261613161810.1080/01443615.2022.203697235260037
    [Google Scholar]
  2. WallachE.E. SchenkerJ.G. MargaliothE.J. Intrauterine adhesions: An updated appraisal.Fertil. Steril.198237559361010.1016/S0015‑0282(16)46268‑06281085
    [Google Scholar]
  3. XueM. JacksonC.J. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring.Adv. Wound Care20154311913610.1089/wound.2013.048525785236
    [Google Scholar]
  4. El AyadiA. JayJ.W. PrasaiA Current approaches targeting the wound healing phases to attenuate fibrosis and scarring.Int. J. Mol. Sci.2020213110510.3390/ijms21031105
    [Google Scholar]
  5. BortolettoP. Incidence and risk factors of intrauterine adhesions after myomectomy.F.S. Rep.20223326927410.1016/j.xfre.2022.05.007
    [Google Scholar]
  6. Day BairdD. DunsonD.B. HillM.C. CousinsD. SchectmanJ.M. High cumulative incidence of uterine leiomyoma in black and white women: Ultrasound evidence.Am. J. Obstet. Gynecol.2003188110010710.1067/mob.2003.9912548202
    [Google Scholar]
  7. YangS.T. LiuC.H. WangP.H. Combination of hyaluronic acid and mesenchymal stem cells for treatment of intrauterine adhesions.Taiwan. J. Obstet. Gynecol.20226118910.1016/j.tjog.2021.11.00435181051
    [Google Scholar]
  8. WangP.H. HuangB.S. HorngH.C. YehC.C. ChenY.J. Wound healing.J. Chin. Med. Assoc.20188129410110.1016/j.jcma.2017.11.00229169897
    [Google Scholar]
  9. Fatehi HassanabadA. ZarzyckiA.N. JeonK. DundasJ.A. VasanthanV. DenisetJ.F. FedakP.W.M. Prevention of post-operative adhesions: A comprehensive review of present and emerging strategies.Biomolecules2021117102710.3390/biom1107102734356652
    [Google Scholar]
  10. Umana-DiazC. Pichol-ThievendC. MarchandM.F. AtlasY. SalzaR. MalbouyresM. BarretA. TeillonJ. Ardidie-RobouantC. RuggieroF. MonnotC. GirardP. GuilluyC. Ricard-BlumS. GermainS. MullerL. Scavenger receptor cysteine-rich domains of lysyl oxidase-like2 regulate endothelial ECM and angiogenesis through non-catalytic scaffolding mechanisms.Matrix Biol.202088335210.1016/j.matbio.2019.11.00331759052
    [Google Scholar]
  11. ValletS.D. Ricard-BlumS.J.E.i.b. Lysyl oxidases: From enzyme activity to extracellular matrix cross-links.Essays Biochem2019633349364
    [Google Scholar]
  12. LaczkoR. CsiszarK. Lysyl oxidase (LOX): functional contributions to signaling pathways.Biomolecules2020108109310.3390/biom1008109332708046
    [Google Scholar]
  13. LinW. XuL. LiG. Molecular insights into lysyl oxidases in cartilage regeneration and rejuvenation.Front. Bioeng. Biotechnol.2020835910.3389/fbioe.2020.0035932426343
    [Google Scholar]
  14. AlshenibrW. TashkandiM.M. AlsaqerS.F. AlkherijiY. WiseA. FulzeleS. MehraP. GoldringM.B. GerstenfeldL.C. BaisM.V. Anabolic role of lysyl oxidase like-2 in cartilage of knee and temporomandibular joints with osteoarthritis.Arthritis Res. Ther.201719117910.1186/s13075‑017‑1388‑828764769
    [Google Scholar]
  15. LauY.-K.I. GobinA.M. WestJ.L.J.A.o.b.e. Overexpression of lysyl oxidase to increase matrix crosslinking and improve tissue strength in dermal wound healing.Ann. Biomed. Eng.20063481239124610.1007/s10439‑006‑9130‑8
    [Google Scholar]
  16. Van BergenT. MarshallD. Van de VeireS. VandewalleE. MoonsL. HermanJ. SmithV. StalmansI. The role of LOX and LOXL2 in scar formation after glaucoma surgery.Invest. Ophthalmol. Vis. Sci.20135485788579610.1167/iovs.13‑1169623821193
    [Google Scholar]
  17. ZhaoY. TangK. TianbaoX. WangJ. YangJ. LiD. Increased serum lysyl oxidase-like 2 levels correlate with the degree of left atrial fibrosis in patients with atrial fibrillation.Biosci. Rep.2017376BSR2017133210.1042/BSR2017133229089463
    [Google Scholar]
  18. YangJ. Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment.Nat. Commun.201671371010.1038/ncomms13710
    [Google Scholar]
  19. XieC. TangB. WuK. MengQ. WangF. Increased serum LOXL2 concentration in pelvic inflammatory disease with pelvic adhesion.BMC Womens Health20222215910.1186/s12905‑022‑01640‑135246120
    [Google Scholar]
  20. YaronY. Lysyl oxidase transcripts in peritoneal adhesions and incisional scars.J. Reprod. Med.1999443253256
    [Google Scholar]
  21. RuizL.A. Báez-VegaP.M. RuizA. PeterseD.P. MonteiroJ.B. BraceroN. BeauchampP. FazleabasA.T. FloresI. Dysregulation of lysyl oxidase expression in lesions and endometrium of women with endometriosis.Reprod. Sci.201522121496150810.1177/193371911558514425963914
    [Google Scholar]
  22. SaifiM.A. ShaikhA.S. KakiV.R. GoduguC. Disulfiram prevents collagen crosslinking and inhibits renal fibrosis by inhibiting lysyl oxidase enzymes.J. Cell. Physiol.202223752516252710.1002/jcp.3071735285015
    [Google Scholar]
  23. RadićJ. Multiple roles of LOXL2 in the progression of hepatocellular carcinoma and its potential for therapeutic targeting.Int. J. Mol. Sci.2023241411745
    [Google Scholar]
  24. Serra-BardenysG. PeiróS.J.T.F.J. Enzymatic lysine oxidation as a posttranslational modification.FEBS J2022289248020803110.1111/febs.16205
    [Google Scholar]
  25. Rodriguez-PascualF. Rosell-GarciaT. The challenge of determining lysyl oxidase activity: Old methods and novel approaches.Anal. Biochem.202263911450810.1016/j.ab.2021.11450834871563
    [Google Scholar]
  26. DongG. LinL.R. XuL.Y. LiE.M. Reaction mechanism of lysyl oxidase-like 2 (LOXL2) studied by computational methods.J. Inorg. Biochem.202021111120410.1016/j.jinorgbio.2020.11120432801097
    [Google Scholar]
  27. MoonH.J. FinneyJ. RonnebaumT. MureM. Human lysyl oxidase-like 2.Bioorg. Chem.20145723124110.1016/j.bioorg.2014.07.00325146937
    [Google Scholar]
  28. RodgersR.J. Irving-RodgersH.F. RussellD.L. Extracellular matrix of the developing ovarian follicle.Reproduction2003126441542410.1530/rep.0.126041514525524
    [Google Scholar]
  29. ChangH.M. FangY. LiuP.P. ChengJ.C. YangX. LeungP.C.K. Connective tissue growth factor mediates growth differentiation factor 8-induced increase of lysyl oxidase activity in human granulosa-lutein cells.Mol. Cell. Endocrinol.201643418619810.1016/j.mce.2016.07.00727392496
    [Google Scholar]
  30. IvarssonL.H.M-L. IvarssonM.L. The role of cytokines, coagulation, and fibrinolysis in peritoneal tissue repair.Eur. J. Surg.1999165111012101910.1080/11024159975000781010595602
    [Google Scholar]
  31. TsaiJ.M. ShohamM. FernhoffN.B. GeorgeB.M. MarjonK.D. McCrackenM.N. KaoK.S. SinhaR. VolkmerA.K. MiyanishiM. SeitaJ. RinkevichY. WeissmanI.L. Neutrophil and monocyte kinetics play critical roles in mouse peritoneal adhesion formation.Blood Adv.20193182713272110.1182/bloodadvances.201802402631519647
    [Google Scholar]
  32. ChibaY. NakamuraI. IshiharaK. SekoT. IshigamiT. Effects of dietary n-3/n-6 fatty acid content on post-operative adhesions in myocardial infarction mice.Clin. Nutrit. Open. Sci.2023498810010.1016/j.nutos.2023.03.006
    [Google Scholar]
  33. VoloshenyukT.G. HartA.D. KhoutorovaE. GardnerJ.D. TNF-α increases cardiac fibroblast lysyl oxidase expression through TGF-β and PI3Kinase signaling pathways.Biochem. Biophys. Res. Commun.2011413237037510.1016/j.bbrc.2011.08.10921893029
    [Google Scholar]
  34. KasagiY. DodsK. WangJ.X. ChandramouleeswaranP.M. BenitezA.J. GambangaF. KlugerJ. AshorobiT. GrossJ. TobiasJ.W. Klein-SzantoA.J. SpergelJ.M. CianferoniA. FalkG.W. WhelanK.A. NakagawaH. MuirA.B. Fibrostenotic eosinophilic esophagitis might reflect epithelial lysyl oxidase induction by fibroblast-derived TNF-α.J. Allergy Clin. Immunol.2019144117118210.1016/j.jaci.2018.10.06730578874
    [Google Scholar]
  35. ZhangC. MaJ. WangW. SunY. SunK. Lysyl oxidase blockade ameliorates anovulation in polycystic ovary syndrome.Hum. Reprod.201833112096210610.1093/humrep/dey29230272163
    [Google Scholar]
  36. DincaS.C. GreinerD. WeidenfeldK. BondL. BarkanD. JorcykC.L. Novel mechanism for OSM-promoted extracellular matrix remodeling in breast cancer: LOXL2 upregulation and subsequent ECM alignment.Breast Cancer Res.20212315610.1186/s13058‑021‑01430‑x34011405
    [Google Scholar]
  37. JeongY.J. ParkS.H. MunS.H. KwakS.G. LeeS.J. OhH.K. Association between lysyl oxidase and fibrotic focus in relation with inflammation in breast cancer.Oncol. Lett.20181522431244029434955
    [Google Scholar]
  38. FuQ. BaiY. LiuY. ZhouJ. ZhengY. The serum level and significance of lysyl oxidase-like 2 in patients with rheumatoid arthritis-associated interstitial lung disease.Clin. Rheumatol.201837119319810.1007/s10067‑017‑3878‑029052023
    [Google Scholar]
  39. ChengT. LiuQ. ZhangR. ZhangY. ChenJ. YuR. GeG. Lysyl oxidase promotes bleomycin-induced lung fibrosis through modulating inflammation.J. Mol. Cell Biol.20146650651510.1093/jmcb/mju03925348956
    [Google Scholar]
  40. Fatehi HassanabadA. Post-operative adhesions: A comprehensive review of mechanisms.Biomedicines20219886710.3390/biomedicines9080867
    [Google Scholar]
  41. XieL. WangQ. MaJ. ZengY. Hypoxia-induced reactive oxygen species in organ and tissue fibrosis.Biocell202347226126710.32604/biocell.2023.024738
    [Google Scholar]
  42. ShavellV.I. SaedG.M. DiamondM.P. Review: Cellular metabolism: Contribution to postoperative adhesion development.Reprod. Sci.200916762763410.1177/193371910933282619293132
    [Google Scholar]
  43. WeiX. HouY. LongM. JiangL. DuY. Molecular mechanisms underlying the role of hypoxia-inducible factor-1 α in metabolic reprogramming in renal fibrosis.Front. Endocrinol.20221392732910.3389/fendo.2022.92732935957825
    [Google Scholar]
  44. FletcherN.M. JiangZ.L. DiamondM.P. Abu-SoudH.M. SaedG.M. Hypoxia-generated superoxide induces the development of the adhesion phenotype.Free Radic. Biol. Med.200845453053610.1016/j.freeradbiomed.2008.05.00218538674
    [Google Scholar]
  45. WidiatmokoA. FitriL.E. EndhartiA.T. MurlistyariniS. BrahmantiH. YuniaswanA.P. EkasariD.P. RasyidiF. NahliaN.L. SafitriP.R. Inhibition effect of Physalis angulata leaf extract on viability, collagen type I, and tissue inhibitor of metalloproteinase 1 (TIMP-1) but not plasminogen activator inhibitor-1 (PAI-1) of keloid fibroblast culture.Clin. Cosmet. Investig. Dermatol.2023162365237310.2147/CCID.S42503637667736
    [Google Scholar]
  46. ImudiaA.N. Pathogenesis of intra-abdominal and pelvic adhesion development.Semin. Reprod. Med.200826428929710.1055/s‑0028‑1082387
    [Google Scholar]
  47. QinX. WuK. ZuoC. LinM. The expression and role of hypoxia-induced factor-1α in human tenon’s capsule fibroblasts under hypoxia.Curr. Eye Res.202146341742510.1080/02713683.2020.180547032767899
    [Google Scholar]
  48. SchietkeR. WarneckeC. WackerI. SchödelJ. MoleD.R. CampeanV. AmannK. Goppelt-StruebeM. BehrensJ. EckardtK.U. WiesenerM.S. The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: insights into cellular transformation processes mediated by HIF-1.J. Biol. Chem.201028596658666910.1074/jbc.M109.04242420026874
    [Google Scholar]
  49. ErlerJ.T. BennewithK.L. NicolauM. DornhöferN. KongC. LeQ.T. ChiJ.T.A. JeffreyS.S. GiacciaA.J. Lysyl oxidase is essential for hypoxia-induced metastasis.Nature200644070881222122610.1038/nature0469516642001
    [Google Scholar]
  50. SiwczakF. Human macrophage polarization determines bacterial persistence of Staphylococcus aureus in a liver-on-chip-based infection model.Biomaterials202228712163210.1016/j.biomaterials.2022.121632
    [Google Scholar]
  51. PayneS.L. FogelgrenB. HessA.R. SeftorE.A. WileyE.L. FongS.F.T. CsiszarK. HendrixM.J.C. KirschmannD.A. Lysyl oxidase regulates breast cancer cell migration and adhesion through a hydrogen peroxide- mediated mechanism.Cancer Res.20056524114291143610.1158/0008‑5472.CAN‑05‑127416357151
    [Google Scholar]
  52. KanedaA. WakazonoK. TsukamotoT. WatanabeN. YagiY. TatematsuM. KaminishiM. SugimuraT. UshijimaT. Lysyl oxidase is a tumor suppressor gene inactivated by methylation and loss of heterozygosity in human gastric cancers.Cancer Res.200464186410641510.1158/0008‑5472.CAN‑04‑154315374948
    [Google Scholar]
  53. HigginsD.F. KimuraK. BernhardtW.M. ShrimankerN. AkaiY. HohensteinB. SaitoY. JohnsonR.S. KretzlerM. CohenC.D. EckardtK.U. IwanoM. HaaseV.H. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition.J. Clin. Invest.2007117123810382010.1172/JCI3048718037992
    [Google Scholar]
  54. MesarwiO.A. ShinM.K. Bevans-FontiS. SchlesingerC. ShawJ. PolotskyV.Y. Hepatocyte hypoxia inducible factor-1 mediates the development of liver fibrosis in a mouse model of nonalcoholic fatty liver disease.PLoS One20161112e016857210.1371/journal.pone.016857228030556
    [Google Scholar]
  55. GaoN. DingM. ZhengJ.Z. ZhangZ. LeonardS.S. LiuK.J. ShiX. JiangB.H. Vanadate-induced expression of hypoxia-inducible factor 1 alpha and vascular endothelial growth factor through phosphatidylinositol 3-kinase/Akt pathway and reactive oxygen species.J. Biol. Chem.200227735319633197110.1074/jbc.M20008220012070140
    [Google Scholar]
  56. GeraldD. BerraE. FrapartY.M. ChanD.A. GiacciaA.J. MansuyD. PouysségurJ. YanivM. Mechta-GrigoriouF. JunD reduces tumor angiogenesis by protecting cells from oxidative stress.Cell2004118678179410.1016/j.cell.2004.08.02515369676
    [Google Scholar]
  57. PezF. DayanF. DurivaultJ. KaniewskiB. AimondG. Le ProvostG.S. DeuxB. ClézardinP. SommerP. PouysségurJ. ReynaudC. The HIF-1-inducible lysyl oxidase activates HIF-1 via the Akt pathway in a positive regulation loop and synergizes with HIF-1 in promoting tumor cell growth.Cancer Res.20117151647165710.1158/0008‑5472.CAN‑10‑151621239473
    [Google Scholar]
  58. DayanF. BiltonR.L. LaferrièreJ. TrottierE. RouxD. PouyssegurJ. MazureN.M. Activation of HIF-1α in exponentially growing cells via hypoxic stimulation is independent of the Akt/mTOR pathway.J. Cell. Physiol.2009218116717410.1002/jcp.2158418781596
    [Google Scholar]
  59. HudsonC.C. LiuM. ChiangG.G. OtternessD.M. LoomisD.C. KaperF. GiacciaA.J. AbrahamR.T. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin.Mol. Cell. Biol.200222207004701410.1128/MCB.22.20.7004‑7014.200212242281
    [Google Scholar]
  60. PencreachE. GuérinE. NicoletC. Lelong-RebelI. VoegeliA.C. OudetP. LarsenA.K. GaubM.P. GuenotD. Marked activity of irinotecan and rapamycin combination toward colon cancer cells in vivo and in vitro is mediated through cooperative modulation of the mammalian target of rapamycin/hypoxia-inducible factor-1alpha axis.Clin. Cancer Res.20091541297130710.1158/1078‑0432.CCR‑08‑088919190131
    [Google Scholar]
  61. JiF. WangY. QiuL. LiS. ZhuJ. LiangZ. WanY. DiW. Hypoxia inducible factor 1α-mediated LOX expression correlates with migration and invasion in epithelial ovarian cancer.Int. J. Oncol.20134251578158810.3892/ijo.2013.187823545606
    [Google Scholar]
  62. IkenagaN. PengZ.W. VaidK.A. LiuS.B. YoshidaS. SverdlovD.Y. Mikels-VigdalA. SmithV. SchuppanD. PopovY.V. Selective targeting of lysyl oxidase- like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal.Gut20176691697170810.1136/gutjnl‑2016‑31247328073888
    [Google Scholar]
  63. RaghuG. BrownK.K. CollardH.R. CottinV. GibsonK.F. KanerR.J. LedererD.J. MartinezF.J. NobleP.W. SongJ.W. WellsA.U. WhelanT.P.M. WuytsW. MoreauE. PattersonS.D. SmithV. BaylyS. ChienJ.W. GongQ. ZhangJ.J. O’RiordanT.G. Efficacy of simtuzumab versus placebo in patients with idiopathic pulmonary fibrosis: A randomised, double-blind, controlled, phase 2 trial.Lancet Respir. Med.201751223210.1016/S2213‑2600(16)30421‑027939076
    [Google Scholar]
  64. MuirA.J. LevyC. JanssenH.L.A. Montano-LozaA.J. ShiffmanM.L. CaldwellS. LuketicV. DingD. JiaC. McColganB.J. McHutchisonJ.G. Mani SubramanianG. MyersR.P. MannsM. ChapmanR. AfdhalN.H. GoodmanZ. EksteenB. BowlusC.L. Simtuzumab for primary sclerosing cholangitis: Phase 2 study results with insights on the natural history of the disease.Hepatology201969268469810.1002/hep.3023730153359
    [Google Scholar]
  65. NinomiyaG. YamadaS. HayashiM. TakedaS. SuenagaM. TakamiH. KandaM. IwataN. NiwaY. TanakaC. KobayashiD. FujiiT. NakayamaG. SugimotoH. KoikeM. FujiwaraM. KoderaY. Significance of Lysyl oxidase-like 2 gene expression on the epithelial-mesenchymal status of hepatocellular carcinoma.Oncol. Rep.20183962664267229620290
    [Google Scholar]
  66. HarlowC.R. WuX. van DeemterM. GardinerF. PolandC. GreenR. SarviS. BrownP. KadlerK.E. LuY. MasonJ.I. CritchleyH.O.D. HillierS.G. Targeting lysyl oxidase reduces peritoneal fibrosis.PLoS One2017128e018301310.1371/journal.pone.018301328800626
    [Google Scholar]
  67. LeungL. Niculescu-DuvazD. SmithenD. LopesF. CallensC. McLearyR. SaturnoG. DaviesL. AljarahM. BrownM. JohnsonL. ZambonA. ChambersT. MénardD. BaylissN. KnightR. FishL. LawrenceR. ChallinorM. TangH. MaraisR. SpringerC. Anti-metastatic inhibitors of lysyl oxidase (LOX): Design and structure activity relationships.J. Med. Chem.201962125863588410.1021/acs.jmedchem.9b0033531070916
    [Google Scholar]
  68. Barry-HamiltonV. SpanglerR. MarshallD. McCauleyS. RodriguezH.M. OyasuM. MikelsA. VaysbergM. GhermazienH. WaiC. GarciaC.A. VelayoA.C. JorgensenB. BiermannD. TsaiD. GreenJ. Zaffryar-EilotS. HolzerA. OggS. ThaiD. NeufeldG. Van VlasselaerP. SmithV. Allosteric inhibition of lysyl oxidase–like-2 impedes the development of a pathologic microenvironment.Nat. Med.20101691009101710.1038/nm.220820818376
    [Google Scholar]
  69. González-SantamaríaJ. VillalbaM. BusnadiegoO. López-OlañetaM.M. SandovalP. SnabelJ. López- CabreraM. ErlerJ.T. HanemaaijerR. Lara-PezziE. Rodríguez-PascualF. Matrix cross-linking lysyl oxidases are induced in response to myocardial infarction and promote cardiac dysfunction.Cardiovasc. Res.20161091677810.1093/cvr/cvv21426260798
    [Google Scholar]
  70. VadaszZ. KesslerO. AkiriG. GengrinovitchS. KaganH.M. BaruchY. IzhakO.B. NeufeldG. Abnormal deposition of collagen around hepatocytes in Wilson’s disease is associated with hepatocyte specific expression of lysyl oxidase and lysyl oxidase like protein-2.J. Hepatol.200543349950710.1016/j.jhep.2005.02.05216023247
    [Google Scholar]
  71. MammotoT. JiangA. JiangE. PanigrahyD. KieranM.W. MammotoA. Role of collagen matrix in tumor angiogenesis and glioblastoma multiforme progression.Am. J. Pathol.201318341293130510.1016/j.ajpath.2013.06.02623928381
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673306240240612055116
Loading
/content/journals/cmc/10.2174/0109298673306240240612055116
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test