Skip to content
2000
Volume 32, Issue 26
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Glaucoma is an eye disease. Its pathological process involves retinal ischemia-reperfusion (I/R), which causes irreversible blindness in patients. Geniposide (Gen), a bioactive iridoid glycoside extracted from the fruit of gardenia, exhibits many biological effects, such as anti-oxidative stress, anti-inflammation, anti-apoptosis, anti-endoplasmic reticulum stress, and anti-thrombotic effects. However, its therapeutic potential for the retinal I/R injury remains unclear. This study investigated the protective effect of Gen against I/R injury by inhibiting abnormal reactive oxygen species (ROS) and retinal neuron apoptosis.

Methods

We used oxygen-glucose deprivation/reoxygenation (OGD/R) to induce R28 cells to mimic the pathological process of I/R in glaucoma. We conducted CCK-8 analysis and TUNEL staining to examine cell proliferation and apoptosis in glaucoma. Western blotting was used to assay the expressions of apoptosis and Akt/Nrf-2 pathway-related proteins.

Results

The production of ROS was detected by using the corresponding kit. Cell viability decreased, whereas TUNEL staining-positive cells and ROS production increased after the OGD/R injury. The contents of cleaved caspase-3 and Bax/Bcl-2 increased after the OGD/R injury. Treatment with 200 μM of Gen effectively improved the cell viability and suppressed cell apoptosis and ROS production. In addition, Gen could significantly promote the activation of the Akt/Nrf-2 signaling pathway in R28 cells, which was blocked by the inhibition of Akt/Nrf-2. We verified the neuroprotective effect of Gen by establishing an acute high intraocular pressure (aHIOP) model and obtained similar results to those of the experimental results.

Conclusion

Hence, it can be suggested that Gen provides neuroprotection against the OGD/R-induced injury of R28 cells by activating the Akt/Nrf-2 signaling pathway, which is beneficial for the clinical treatment of glaucoma.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673272406231212054710
2024-04-19
2025-10-26
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/26/CMC-32-26-09.html?itemId=/content/journals/cmc/10.2174/0109298673272406231212054710&mimeType=html&fmt=ahah

References

  1. KangJ.M. TannaA.P. Glaucoma.Med. Clin. North Am.2021105349351010.1016/j.mcna.2021.01.00433926643
    [Google Scholar]
  2. WeinrebR.N. AungT. MedeirosF.A. The pathophysiology and treatment of glaucoma: A review.JAMA2014311181901191110.1001/jama.2014.319224825645
    [Google Scholar]
  3. ThamY.C. LiX. WongT.Y. QuigleyH.A. AungT. ChengC.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis.Ophthalmology2014121112081209010.1016/j.ophtha.2014.05.01324974815
    [Google Scholar]
  4. Van HookM.J. Influences of Glaucoma on the structure and function of synapses in the visual system.Antioxid. Redox Signal.20223710-1284286110.1089/ars.2021.025335044228
    [Google Scholar]
  5. PangI.H. ClarkA.F. Inducible rodent models of glaucoma.Prog. Retin. Eye Res.20207510079910.1016/j.preteyeres.2019.10079931557521
    [Google Scholar]
  6. BaudouinC. KolkoM. Melik-ParsadaniantzS. MessmerE.M. Inflammation in Glaucoma: From the back to the front of the eye, and beyond.Prog. Retin. Eye Res.20218310091610.1016/j.preteyeres.2020.10091633075485
    [Google Scholar]
  7. AlmoiliqyM. WenJ. XuB. SunY. LianM. LiY. QaedE. Al-AzabM. ChenD. ShopitA. WangL. SunP. LinY. Cinnamaldehyde protects against rat intestinal ischemia/reperfusion injuries by synergistic inhibition of NF-κB and p53.Acta Pharmacol. Sin.20204191208122210.1038/s41401‑020‑0359‑932238887
    [Google Scholar]
  8. LiN. LiL. WuH. ZhouH. Antioxidative property and molecular mechanisms underlying geniposide-mediated therapeutic effects in diabetes mellitus and cardiovascular disease.Oxid. Med. Cell. Longev.2019201912010.1155/2019/748051231089416
    [Google Scholar]
  9. LiN. ZhouH. MaZ.G. ZhuJ.X. LiuC. SongP. KongC.Y. WuH.M. DengW. TangQ.Z. Geniposide alleviates isoproterenol-induced cardiac fibrosis partially via SIRT1 activation in vivo and in vitro. Front. Pharmacol.2018985410.3389/fphar.2018.0085430123131
    [Google Scholar]
  10. RanD. HongW. YanW. MengdieW. Properties and molecular mechanisms underlying geniposide-mediated therapeutic effects in chronic inflammatory diseases.J. Ethnopharmacol.202127311395810.1016/j.jep.2021.11395833639206
    [Google Scholar]
  11. ShenB. FengH. ChengJ. LiZ. JinM. ZhaoL. WangQ. QinH. LiuG. Geniposide alleviates non-alcohol fatty liver disease via regulating Nrf2/AMPK/mTOR signalling pathways.J. Cell. Mol. Med.20202495097510810.1111/jcmm.1513932293113
    [Google Scholar]
  12. ZhangH. LiuH. YangM. WeiS. Antithrombotic activities of aqueous extract from Gardenia jasminoides and its main constituent.Pharm. Biol.201351222122510.3109/13880209.2012.71708823116215
    [Google Scholar]
  13. FanX. LinL. CuiB. ZhaoT. MaoL. SongY. WangX. FengH. QingxiangY. ZhangJ. JiangK. CaoX. WangB. SunC. Therapeutic potential of genipin in various acute liver injury, fulminant hepatitis, NAFLD and other non-cancer liver diseases: More friend than foe.Pharmacol. Res.202015910494510.1016/j.phrs.2020.10494532454225
    [Google Scholar]
  14. ZhangW. ZhangF. HuQ. XiaoX. OuL. ChenY. LuoS. ChengY. JiangY. MaX. ZhaoY. The emerging possibility of the use of geniposide in the treatment of cerebral diseases: A review.Chin. Med.20211618610.1186/s13020‑021‑00486‑334454545
    [Google Scholar]
  15. ZhaoC. ZhangH. LiH. LvC. LiuX. LiZ. XinW. WangY. ZhangW. Geniposide ameliorates cognitive deficits by attenuating the cholinergic defect and amyloidosis in middle-aged Alzheimer model mice.Neuropharmacology2017116182910.1016/j.neuropharm.2016.12.00227940040
    [Google Scholar]
  16. ChenC. XinX. LiuQ. TianH.J. PengJ.H. ZhaoY. HuY.Y. FengQ. Geniposide and chlorogenic acid combination improves non-alcoholic fatty liver disease involving the potent suppression of elevated hepatic SCD-1.Front. Pharmacol.20211265364110.3389/fphar.2021.65364134017254
    [Google Scholar]
  17. HabtemariamS. LentiniG. Plant-derived anticancer agents: lessons from the pharmacology of geniposide and its aglycone, genipin.Biomedicines2018623910.3390/biomedicines602003929587429
    [Google Scholar]
  18. YanW.T. ZhaoW.J. HuX.M. BanX.X. NingW.Y. WanH. ZhangQ. XiongK. PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons.Neural Regen. Res.202318235736335900430
    [Google Scholar]
  19. HuangY. WangS. HuangF. ZhangQ. QinB. LiaoL. WangM. WanH. YanW. ChenD. LiuF. JiangB. JiD. XiaX. HuangJ. XiongK. c-FLIP regulates pyroptosis in retinal neurons following oxygen-glucose deprivation/recovery via a GSDMD-mediated pathway.Ann. Anat.202123515167210.1016/j.aanat.2020.15167233434657
    [Google Scholar]
  20. WangM. WanH. WangS. LiaoL. HuangY. GuoL. LiuF. ShangL. HuangJ. JiD. XiaX. JiangB. ChenD. XiongK. RSK3 mediates necroptosis by regulating phosphorylation of RIP3 in rat retinal ganglion cells.J. Anat.20202371294710.1111/joa.1318532162697
    [Google Scholar]
  21. WangS. LiaoL. WangM. ZhouH. HuangY. WangZ. ChenD. JiD. XiaX. WangY. LiuF. HuangJ. XiongK. Pin1 promotes regulated necrosis induced by glutamate in rat retinal neurons via CAST/Calpain2 pathway.Front. Cell. Neurosci.20181142510.3389/fncel.2017.0042529403356
    [Google Scholar]
  22. LiY. ZhangL. ZhangP. HaoZ. Dehydrocorydaline protects against sepsis-induced myocardial injury through modulating the TRAF6/NF-κB pathway.Front. Pharmacol.20211270960410.3389/fphar.2021.70960434489703
    [Google Scholar]
  23. KatilaN. BhurtelS. ParkP.H. ChoiD.Y. Metformin attenuates rotenone-induced oxidative stress and mitochondrial damage via the AKT/Nrf2 pathway.Neurochem. Int.202114810512010.1016/j.neuint.2021.10512034197898
    [Google Scholar]
  24. JiangN. LiZ. LiZ. ZhangY. YuZ. WanP. ZhuY. LiY. SuW. ZhuoY. Laquinimod exerts anti-inflammatory and antiapoptotic effects in retinal ischemia/reperfusion injury.Int. Immunopharmacol.20208810698910.1016/j.intimp.2020.10698933182069
    [Google Scholar]
  25. KimB.J. BraunT.A. WordingerR.J. ClarkA.F. Progressive morphological changes and impaired retinal function associated with temporal regulation of gene expression after retinal ischemia/reperfusion injury in mice.Mol. Neurodegener.2013812110.1186/1750‑1326‑8‑2123800383
    [Google Scholar]
  26. ZhangY. HuangY. GuoL. ZhangY. ZhaoM. XueF. TanC. HuangJ. ChenD. Melatonin alleviates pyroptosis of retinal neurons following acute intraocular hypertension.CNS Neurol. Disord. Drug Targets202120328529710.2174/19963181MTEwCNTkcx33045971
    [Google Scholar]
  27. NahomiR.B. NamM.H. RankenbergJ. RaketeS. HouckJ.A. JohnsonG.C. StankowskaD.L. PantchevaM.B. MacLeanP.S. NagarajR.H. Kynurenic acid protects against ischemia/reperfusion-induced retinal ganglion cell death in mice.Int. J. Mol. Sci.2020215179510.3390/ijms2105179532151061
    [Google Scholar]
  28. YuanJ. ZhangJ. CaoJ. WangG. BaiH. Geniposide alleviates traumatic brain injury in rats via anti-inflammatory effect and MAPK/NF-kB inhibition.Cell. Mol. Neurobiol.202040451152010.1007/s10571‑019‑00749‑631677006
    [Google Scholar]
  29. LiuX. XuY. ChengS. ZhouX. ZhouF. HeP. HuF. ZhangL. ChenY. JiaY. Geniposide combined with notoginsenoside R1 attenuates inflammation and apoptosis in atherosclerosis via the AMPK/mTOR/Nrf2 signaling pathway.Front. Pharmacol.20211268739410.3389/fphar.2021.68739434305600
    [Google Scholar]
  30. YangL. BiL. JinL. WangY. LiY. LiZ. HeW. CuiH. MiaoJ. WangL. Geniposide ameliorates liver fibrosis through reducing oxidative stress and inflammatory respose, inhibiting apoptosis and modulating overall metabolism.Front. Pharmacol.20211277263510.3389/fphar.2021.77263534899328
    [Google Scholar]
  31. LiF. ChenY. LiY. HuangM. ZhaoW. Geniposide alleviates diabetic nephropathy of mice through AMPK/SIRT1/NF-κB pathway.Eur. J. Pharmacol.202088617344910.1016/j.ejphar.2020.17344932758570
    [Google Scholar]
  32. Expression of ConcernExpression of Concern.Artif. Cells Nanomed. Biotechnol.2020481129510.1080/21691401.2020.183684633426944
    [Google Scholar]
  33. TuY. LiL. ZhuL. GuoY. DuS. ZhangY. WangZ. ZhangY. ZhuM. Geniposide attenuates hyperglycemia-induced oxidative stress and inflammation by activating the Nrf2 signaling pathway in experimental diabetic retinopathy.Oxid. Med. Cell. Longev.2021202111510.1155/2021/924794734938383
    [Google Scholar]
  34. ZhangX. LiuK. ShiM. XieL. DengM. ChenH. LiX. Therapeutic potential of catalpol and geniposide in Alzheimer’s and Parkinson’s diseases: A snapshot of their underlying mechanisms.Brain Res. Bull.202117428129510.1016/j.brainresbull.2021.06.02034216649
    [Google Scholar]
  35. HeT. ShenH. ZhuJ. ZhuY. HeY. LiZ. LuH. Geniposide attenuates cadmium-induced oxidative stress injury via Nrf2 signaling in osteoblasts.Mol. Med. Rep.20192021499150810.3892/mmr.2019.1039631257486
    [Google Scholar]
  36. wangJ. De-qiongX. HongD. ZhangQ. ZhangJ. Attenuation of Myocardial ischemia reperfusion injury by Geniposide preconditioning in diabetic rats.Curr. Res. Transl. Med.2019672354010.1016/j.retram.2019.03.00230902610
    [Google Scholar]
  37. AnR. LiD. DongY. SheQ. ZhouT. NieX. PanR. DengY. Methylcobalamin protects melanocytes from H2O2-induced oxidative stress by activating the Nrf2/HO-1 pathway.Drug Des. Devel. Ther.2021154837484810.2147/DDDT.S33606634876806
    [Google Scholar]
  38. HuJ. GuY. FanW. Rg1 protects rat bone marrow stem cells against hydrogen peroxide-induced cell apoptosis through the PI3K/Akt pathway.Mol. Med. Rep.201614140641210.3892/mmr.2016.523827177125
    [Google Scholar]
  39. XiongJ. YangJ. YanK. GuoJ. Ginsenoside Rk1 protects human melanocytes from H2O2-induced oxidative injury via regulation of the PI3K/AKT/Nrf2/HO-1 pathway.Mol. Med. Rep.2021245821
    [Google Scholar]
  40. BaiX. GouX. CaiP. XuC. CaoL. ZhaoZ. HuangM. JinJ. Sesamin enhances Nrf2-mediated protective defense against oxidative stress and inflammation in colitis via AKT and ERK activation.Oxid. Med. Cell. Longev.2019201912010.1155/2019/243241631534619
    [Google Scholar]
  41. LiH. TangZ. ChuP. SongY. YangY. SunB. NiuM. QaedE. ShopitA. HanG. MaX. PengJ. HuM. TangZ. Neuroprotective effect of phosphocreatine on oxidative stress and mitochondrial dysfunction induced apoptosis in vivo and in vitro: Involvement of dual PI3K/Akt and Nrf2/HO-1 pathways.Free Radic. Biol. Med.201812022823810.1016/j.freeradbiomed.2018.03.01429559323
    [Google Scholar]
  42. LiJ. WangT. LiuP. YangF. WangX. ZhengW. SunW. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high- fat diet-induced NAFLD.Food Funct.20211293898391810.1039/D0FO02736G33977953
    [Google Scholar]
  43. TanakaM. KishimotoY. SasakiM. SatoA. KamiyaT. KondoK. IidaK. Terminalia bellirica (Gaertn.) Roxb. extract and gallic acid attenuate LPS-induced inflammation and oxidative stress via MAPK/NF- κ B and Akt/AMPK/Nrf2 pathways.Oxid. Med. Cell. Longev.2018201811510.1155/2018/936436430533177
    [Google Scholar]
  44. ZhangZ. GuoL. YangF. PengS. WangD. LaiX. SuB. XieH. Adiponectin attenuates splenectomy-induced cognitive deficits by neuroinflammation and oxidative stress via TLR4/MyD88/NF-κb signaling pathway in aged rats.ACS Chem. Neurosci.202314101799180910.1021/acschemneuro.2c0074437141577
    [Google Scholar]
  45. QinX. LiN. ZhangM. LinS. ZhuJ. XiaoD. CuiW. ZhangT. LinY. CaiX. Tetrahedral framework nucleic acids prevent retina ischemia-reperfusion injury from oxidative stress via activating the Akt/Nrf2 pathway.Nanoscale20191143206672067510.1039/C9NR07171G31642452
    [Google Scholar]
  46. YuanZ. DuW. HeX. ZhangD. HeW. Tribulus terrestris ameliorates oxidative stress-induced ARPE-19 cell injury through the PI3K/Akt-Nrf2 signaling pathway.Oxid. Med. Cell. Longev.2020202011410.1155/2020/796239332774685
    [Google Scholar]
  47. LaiT.T. YangC.M. YangC.H. Astaxanthin protects retinal photoreceptor cells against high glucose-induced oxidative stress by induction of antioxidant enzymes via the PI3K/Akt/Nrf2 pathway.Antioxidants20209872910.3390/antiox908072932785112
    [Google Scholar]
  48. LiS. YangQ. ZhouZ. YangX. LiuY. HaoK. FuM. Gastrodin protects retinal ganglion cells from ischemic injury by activating phosphatidylinositol 3-kinase/protein kinase B/nuclear factor erythroid 2-related factor 2 (PI3K/AKT/Nrf2) signaling pathway.Bioengineered2022135126251263610.1080/21655979.2022.207649935609324
    [Google Scholar]
  49. LinC.W. YangC.M. YangC.H. Protective effect of astaxanthin on blue light light-emitting diode-induced retinal cell damage via free radical scavenging and activation of PI3K/Akt/Nrf2 pathway in 661W cell model.Mar. Drugs202018838710.3390/md1808038732722441
    [Google Scholar]
  50. MandalM.N.A. PatlollaJ.M.R. ZhengL. AgbagaM.P. TranJ.T.A. WickerL. Kasus-JacobiA. ElliottM.H. RaoC.V. AndersonR.E. Curcumin protects retinal cells from light-and oxidant stress-induced cell death.Free Radic. Biol. Med.200946567267910.1016/j.freeradbiomed.2008.12.00619121385
    [Google Scholar]
  51. XuY.P. HanF. TanJ. Edaravone protects the retina against ischemia/reperfusion-induced oxidative injury through the PI3K/Akt/Nrf2 pathway.Mol. Med. Rep.20171669210921610.3892/mmr.2017.773929039497
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673272406231212054710
Loading
/content/journals/cmc/10.2174/0109298673272406231212054710
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Akt/Nrf-2 pathway; apoptosis; geniposide; Glaucoma; ischemia-reperfusion; OGD/R
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test