Skip to content
2000
Volume 32, Issue 26
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.

Objectives

The objective of this study is to compare the underlying pharmacological properties of several modified agents to the parental Cordycepin to target and inhibit the EGFR tyrosine kinase high expression, and to discover the inhibitor with the highest affinity for this drug target to treat the breast cancer patients.

Methods

The Maestro Application of Schrödinger Suite Paid Software was initially employed for conducting extra precision (XP) structure-based virtual screening to evaluate the binding affinity of the Cordycepin and its 500 structural derivatives with the EGFR tyrosine kinase protein structure. In addition, the anti-breast cancer activity of the chosen compounds was assessed by looking at their drug-likeness and ADMET characteristics using Lipinski's rule of five along with Quantitative structure-activity relationship (QSAR) validation, the prediction of cell line anti-cancer, as well as anti-breast cancer activity of top docked scored compounds. Subsequently, the Desmond paid software-based molecular dynamics simulations (MDS) were conducted for a duration of 100 nanoseconds on the promising candidates followed by the binding free energy estimation was performed utilizing MM-GBSA analysis. To determine the stability of the protein-ligand complex, root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), protein-ligand interactions, and other necessary parameters were evaluated from the 100 ns MDS Trajectory.

Results

Based on the overall analysis of our study, N (6)-octylamine adenosine (CID-194932) reported the optimum inhibitory potential against the EGFR tyrosine kinase protein, followed by Adenosine 5-monophosphate (CID-83862) and Cordycepin (CID-6303), which compared favorably to the control drug Vandetanib (CID-3081361).

Conclusion

Consequently, these derivative compounds Cordycepin have the potential to be utilized as lead molecules in the development of highly effective and potent EGFR tyrosine kinase inhibitors for the treatment of breast cancer patients.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673333884241119063458
2025-01-14
2025-10-26
Loading full text...

Full text loading...

References

  1. MomenimovahedZ. SalehiniyaH. Epidemiological characteristics of and risk factors for breast cancer in the world.Breast Cancer (Dove Med. Press)20191115116410.2147/BCTT.S17607031040712
    [Google Scholar]
  2. Nienaber-RousseauC. Understanding and applying gene–environment interactions: A guide for nutrition professionals with an emphasis on integration in African research settings.Nutr. Rev.2024nuae01510.1093/nutrit/nuae01538442341
    [Google Scholar]
  3. FengY. SpeziaM. HuangS. YuanC. ZengZ. ZhangL. JiX. LiuW. HuangB. LuoW. LiuB. LeiY. DuS. VuppalapatiA. LuuH.H. HaydonR.C. HeT.C. RenG. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis.Genes Dis.2018527710610.1016/j.gendis.2018.05.00130258937
    [Google Scholar]
  4. WilkinsonL. GathaniT. Understanding breast cancer as a global health concern.Br. J. Radiol.20229511302021103310.1259/bjr.2021103334905391
    [Google Scholar]
  5. GinsburgO. YipC.H. BrooksA. CabanesA. CaleffiM. Dunstan YatacoJ.A. GyawaliB. McCormackV. McLaughlin de AndersonM. MehrotraR. MoharA. MurilloR. PaceL.E. PaskettE.D. RomanoffA. RositchA.F. ScheelJ.R. SchneidmanM. Unger-SaldañaK. VanderpuyeV. WuT.Y. YumaS. DvaladzeA. DugganC. AndersonB.O. Breast cancer early detection: A phased approach to implementation.Cancer2020126102379239310.1002/cncr.32887
    [Google Scholar]
  6. KatzkeV.A. KaaksR. KühnT. Lifestyle and cancer risk.Cancer J.201521210411010.1097/PPO.000000000000010125815850
    [Google Scholar]
  7. LipworthL. Epidemiology of breast cancer.Eur. J. Cancer Prev.19954173010.1097/00008469‑199502000‑000027537139
    [Google Scholar]
  8. CaninB. FreundK.M. GanzP.A. HershmanD.L. PaskettE.D. Disparities in breast cancer care and research: Report from a breast cancer research foundation sponsored workshop.NPJ Breast Cancer2015111501310.1038/npjbcancer.2015.1328721369
    [Google Scholar]
  9. PruthiS. BrandtK.R. DegnimA.C. GoetzM.P. PerezE.A. ReynoldsC.A. SchombergP.J. DyG.K. IngleJ.N. A multidisciplinary approach to the management of breast cancer, part 1: Prevention and diagnosis.Mayo Clin. Proc.2007828999101210.4065/82.8.99917673070
    [Google Scholar]
  10. ShovonM.H.J. KhanD.A. TareqM.M.I. ImtiazM. ZilaniM.N.H. HasanM.N. A comprehensive assessment of VCAN transcriptional expression and evaluation as an effective prognostic biomarker against breast cancer: In silico study.Bull. Natl. Res. Cent.20234718310.1186/s42269‑023‑01062‑5
    [Google Scholar]
  11. EmensL.A. AdamsS. Cimino-MathewsA. DisisM.L. Gatti-MaysM.E. HoA.Y. KalinskyK. McArthurH.L. MittendorfE.A. NandaR. PageD.B. RugoH.S. RubinK.M. SolimanH. SpearsP.A. TolaneyS.M. LittonJ.K. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of breast cancer.J. Immunother. Cancer202198e00259710.1136/jitc‑2021‑00259734389617
    [Google Scholar]
  12. VafaizadehV. BarekatiZ. Immuno-oncology biomarkers for personalized immunotherapy in breast cancer.Front. Cell Dev. Biol.2020816210.3389/fcell.2020.0016232258038
    [Google Scholar]
  13. MasudaH. ZhangD. BartholomeuszC. DoiharaH. HortobagyiG.N. UenoN.T. Role of epidermal growth factor receptor in breast cancer.Breast Cancer Res. Treat.2012136233134510.1007/s10549‑012‑2289‑923073759
    [Google Scholar]
  14. WeeP. WangZ. Epidermal growth factor receptor cell proliferation signaling pathways.Cancers2017955210.3390/cancers905005228513565
    [Google Scholar]
  15. BansalI. PandeyA.K. RuwaliM. Small-molecule inhibitors of kinases in breast cancer therapy: Recent advances, opportunities, and challenges.Front. Pharmacol.202314124459710.3389/fphar.2023.124459737711177
    [Google Scholar]
  16. YoonS.Y. ParkS.J. ParkY.J. The anticancer properties of Cordycepin and their underlying mechanisms.Int. J. Mol. Sci.20181910302710.3390/ijms1910302730287757
    [Google Scholar]
  17. LeeD. LeeW.Y. JungK. KwonY. KimD. HwangG. KimC.E. LeeS. KangK. The inhibitory effect of cordycepin on the proliferation of MCF-7 breast cancer cells, and its mechanism: An investigation using network pharmacology-based analysis.Biomolecules20199941410.3390/biom9090414
    [Google Scholar]
  18. CaiH. LiJ. GuB. XiaoY. ChenR. LiuX. XieX. CaoL. Extracts of Cordyceps sinensis inhibit breast cancer cell metastasis via down-regulation of metastasis-related cytokines expression.J. Ethnopharmacol.201821410611210.1016/j.jep.2017.12.01229253616
    [Google Scholar]
  19. ThomfordN.E. SenthebaneD.A. RoweA. MunroD. SeeleP. MaroyiA. DzoboK. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery.Int. J. Mol. Sci.2018196157810.3390/ijms1906157829799486
    [Google Scholar]
  20. MorrisC. The role of EGFR-directed therapy in the treatment of breast cancer.Breast Cancer Res. Treat.200275S1Suppl. 1515510.1023/A:102037001866812353824
    [Google Scholar]
  21. ChoowongkomonK. SawatdichaikulO. SongtaweeN. LimtrakulJ. Receptor-based virtual screening of EGFR kinase inhibitors from the NCI diversity database.Molecules20101564041405410.3390/molecules1506404120657425
    [Google Scholar]
  22. LiS. SunX. ZhaoH. TangY. LanM. Discovery of novel EGFR tyrosine kinase inhibitors by structure-based virtual screening.Bioorg. Med. Chem. Lett.201222124004400910.1016/j.bmcl.2012.04.09222595177
    [Google Scholar]
  23. SawatdichaikulO. HannongbuaS. SangmaC. WolschannP. ChoowongkomonK. In silico screening of epidermal growth factor receptor (EGFR) in the tyrosine kinase domain through a medicinal plant compound database.J. Mol. Model.20121831241125410.1007/s00894‑011‑1135‑z21713415
    [Google Scholar]
  24. DowlingR.J.O. ZakikhaniM. FantusI.G. PollakM. SonenbergN. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells.Cancer Res.20076722108041081210.1158/0008‑5472.CAN‑07‑231018006825
    [Google Scholar]
  25. XieJ. WangX. ProudC.G. mTOR inhibitors in cancer therapy.F1000 Res.20165207810.12688/f1000research.9207.127635236
    [Google Scholar]
  26. ArefinA. Ismail EmaT. IslamT. Saddam HossenM. IslamT. Al AzadS. Nasir Uddin BadalM. Aminul IslamM. BiswasP. AlamN.U. IslamE. AnjumM. MasudA. Shaikh KamranM. RahmanA. Kumar PaulP. Target specificity of selective bioactive compounds in blocking α-dystroglycan receptor to suppress Lassa virus infection: An in silico approach.J. Biomed. Res.202135645947310.7555/JBR.35.2021011134857680
    [Google Scholar]
  27. BiswasP. DeyD. RahmanA. IslamM.A. SusmiT.F. KaiumM.A. HasanM.N. RahmanM.D.H. MahmudS. SalehM.A. PaulP. RahmanM.R. Al SaberM.A. SongH. RahmanM.A. KimB. Analysis of SYK gene as a prognostic biomarker and suggested potential bioactive phytochemicals as an alternative therapeutic option for colorectal cancer: An In-Silico pharmaco-informatics investigation.J. Pers. Med.202111988810.3390/jpm1109088834575665
    [Google Scholar]
  28. BiswasP. Hany RumiO. Ahmed KhanD. AhmedM.N. NaharN. JahanR. Hasan ZilaniM.N. PaulT.K. HasanA. BondhonT.A. JannatK. HasanM.N. RahmatullahM. Evaluation of melongosides as potential inhibitors of NS2B-NS3 activator-protease of dengue virus (Serotype 2) by using molecular docking and dynamics simulation approach.J. Trop. Med.2022202211310.1155/2022/711178636051190
    [Google Scholar]
  29. RahmanM.S. ZilaniM.N.H. IslamM.A. HasanM.M. IslamM.M. YasminF. BiswasP. HirashimaA. RahmanM.A. HasanM.N. KimB. In Vivo neuropharmacological potential of Gomphandra tetrandra (Wall.) Sleumer and in-silico study against β-Amyloid precursor protein.Processes202198144910.3390/pr9081449
    [Google Scholar]
  30. DeyD. BiswasP. PaulP. MahmudS. EmaT.I. KhanA.A. AhmedS.Z. HasanM.M. SaikatA.S.M. FatemaB. BibiS. RahmanM.A. KimB. Natural flavonoids effectively block the CD81 receptor of hepatocytes and inhibit HCV infection: A computational drug development approach.Mol. Divers.20232731309132235821161
    [Google Scholar]
  31. DeyD. HasanM.M. BiswasP. PapadakosS.P. RayanR.A. TasnimS. BilalM. IslamM.J. ArsheF.A. ArshadE.M. FarzanaM. RahamanT.I. BaralS.K. PaulP. BibiS. RahmanM.A. KimB. Investigating the anticancer potential of Salvicine as a modulator of topoisomerase II and ROS signaling cascade.Front. Oncol.20221289900910.3389/fonc.2022.89900935719997
    [Google Scholar]
  32. DeyD. HossainR. BiswasP. PaulP. IslamM.A. EmaT.I. GainB.K. HasanM.M. BibiS. IslamM.T. RahmanM.A. KimB. Amentoflavone derivatives significantly act towards the main protease (3CL(PRO)/M(PRO)) of SARS-CoV-2: In silico admet profiling, molecular docking, molecular dynamics simulation, network pharmacology.Mol. Divers.202211535639226
    [Google Scholar]
  33. FerdausiN. IslamS. RimtiF. QuayumS. ArshadE. IbnatA. IslamT. ArefinA. EmaT. BiswasP. DeyD. AzadS. Point-specific interactions of isovitexin with the neighboring amino acid residues of the hACE2 receptor as a targeted therapeutic agent in suppressing the SARS-CoV-2 influx mechanism.J. Adv. Vet. Anim. Res.20229223024010.5455/javar.2022.i58835891654
    [Google Scholar]
  34. HasanA. BiswasP. BondhonT.A. JannatK. PaulT.K. PaulA.K. JahanR. NissapatornV. MahboobT. WilairatanaP. HasanM.N. de Lourdes PereiraM. WiartC. RahmatullahM. Can Artemisia herba-alba be useful for managing COVID-19 and comorbidities?Molecules202227249210.3390/molecules2702049235056809
    [Google Scholar]
  35. BiswasP. DeyD. BiswasP.K. RahamanT.I. SahaS. ParvezA. KhanD.A. LilyN.J. SahaK. SohelM. HasanM.M. Al AzadS. BibiS. HasanM.N. RahmatullahM. ChunJ. RahmanM.A. KimB. A comprehensive analysis and anti-cancer activities of Quercetin in ROS-mediated cancer and cancer stem cells.Int. J. Mol. Sci.202223191174610.3390/ijms23191174636233051
    [Google Scholar]
  36. IslamM.A. ZilaniM.N.H. BiswasP. KhanD.A. RahmanM.H. NahidR. NaharN. SamadA. AhammadF. HasanM.N. Evaluation of in vitro and in silico anti-inflammatory potential of some selected medicinal plants of Bangladesh against cyclooxygenase-II enzyme.J. Ethnopharmacol.202228511490010.1016/j.jep.2021.11490034896569
    [Google Scholar]
  37. MorshedA. Al AzadS. MiaM.A.R. UddinM.F. EmaT.I. YeasinR.B. SrishtiS.A. SarkerP. AurthiR.Y. JamilF. SamiaN.S.N. BiswasP. SharmeenI.A. AhmedR. SiddiquyM. Nurunnahar, Oncoinformatic screening of the gene clusters involved in the HER2-positive breast cancer formation along with the in silico pharmacodynamic profiling of selective long-chain omega-3 fatty acids as the metastatic antagonists.Mol. Divers.20222762651267236445532
    [Google Scholar]
  38. FriesnerR.A. GuallarV. Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis.Annu. Rev. Phys. Chem.200556138942710.1146/annurev.physchem.55.091602.09441015796706
    [Google Scholar]
  39. LuG. ShresthaB. HaesA.J. Importance of tilt angles of adsorbed aromatic molecules on nanoparticle rattle SERS substrates.J. Phys. Chem. C201612037207592076710.1021/acs.jpcc.6b02023
    [Google Scholar]
  40. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑1324735618
    [Google Scholar]
  41. AhmedN. BariM.A. BiswasP. AhmedS. TareqM.I. BibiS. UddinA.H.M.M. KhanD.A. HasanM. Sohel IslamN. AlbekairiN.A. AlshammariA. HasanN. Amazon plant-derived compounds suppressing dengue NS5 protein: Insights from computational drug development and network pharmacology approach.Chemistry. Select.2024910e20230355710.1002/slct.202303557
    [Google Scholar]
  42. SafranM. DalahI. AlexanderJ. RosenN. Iny SteinT. ShmoishM. NativN. BahirI. DonigerT. KrugH. Sirota-MadiA. OlenderT. GolanY. StelzerG. HarelA. LancetD. GeneCards Version 3: The human gene integrator.Database (Oxford)20102010baq02010.1093/database/baq02020689021
    [Google Scholar]
  43. LinG. ChaiJ. YuanS. MaiC. CaiL. MurphyR.W. ZhouW. LuoJ. VennPainter: A tool for the comparison and identification of candidate genes based on venn diagrams.PLoS One2016114e015431510.1371/journal.pone.015431527120465
    [Google Scholar]
  44. MeringC. HuynenM. JaeggiD. SchmidtS. BorkP. SnelB. STRING: A database of predicted functional associations between proteins.Nucleic Acids Res.200331125826110.1093/nar/gkg03412519996
    [Google Scholar]
  45. KohlM. WieseS. WarscheidB. Cytoscape: Software for visualization and analysis of biological networks.Methods Mol. Biol.201169629130310.1007/978‑1‑60761‑987‑1_1821063955
    [Google Scholar]
  46. SklirouA.D. GianniouD.D. KarousiP. CheimonidiC. PapachristopoulouG. KontosC.K. ScorilasA. TrougakosI.P. High mRNA expression levels of heat shock protein family B member 2 (HSPB2) are associated with breast cancer patients’ relapse and poor survival.Int. J. Mol. Sci.20222317975810.3390/ijms2317975836077156
    [Google Scholar]
  47. KummarS. ChenH.X. WrightJ. HolbeckS. MillinM.D. TomaszewskiJ. ZweibelJ. CollinsJ. DoroshowJ.H. Utilizing targeted cancer therapeutic agents in combination: Novel approaches and urgent requirements.Nat. Rev. Drug Discov.201091184385610.1038/nrd321621031001
    [Google Scholar]
  48. AnighoroA. BajorathJ. RastelliG. Polypharmacology: Challenges and opportunities in drug discovery.J. Med. Chem.201457197874788710.1021/jm500646324946140
    [Google Scholar]
  49. BaselgaJ. SwainS.M. Novel anticancer targets: Revisiting ERBB2 and discovering ERBB3.Nat. Rev. Cancer20099746347510.1038/nrc265619536107
    [Google Scholar]
  50. JordanV.C. Selective estrogen receptor modulation.Cancer Cell20045320721310.1016/S1535‑6108(04)00059‑515050912
    [Google Scholar]
  51. KamathS. BuolamwiniJ.K. Targeting EGFR and HER-2 receptor tyrosine kinases for cancer drug discovery and development.Med. Res. Rev.200626556959410.1002/med.2007016788977
    [Google Scholar]
  52. EarpH.S. DawsonT.L. LiX. YuH. Heterodimerization and functional interaction between EGF receptor family members: A new signaling paradigm with implications for breast cancer research.Breast Cancer Res. Treat.199535111513210.1007/BF006947527612898
    [Google Scholar]
  53. JohnstonJ. NavaratnamS. PitzM. ManiateJ. WiechecE. BaustH. GingerichJ. SklirisG. MurphyL. LosM. Targeting the EGFR pathway for cancer therapy.Curr. Med. Chem.200613293483349210.2174/09298670677902617417168718
    [Google Scholar]
  54. ChenJ-Q. RussoJ. ERα-negative and triple negative breast cancer: Molecular features and potential therapeutic approaches. Biochimica et Biophysica Acta (BBA)-. Rev. Can.20091796216217519527773
    [Google Scholar]
  55. HerbstR.S. BunnP.A. Targeting the epidermal growth factor receptor in non-small cell lung cancer.Clin. Cancer Res.2003916 Pt 15813582414676101
    [Google Scholar]
  56. Segovia-MendozaM. González-GonzálezM.E. BarreraD. DíazL. García-BecerraR. Efficacy and mechanism of action of the tyrosine kinase inhibitors gefitinib, lapatinib and neratinib in the treatment of HER2-positive breast cancer: Preclinical and clinical evidence.Am. J. Cancer Res.2015592531256126609467
    [Google Scholar]
  57. OnoM. KuwanoM. Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs.Clin. Cancer Res.200612247242725110.1158/1078‑0432.CCR‑06‑064617189395
    [Google Scholar]
  58. TuliH.S. SharmaA.K. SandhuS.S. KashyapD. Cordycepin: A bioactive metabolite with therapeutic potential.Life Sci.2013932386386910.1016/j.lfs.2013.09.03024121015
    [Google Scholar]
  59. NakamuraK. ShinozukaK. YoshikawaN. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis.J. Pharmacol. Sci.20151271535610.1016/j.jphs.2014.09.00125704018
    [Google Scholar]
  60. ChenL.S. StellrechtC.M. GandhiV. RNA-directed agent, cordycepin, induces cell death in multiple myeloma cells.Br. J. Haematol.2008140668239110.1111/j.1365‑2141.2007.06955.x18205859
    [Google Scholar]
  61. HolbeinS. WengiA. DecourtyL. FreimoserF.M. JacquierA. DichtlB. Cordycepin interferes with 3′ end formation in yeast independently of its potential to terminate RNA chain elongation.RNA200915583784910.1261/rna.145890919324962
    [Google Scholar]
  62. WangX.A. XiangS.S. LiH.F. WuX.S. LiM.L. ShuY.J. ZhangF. CaoY. YeY.Y. BaoR.F. WengH. WuW.G. MuJ.S. HuY.P. JiangL. TanZ.J. LuW. WangP. LiuY.B. Cordycepin induces S phase arrest and apoptosis in human gallbladder cancer cells.Molecules2014198113501136510.3390/molecules19081135025090123
    [Google Scholar]
  63. WangC.W. HsuW.H. TaiC.J. Antimetastatic effects of cordycepin mediated by the inhibition of mitochondrial activity and estrogen-related receptor α in human ovarian carcinoma cells.Oncotarget2017823049305810.18632/oncotarget.1382927966445
    [Google Scholar]
  64. ChoS.H. KangI.C. The inhibitory effect of Cordycepin on the proliferation of cisplatin-resistant A549 lung cancer cells.Biochem. Biophys. Res. Commun.2018498343143610.1016/j.bbrc.2018.02.18829496448
    [Google Scholar]
  65. FongP. AoC.N. TouK.I. HuangK.M. CheongC.C. MengL.R. Experimental and In Silico analysis of Cordycepin and its derivatives as endometrial cancer treatment.Oncol. Res.201927223725110.3727/096504018X1523527418379029673423
    [Google Scholar]
  66. WongY.Y. MoonA. DuffinR. Barthet-BarateigA. MeijerH.A. ClemensM.J. de MoorC.H. Cordycepin inhibits protein synthesis and cell adhesion through effects on signal transduction.J. Biol. Chem.201028542610262110.1074/jbc.M109.07115919940154
    [Google Scholar]
  67. PaulP. AzadS. RahmanM. FarjanaM. UddinM. DeyD. MahmudS. EmaT. BiswasP. AnjumM. AkhiO. AhmedS. Catabolic profiling of selective enzymes in the saccharification of non-food lignocellulose parts of biomass into functional edible sugars and bioenergy: An in silico bioprospecting.J. Adv. Vet. Anim. Res.202291193210.5455/javar.2022.i56535445120
    [Google Scholar]
  68. RahmanM.D.H. BiswasP. DeyD. HannanM.A. SahabuddinM. ArafY. KwonY. EmranT.B. AliM.S. UddinM.J. An in silico identification of potential flavonoids against kidney fibrosis targeting TGFβR-1.Life20221211176410.3390/life1211176436362919
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673333884241119063458
Loading
/content/journals/cmc/10.2174/0109298673333884241119063458
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test