Skip to content
2000
Volume 32, Issue 26
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

MiR-136-5p plays a vital function in regulating developmental processes as well as in the pathophysiology of diseases, with a notable record in tumor suppression.

Methods

This article summarizes the latest findings on the physiological and pathophysiological processes of miR-136-5p in diseases. We searched for relevant studies and selected research articles from the last five years on PubMed with miR-136-5p as the keyword.

Results

MiR-136-5p represents a class of microRNAs (miRNAs) that are involved in various human maladies, encompassing cancers, cardio-cerebrovascular disease, diabetes, inflammatory disease, tuberous sclerosis, idiopathic pulmonary fibrosis, and polycystic ovary syndrome. Altered expression of miR-136-5p in specific ailments results in downstream gene expression imbalance, influencing cellular behaviors, such as migration, proliferation, and invasion. Furthermore, miR-136-5p is implicated in five signaling pathways, where it is critical in the onset and advancement of a number of illnesses. Additionally, it has the potential to promote drug resistance to a variety of medications.

Conclusion

The current review aims to elucidate the role of miR-136-5p in both cancer progression and non-cancerous disorders, emphasizing dysregulated signaling pathways. It also sheds light on the potential of this miRNA as a prognostic biomarker in cancer, offering valuable insights and directions for future research.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673283936240215110627
2024-04-27
2025-09-11
Loading full text...

Full text loading...

References

  1. LeeR.C. FeinbaumR.L. AmbrosV. The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell199375584385410.1016/0092‑8674(93)90529‑Y8252621
    [Google Scholar]
  2. CannellI.G. KongY.W. BushellM. How do microRNAs regulate gene expression?Biochem. Soc. Trans.20083661224123110.1042/BST036122419021530
    [Google Scholar]
  3. CroceC.M. Oncogenes and cancer.N. Engl. J. Med.2008358550251110.1056/NEJMra07236718234754
    [Google Scholar]
  4. Ghafouri-FardS. KhoshbakhtT. HussenB.M. JamalH.H. TaheriM. HajiesmaeiliM. A comprehensive review on function of miR-15b-5p in malignant and non-malignant disorders.Front. Oncol.20221287099610.3389/fonc.2022.87099635586497
    [Google Scholar]
  5. WangS. ZhangX. LiZ. WangW. LiB. HuangX. SunG. XuJ. LiQ. XuZ. XiaY. WangL. ZhangQ. LiQ. ZhangL. ChenJ. WuY. CaoJ. XuP. ZhangD. XuH. XuZ. Circular RNA profile identifies circOSBPL10 as an oncogenic factor and prognostic marker in gastric cancer.Oncogene201938446985700110.1038/s41388‑019‑0933‑031409903
    [Google Scholar]
  6. LarsonR.A. Micro-RNAs and copy number changes: New levels of gene regulation in acute myeloid leukemia.Chem. Biol. Interact.20101841-2212510.1016/j.cbi.2009.10.00219822134
    [Google Scholar]
  7. ShiuT.Y. LinH.H. ShihY.L. FengA.C. HuangH.H. HuangT.Y. HsiehC.B. ChangW.K. HsiehT.Y. CRNDE-h transcript/miR-136-5p axis regulates interleukin enhancer binding factor 2 expression to promote hepatocellular carcinoma cell proliferation.Life Sci.202128411970810.1016/j.lfs.2021.11970834153299
    [Google Scholar]
  8. LiaoZ. TanZ.W. ZhuP. TanN.S. Cancer-associated fibroblasts in tumor microenvironment–Accomplices in tumor malignancy.Cell. Immunol.201934310372910.1016/j.cellimm.2017.12.00329397066
    [Google Scholar]
  9. HanC. FuY. ZengN. YinJ. LiQ. LncRNA FAM83H-AS1 promotes triple-negative breast cancer progression by regulating the miR-136-5p/metadherin axis.Aging20201243594361610.18632/aging.10283232074085
    [Google Scholar]
  10. NoorolyaiS. ShajariN. BaghbaniE. SadreddiniS. BaradaranB. The relation between PI3K/AKT signalling pathway and cancer.Gene201969812012810.1016/j.gene.2019.02.07630849534
    [Google Scholar]
  11. LiZ. XieY. XiaoB. GuoJ. The tumor suppressor function of hsa_circ_0006282 in gastric cancer through PTEN/AKT pathway.Int. J. Clin. Oncol.202227101562156910.1007/s10147‑022‑02210‑z35794253
    [Google Scholar]
  12. YangB. ZangJ. YuanW. JiangX. ZhangF. The miR-136-5p/ROCK1 axis suppresses invasion and migration, and enhances cisplatin sensitivity in head and neck cancer cells.Exp. Ther. Med.202121431710.3892/etm.2021.974833717260
    [Google Scholar]
  13. XuZ. HanX. OuD. LiuT. LiZ. JiangG. LiuJ. ZhangJ. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy.Appl. Microbiol. Biotechnol.2020104257558710.1007/s00253‑019‑10257‑831832711
    [Google Scholar]
  14. ZhangH. LiuY. LiM. PengG. ZhuT. SunX. The long non-coding RNA SNHG12 functions as a competing endogenous RNA to modulate the progression of cerebral ischemia/reperfusion injury.Mol. Neurobiol.20225921073108710.1007/s12035‑021‑02648‑834839459
    [Google Scholar]
  15. WangJ.Y. GaoY.B. ZhangN. ZouD.W. WangP. ZhuZ.Y. LiJ.Y. ZhouS.N. WangS.C. WangY.Y. YangJ.K. miR-21 overexpression enhances TGF-β1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy.Mol. Cell. Endocrinol.20143921-216317210.1016/j.mce.2014.05.01824887517
    [Google Scholar]
  16. SunY. LiuW.Z. LiuT. FengX. YangN. ZhouH.F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis.J. Recept. Signal Transduct. Res.201535660060410.3109/10799893.2015.103041226096166
    [Google Scholar]
  17. YangY. LiuL. CaiJ. WuJ. GuanH. ZhuX. YuanJ. ChenS. LiM. Targeting Smad2 and Smad3 by miR-136 suppresses metastasis-associated traits of lung adenocarcinoma cells.Oncol. Res.201421634535210.3727/096504014X1402416045928525198664
    [Google Scholar]
  18. ShenS. YueH. LiY. QinJ. LiK. LiuY. WangJ. Upregulation of miR-136 in human non-small cell lung cancer cells promotes Erk1/2 activation by targeting PPP2R2A.Tumour Biol.201435163164010.1007/s13277‑013‑1087‑223959478
    [Google Scholar]
  19. ZhangC. KangK. LiX. XieB. MicroRNA-136 promotes vascular muscle cell proliferation through the ERK1/2 pathway by targeting PPP2R2A in atherosclerosis.Curr. Vasc. Pharmacol.201513340541210.2174/157016111266614111809461225409743
    [Google Scholar]
  20. DorringtonM.G. FraserI.D.C. NF-κB signaling in macrophages: Dynamics, crosstalk, and signal integration.Front. Immunol.20191070510.3389/fimmu.2019.0070531024544
    [Google Scholar]
  21. HeJ. ZhaoJ. PengX. ShiX. ZongS. ZengG. Molecular mechanism of MiR-136-5p targeting NF-κB/A20 in the IL-17-mediated inflammatory response after spinal cord injury.Cell. Physiol. Biochem.20174431224124110.1159/00048545229179211
    [Google Scholar]
  22. DengG. GaoY. CenZ. HeJ. CaoB. ZengG. ZongS. miR-136-5p regulates the inflammatory response by targeting the IKKβ/NF-κB/A20 pathway after spinal cord injury.Cell. Physiol. Biochem.201850251252410.1159/00049416530308489
    [Google Scholar]
  23. WangG. ZhangZ. JianW. LiuP. XueW. WangT. MengY. YuanC. LiH. YuY. LiuZ. WuQ. ZhangD. ZhangC. Novel long noncoding RNA OTUD6B-AS1 indicates poor prognosis and inhibits clear cell renal cell carcinoma proliferation via the Wnt/β-catenin signaling pathway.Mol. Cancer2019181153210.1186/s12943‑019‑0942‑130670025
    [Google Scholar]
  24. ZhangD. YinL. LinZ. YuC. LiJ. RenP. YangC. QiuM. LiuY. miR-136-5p/FZD4 axis is critical for Wnt signaling-mediated myogenesis and skeletal muscle regeneration.J. Cell. Physiol.20231610.1002/jcp.3104637218742
    [Google Scholar]
  25. GaoH. ChenW. PanG. LiuH. QianJ. TangW. WangW. QianS. A regulatory circuit of lncRNA NLGN1-AS1 and Wnt signalling controls clear cell renal cell carcinoma phenotypes through FZD4-modulated pathways.Aging20231524156241563910.18632/aging.20426336170021
    [Google Scholar]
  26. BrayF. LaversanneM. WeiderpassE. SoerjomataramI. The ever-increasing importance of cancer as a leading cause of premature death worldwide.Cancer2021127163029303010.1002/cncr.3358734086348
    [Google Scholar]
  27. OmranA.R. The epidemiologic transition. A theory of the epidemiology of population change.Milbank Mem. Fund Q.197149450953810.2307/33493755155251
    [Google Scholar]
  28. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  29. HansenJ. Common cancers in the elderly.Drugs Aging199813646747810.2165/00002512‑199813060‑000059883401
    [Google Scholar]
  30. McNamaraK.B. WedellN. SimmonsL.W. Experimental evolution reveals trade-offs between mating and immunity.Biol Lett20139026210.1098/rsbl.2013.02623730636
    [Google Scholar]
  31. HongH. TianX.Y. The role of macrophages in vascular repair and regeneration after ischemic injury.Int. J. Mol. Sci.20202117632810.3390/ijms2117632832878297
    [Google Scholar]
  32. ZhangW. ShiJ. ChengC. WangH. CircTIMELESS regulates the proliferation and invasion of lung squamous cell carcinoma cells via the miR-136-5p/ROCK1 axis.J. Cell. Physiol.202023595962597110.1002/jcp.2952131960961
    [Google Scholar]
  33. GengY. BaoY. DengL. SuD. ZhengH. ZhangW. Circular RNA hsa_circ_0014130 inhibits apoptosis in non–small cell lung cancer by sponging miR-136-5p and upregulating BCL2.Mol. Cancer Res.202018574875610.1158/1541‑7786.MCR‑19‑099832060230
    [Google Scholar]
  34. MeadorC.B. HataA.N. Acquired resistance to targeted therapies in NSCLC: Updates and evolving insights.Pharmacol. Ther.202021010752210.1016/j.pharmthera.2020.10752232151666
    [Google Scholar]
  35. HanB. LiK. ZhaoY. LiB. ChengY. ZhouJ. LuY. ShiY. WangZ. JiangL. LuoY. ZhangY. HuangC. LiQ. WuG. Anlotinib as a third-line therapy in patients with refractory advanced non-small-cell lung cancer: A multicentre, randomised phase II trial (ALTER0302).Br. J. Cancer2018118565466110.1038/bjc.2017.47829438373
    [Google Scholar]
  36. GuG. HuC. HuiK. ZhangH. ChenT. ZhangX. JiangX. Exosomal miR-136-5p derived from anlotinib-resistant NSCLC cells confers anlotinib resistance in non-small cell lung cancer through targeting PPP2R2A.Int. J. Nanomedicine2021166329634310.2147/IJN.S32172034556984
    [Google Scholar]
  37. LiuD. KangH. GaoM. JinL. ZhangF. ChenD. LiM. XiaoL. Exosome-transmitted circ_MMP2 promotes hepatocellular carcinoma metastasis by upregulating MMP2.Mol. Oncol.20201461365138010.1002/1878‑0261.1263731944556
    [Google Scholar]
  38. DingH. YeZ.H. WenD.Y. HuangX.L. ZengC.M. MoJ. JiangY.Q. LiJ.J. CaiX.Y. YangH. ChenG. Downregulation of miR-136-5p in hepatocellular carcinoma and its clinicopathological significance.Mol. Med. Rep.20171645393540510.3892/mmr.2017.727528849100
    [Google Scholar]
  39. DongH. JianP. YuM. WangL. Silencing of long noncoding RNA LEF1-AS1 prevents the progression of hepatocellular carcinoma via the crosstalk with microRNA-136-5p/WNK1.J. Cell. Physiol.2020235106548656210.1002/jcp.2950332068261
    [Google Scholar]
  40. MaoY. DingZ. JiangM. YuanB. ZhangY. ZhangX. Circ_0091579 exerts an oncogenic role in hepatocellular carcinoma via mediating miR-136-5p/TRIM27.Biomed. J.202245688389510.1016/j.bj.2021.12.00934974169
    [Google Scholar]
  41. ZhuL. LiuY. ChenQ. YuG. ChenJ. ChenK. YangN. ZengT. YanS. HuangA. TangH. Long-noncoding RNA colorectal neoplasia differentially expressed gene as a potential target to upregulate the expression of IRX5 by miR-136-5P to promote oncogenic properties in hepatocellular carcinoma.Cell. Physiol. Biochem.20185062229224810.1159/00049508430423553
    [Google Scholar]
  42. LiangM. YaoW. ShiB. ZhuX. CaiR. YuZ. GuoW. WangH. DongZ. LinM. ZhouX. ZhengY. Circular RNA hsa_circ_0110389 promotes gastric cancer progression through upregulating SORT1 via sponging miR-127-5p and miR-136-5p.Cell Death Dis.202112763910.1038/s41419‑021‑03903‑534162830
    [Google Scholar]
  43. YanM. LiX. TongD. HanC. ZhaoR. HeY. JinX. miR-136 suppresses tumor invasion and metastasis by targeting RASAL2 in triple-negative breast cancer.Oncol. Rep.2016361657110.3892/or.2016.476727108696
    [Google Scholar]
  44. HuanJ. XingL. LinQ. XuiH. QinX. Long noncoding RNA CRNDE activates Wnt/β-catenin signaling pathway through acting as a molecular sponge of microRNA-136 in human breast cancer.Am. J. Transl. Res.2017941977198928469804
    [Google Scholar]
  45. HuangY. ZhengS. LinY. KeL. Circular RNA circ-ERBB2 elevates the warburg effect and facilitates triple-negative breast cancer growth by the MicroRNA 136-5p/pyruvate dehydrogenase kinase 4 axis.Mol. Cell. Biol.20214110e00609-2010.1128/MCB.00609‑2034370552
    [Google Scholar]
  46. ChenP. ZhaoL. PanX. JinL. LinC. XuW. XuJ. GuanX. WuX. WangY. YangS. WangT. LaiY. Tumor suppressor microRNA-136-5p regulates the cellular function of renal cell carcinoma.Oncol. Lett.20181545995600210.3892/ol.2018.808129556316
    [Google Scholar]
  47. LiJ. HuangC. ZouY. YeJ. YuJ. GuiY. CircTLK1 promotes the proliferation and metastasis of renal cell carcinoma by sponging miR-136-5p.Mol. Cancer202019110310.1186/s12943‑020‑01225‑232503552
    [Google Scholar]
  48. WangD. ZhuX. SiqinB. RenC. YiF. Long non-coding RNA CYTOR modulates cancer progression through miR-136-5p/MAT2B axis in renal cell carcinoma.Toxicol. Appl. Pharmacol.202244711606710.1016/j.taap.2022.11606735597301
    [Google Scholar]
  49. ScelfoA. PiuntiA. PasiniD. The controversial role of the Polycomb group proteins in transcription and cancer: How much do we not understand Polycomb proteins?FEBS J.201528291703172210.1111/febs.1311225315766
    [Google Scholar]
  50. KangW. WangQ. DaiY. WangH. WangM. WangJ. ZhangD. SunP. QiT. JinX. CuiZ. Hypomethylation of PlncRNA-1 promoter enhances bladder cancer progression through the miR-136-5p/Smad3 axis.Cell Death Dis.20201112103810.1038/s41419‑020‑03240‑z33288752
    [Google Scholar]
  51. LiS. ZhaoY. ChenX. Microarray expression profile analysis of circular RNAs and their potential regulatory role in bladder carcinoma.Oncol. Rep.202045123925310.3892/or.2020.784933200221
    [Google Scholar]
  52. JungG. Hernández-IllánE. MoreiraL. BalaguerF. GoelA. Epigenetics of colorectal cancer: Biomarker and therapeutic potential.Nat. Rev. Gastroenterol. Hepatol.202017211113010.1038/s41575‑019‑0230‑y31900466
    [Google Scholar]
  53. JiangZ. HouZ. LiuW. YuZ. LiangZ. ChenS. RETRACTED ARTICLE: Circular RNA protein tyrosine kinase 2 (circPTK2) promotes colorectal cancer proliferation, migration, invasion and chemoresistance.Bioengineered202213181082310.1080/21655979.2021.201295234974791
    [Google Scholar]
  54. GaoH. SongX. KangT. YanB. FengL. GaoL. AiL. LiuX. YuJ. LiH. Long noncoding RNA CRNDE functions as a competing endogenous RNA to promote metastasis and oxaliplatin resistance by sponging miR-136 in colorectal cancer.OncoTargets Ther.20171020521610.2147/OTT.S11617828115855
    [Google Scholar]
  55. JeongJ.Y. KangH. KimT.H. KimG. HeoJ.H. KwonA.Y. KimS. JungS. AnH.J. MicroRNA-136 inhibits cancer stem cell activity and enhances the anti-tumor effect of paclitaxel against chemoresistant ovarian cancer cells by targeting Notch3.Cancer Lett.201738616817810.1016/j.canlet.2016.11.01727887917
    [Google Scholar]
  56. ZhangW. SongC. RenX. Circ_0003998 regulates the progression and docetaxel sensitivity of DTX-resistant non-small cell lung cancer cells by the miR-136-5p/CORO1C axis.Technol. Cancer Res. Treat.20212010.1177/153303382199004033511909
    [Google Scholar]
  57. Momen-HeraviF. TrachtenbergA.J. KuoW.P. ChengY.S. Genomewide study of salivary MicroRNAs for detection of oral cancer.J. Dent. Res.201493S786S93S10.1177/002203451453101824718111
    [Google Scholar]
  58. WangZ. HuangC. ZhangA. LuC. LiuL. Overexpression of circRNA_100290 promotes the progression of laryngeal squamous cell carcinoma through the miR-136-5p/RAP2C axis.Biomed. Pharmacother.202012510987410.1016/j.biopha.2020.10987432014687
    [Google Scholar]
  59. ZhaoJ. YangT. LiL. LncRNA FOXP4-AS1 is involved in cervical cancer progression via regulating miR-136-5p/CBX4 axis.OncoTargets Ther.2020132347235510.2147/OTT.S24181832256085
    [Google Scholar]
  60. CarterJ.V. GalbraithN.J. YangD. BurtonJ.F. WalkerS.P. GalandiukS. Blood-based microRNAs as biomarkers for the diagnosis of colorectal cancer: A systematic review and meta-analysis.Br. J. Cancer2017116676277410.1038/bjc.2017.1228152545
    [Google Scholar]
  61. YangY. WuJ. GuanH. CaiJ. FangL. LiJ. LiM. MiR-136 promotes apoptosis of glioma cells by targeting AEG-1 and Bcl-2.FEBS Lett.2012586203608361210.1016/j.febslet.2012.08.00322967897
    [Google Scholar]
  62. ChenW. YangY. ChenB. LuP. ZhanL. YuQ. CaoK. LiQ. MiR-136 targets E2F1 to reverse cisplatin chemosensitivity in glioma cells.J. Neurooncol.20141201435310.1007/s11060‑014‑1535‑x25139024
    [Google Scholar]
  63. WuH. LiuQ. CaiT. ChenY. LiaoF. WangZ. MiR-136 modulates glioma cell sensitivity to temozolomide by targeting astrocyte elevated gene-1.Diagn. Pathol.20149117310.1186/s13000‑014‑0173‑025266957
    [Google Scholar]
  64. LiD.X. FeiX.R. DongY.F. ChengC.D. YangY. DengX.F. HuangH.L. NiuW.X. ZhouC.X. XiaC.Y. NiuC.S. The long non-coding RNA CRNDE acts as a ceRNA and promotes glioma malignancy by preventing miR-136-5p-mediated downregulation of Bcl-2 and Wnt2.Oncotarget2017850881638817810.18632/oncotarget.2151329152149
    [Google Scholar]
  65. PuP. ZhangZ. KangC. JiangR. JiaZ. WangG. JiangH. Downregulation of Wnt2 and β-catenin by siRNA suppresses malignant glioma cell growth.Cancer Gene Ther.200916435136110.1038/cgt.2008.7818949017
    [Google Scholar]
  66. McDonaldF.E. IronsideJ.W. GregorA. WyattB. StewartM. RyeR. AdamsJ. PottsH.W.W. The prognostic influence of bcl-2 in malignant glioma.Br. J. Cancer200286121899190410.1038/sj.bjc.660021712085183
    [Google Scholar]
  67. YuH. ZhangJ. LiuX. LiY. microRNA-136-5p from bone marrow mesenchymal stem cell-derived exosomes facilitates fracture healing by targeting LRP4 to activate the Wnt/β-catenin pathway.Bone Joint Res.2021101274475810.1302/2046‑3758.1012.BJR‑2020‑0275.R234847690
    [Google Scholar]
  68. PeiG. ChenL. WangY. HeC. FuC. WeiQ. Role of miR-182 in cardiovascular and cerebrovascular diseases.Front. Cell Dev. Biol.202311118151510.3389/fcell.2023.118151537228653
    [Google Scholar]
  69. CaiR. XuY. RenY. HeS. ZhengJ. KongB. LiQ. YangX. DaiR. WeiR. SuQ. MicroRNA-136-5p protects cardiomyocytes from coronary microembolization through the inhibition of pyroptosis.Apoptosis2022273-420622110.1007/s10495‑022‑01712‑535084609
    [Google Scholar]
  70. GaoX. LiH. ZhangW. WangX. SunH. CaoY. ZhaoY. JiH. YangF. MaW. LiuY. YangB. CaiB. Photobiomodulation drives MiR-136-5p expression to promote injury repair after myocardial infarction.Int. J. Biol. Sci.20221872980299310.7150/ijbs.7144035541894
    [Google Scholar]
  71. AnijsR.J.S. NguyenY.N. CannegieterS.C. VersteegH.H. BuijsJ.T. MicroRNAs as prognostic biomarkers for (cancer–associated) venous thromboembolism.J. Thromb. Haemost.202321171710.1016/j.jtha.2022.09.00136695398
    [Google Scholar]
  72. WangX. SundquistK. ElfJ.L. StrandbergK. SvenssonP.J. HedeliusA. PalmérK. MemonA.A. SundquistJ. ZöllerB. Diagnostic potential of plasma microRNA signatures in patients with deep-vein thrombosis.Thromb. Haemost.2016116832833610.1160/TH16‑01‑007127197074
    [Google Scholar]
  73. BenincasaG. CostaD. InfanteT. LuccheseR. DonatelliF. NapoliC. Interplay between genetics and epigenetics in modulating the risk of venous thromboembolism: A new challenge for personalized therapy.Thromb. Res.201917714515310.1016/j.thromres.2019.03.00830903874
    [Google Scholar]
  74. OuM. HaoS. ChenJ. ZhaoS. CuiS. TuJ. Downregulation of interleukin-6 and C-reactive protein underlies a novel inhibitory role of microRNA-136-5p in acute lower extremity deep vein thrombosis.Aging20201221210762109010.18632/aging.10314033188660
    [Google Scholar]
  75. LiuC. ZhongL. ShenC. ChuX. LuoX. YuL. YeJ. XiongL. DanW. LiJ. LiuB. CRNDE enhances the expression of MCM5 and proliferation in acute myeloid leukemia KG-1a cells by sponging miR-136-5p.Sci. Rep.20211111675510.1038/s41598‑021‑96156‑334408205
    [Google Scholar]
  76. LvC. WangJ. DaiS. ChenY. JiangX. LiX. Long non-coding RNA NORAD induces phenotypic regulation of vascular smooth muscle cells through regulating microRNA-136-5p-targeted KDM1A.Cell Cycle202120202137214810.1080/15384101.2021.197135134583619
    [Google Scholar]
  77. ZhongY. YuC. QinW. LncRNA SNHG14 promotes inflammatory response induced by cerebral ischemia/reperfusion injury through regulating miR-136-5p /ROCK1.Cancer Gene Ther.2019267-823424710.1038/s41417‑018‑0067‑530546117
    [Google Scholar]
  78. ZhangL. DongM.N. DengJ. ZhangC.H. LiuM.W. Resveratrol exhibits neuroprotection against paraquat-induced PC12 cells via heme oxygenase 1 upregulation by decreasing MiR-136-5p expression.Bioengineered20221337065708110.1080/21655979.2022.204576435236239
    [Google Scholar]
  79. ChoN.H. ShawJ.E. KarurangaS. HuangY. da Rocha FernandesJ.D. OhlroggeA.W. MalandaB. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045.Diabetes Res. Clin. Pract.201813827128110.1016/j.diabres.2018.02.02329496507
    [Google Scholar]
  80. JefferyN. HarriesL.W. Corrigendum to “miRNAs responsive to the diabetic microenvironment in the human beta cell line EndoC betaH1 may target genes in the FOXO, HIPPO and Lysine degradation pathways”.Exp. Cell Res.201938511165410.1016/j.yexcr.2019.11165431590970
    [Google Scholar]
  81. DengS. YangL. MaK. BianW. Astragalus polysaccharide improve the proliferation and insulin secretion of mouse pancreatic β cells induced by high glucose and palmitic acid partially through promoting miR-136-5p and miR-149-5p expression.Bioengineered20211229872988410.1080/21655979.2021.199631434699323
    [Google Scholar]
  82. ArdestaniA. MaedlerK. The hippo signaling pathway in pancreatic β-cells: Functions and regulations.Endocr. Rev.2018391213510.1210/er.2017‑0016729053790
    [Google Scholar]
  83. ZhangL. LongJ. JiangW. ShiY. HeX. ZhouZ. LiY. YeungR.O. WangJ. MatsushitaK. CoreshJ. ZhaoM.H. WangH. Trends in chronic kidney disease in China.N. Engl. J. Med.2016375990590610.1056/NEJMc160246927579659
    [Google Scholar]
  84. ZhangW. ZhangL. DongQ. WangX. LiZ. WangQ. Hsa_circ_0003928 regulates the progression of diabetic nephropathy through miR-136-5p/PAQR3 axis.J. Endocrinol. Invest.202346102103211410.1007/s40618‑023‑02061‑z37017919
    [Google Scholar]
  85. LiY. LeiZ. RitzelR.M. HeJ. LiH. ChoiH.M.C. LipinskiM.M. WuJ. Impairment of autophagy after spinal cord injury potentiates neuroinflammation and motor function deficit in mice.Theranostics202212125364538810.7150/thno.7271335910787
    [Google Scholar]
  86. GaoZ. LiQ. ZhangY. GaoX. LiH. YuanZ. Ripasudil alleviated the inflammation of RPE cells by targeting the miR-136-5p/ROCK/NLRP3 pathway.BMC Ophthalmol.202020113410.1186/s12886‑020‑01400‑532252692
    [Google Scholar]
  87. XuP. ZhangJ. WangM. LiuB. LiR. LiH. ZhaiN. LiuW. LvC. SongX. hnRNPL-activated circANKRD42 back-splicing and circANKRD42-mediated crosstalk of mechanical stiffness and biochemical signal in lung fibrosis.Mol. Ther.20223062370238710.1016/j.ymthe.2022.01.04535278674
    [Google Scholar]
  88. GongB. ZhengY. LiJ. LeiH. LiuK. TangJ. PengY. Luteolin activates M2 macrophages and suppresses M1 macrophages by upregulation of hsa_circ_0001326 in THP-1 derived macrophages.Bioengineered20221335079509010.1080/21655979.2022.203689735152837
    [Google Scholar]
  89. MandlL.A. Osteoarthritis year in review 2018: Clinical.Osteoarthr. Cartil.201927335936410.1016/j.joca.2018.11.00130453055
    [Google Scholar]
  90. ChenX. ShiY. XueP. MaX. LiJ. ZhangJ. Mesenchymal stem cell-derived exosomal microRNA-136-5p inhibits chondrocyte degeneration in traumatic osteoarthritis by targeting ELF3.Arthritis Res. Ther.202022125610.1186/s13075‑020‑02325‑633109253
    [Google Scholar]
  91. YangJ. LiQ. WangT. LvK. Circular RNA triple functional domain promotes osteoarthritis’ development by modulating the microRNA-136-5p/Nicotinamide phosphoribosyltransferase axis.Bioengineered20221336070607910.1080/21655979.2021.201809535191807
    [Google Scholar]
  92. DiMarioF.J.Jr SahinM. Ebrahimi-FakhariD. Tuberous sclerosis complex.Pediatr. Clin. North Am.201562363364810.1016/j.pcl.2015.03.00526022167
    [Google Scholar]
  93. PawlikB. SmyczyńskaU. GrabiaS. FendlerW. DróżdżI. Bąbol-PokoraK. KotulskaK. JóźwiakS. BorkowskaJ. MłynarskiW. TrelińskaJ. mTOR inhibitor treatment in patients with tuberous sclerosis complex is associated with specific changes in microRNA serum profile.J. Clin. Med.20221112339510.3390/jcm1112339535743464
    [Google Scholar]
  94. CaiY. GuoH. LiH.Z. WangW.D. ZhangY.S. MicroRNA differential expression profile in tuberous sclerosis complex cell line TSC2-/- MEFs and normal cell line TSC2+/+ MEFs.Beijing Da Xue Xue Bao201749458058428816269
    [Google Scholar]
  95. LongleyD.B. JohnstonP.G. Molecular mechanisms of drug resistance.J. Pathol.2005205227529210.1002/path.170615641020
    [Google Scholar]
  96. EmranT.B. ShahriarA. MahmudA.R. RahmanT. AbirM.H. SiddiqueeM.F.R. AhmedH. RahmanN. NainuF. WahyudinE. MitraS. DhamaK. HabiballahM.M. HaqueS. IslamA. HassanM.M. Multidrug resistance in cancer: Understanding molecular mechanisms, immunoprevention and therapeutic approaches.Front. Oncol.20221289165210.3389/fonc.2022.89165235814435
    [Google Scholar]
  97. TanX. SongX. FanB. LiM. ZhangA. PeiL. Exosomal circRNA Scm-like with four malignant brain tumor domains 2 (circ-SFMBT2) enhances the docetaxel resistance of prostate cancer via the microRNA-136-5p/tribbles homolog 1 pathway.Anti-cancer drugs202233987188210.1097/CAD.000000000000136536136987
    [Google Scholar]
  98. HeN. XiangL. ChenL. TongH. WangK. ZhaoJ. SongF. YangH. WeiX. JiaoZ. The role of long non-coding RNA FGD5-AS1 in cancer.Bioengineered2022134110261104110.1080/21655979.2022.206729235475392
    [Google Scholar]
  99. WangJ. XiangY. YangS.X. ZhangH.M. LiH. ZongQ.B. LiL.W. ZhaoL.L. XiaR.H. LiC. BaoL.Y. ZhangT.C. LiaoX.H. MIR99AHG inhibits EMT in pulmonary fibrosis via the miR-136-5p/USP4/ACE2 axis.J. Transl. Med.202220142645110.1186/s12967‑022‑03633‑y36138468
    [Google Scholar]
  100. CandidoJ. HagemannT. Cancer-related inflammation.J. Clin. Immunol.201333S1798410.1007/s10875‑012‑9847‑023225204
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673283936240215110627
Loading
/content/journals/cmc/10.2174/0109298673283936240215110627
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bioinformatics; cancer; gene expression; inflammation; MiR-136-5p; signaling pathway
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test