Skip to content
2000
Volume 32, Issue 26
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Chronic wounds remain one of the significant burdens to health across the world, mainly in view of diabetes and its natural consequences. This category of lesions includes pressure ulcers, vascular diseases, and surgery-related wounds, which affect millions and pose a major challenge to the healthcare industry. The paper reviews the various physiological mechanisms of wound healing, factors that impede it, and some new treatments emerging at this moment. In contrast, current developments include surgical and non-surgical alternatives like topical dressings, medicated formulations, and skin substitutes. Advanced wound care today covers tissue-engineered skin substitutes, 3D-printed wound dressings, topical medicated formulations, and growth factor-based therapies. These are non-invasive, biocompatible methods that are cost-effective, user-friendly, and more conducive to natural healing than traditional therapies. Hydrogel dressings have high water content to create a moist environment that encourages healing. They also reflect excellent physicochemical and biological properties, which enhance autolytic debridement and reduction of pain due to the moisture retention, biocompatibility, and non-toxicity conferred. Tissue-engineered skin substitutes, comprising allogeneic or autologous cells, wound-healing enhancement bioengineered allogeneic cellular therapies are like the natural skin and encourage regeneration. 3D printing allows the production of customized dressings to aid in better treatment. Newer therapies, including bioengineered allogeneic cellular therapies and fish skin grafting, require more clinical trials to confirm safety and efficacy. With such innovations in wound healing technologies and therapies, the future looks quite promising in managing chronic wounds, enhancing healing, reducing healthcare expenditure, and promoting a better quality of life for patients.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673312649240829103906
2024-09-13
2025-10-26
Loading full text...

Full text loading...

References

  1. RondasA.A.L.M. ScholsJ.M.G.A. StobberinghE.E. HalfensR.J.G. Prevalence of chronic wounds and structural quality indicators of chronic wound care in Dutch nursing homes.Int. Wound J.201512663063510.1111/iwj.1217224164755
    [Google Scholar]
  2. DriverV.R. BlumeP.A. Evaluation of wound care and health-care use costs in patients with diabetic foot ulcers treated with negative pressure wound therapy versus advanced moist wound therapy.J. Am. Podiatr. Med. Assoc.2014104214715310.7547/0003‑0538‑104.2.14724725034
    [Google Scholar]
  3. RiceJ.B. DesaiU. CummingsA.K.G. BirnbaumH.G. SkornickiM. ParsonsN.B. Burden of diabetic foot ulcers for medicare and private insurers.Diabetes Care201437365165810.2337/dc13‑217624186882
    [Google Scholar]
  4. KerrM. BarronE. ChadwickP. EvansT. KongW.M. RaymanG. Sutton-SmithM. ToddG. YoungB. JeffcoateW.J. The cost of diabetic foot ulcers and amputations to the National Health Service in England.Diabet. Med.2019368995100210.1111/dme.1397331004370
    [Google Scholar]
  5. ChenH.Y. KuoS. SuP.F. WuJ.S. OuH.T. Health care costs associated with macrovascular, microvascular, and metabolic complications of type 2 diabetes across time: estimates from a population-based cohort of more than 0.8 million individuals with up to 15 years of follow-up.Diabetes Care20204381732174010.2337/dc20‑007232444454
    [Google Scholar]
  6. SuH.Y. YangC.Y. OuH.T. ChenS.G. ChenJ.C. HoH.J. KuoS. Cost-effectiveness of novel macrophage-regulating treatment for wound healing in patients with diabetic foot ulcers from the Taiwan health care sector perspective.JAMA Netw. Open202361e225063910.1001/jamanetworkopen.2022.5063936633847
    [Google Scholar]
  7. MatooriS. Breakthrough technologies in diagnosis and therapy of chronic wounds.ACS Appl. Bio Mater.2023662014201610.1021/acsabm.3c0022537162061
    [Google Scholar]
  8. SchultzG.S. SibbaldR.G. FalangaV. AyelloE.A. DowsettC. HardingK. RomanelliM. StaceyM.C. TeotL. VanscheidtW. Wound bed preparation: a systematic approach to wound management.Wound Repair Regen.200311s1Suppl. 1S1S2810.1046/j.1524‑475X.11.s2.1.x12654015
    [Google Scholar]
  9. ErikssonE. LiuP.Y. SchultzG.S. Martins-GreenM.M. TanakaR. WeirD. GouldL.J. ArmstrongD.G. GibbonsG.W. WolcottR. OlutoyeO.O. KirsnerR.S. GurtnerG.C. Chronic wounds: Treatment consensus.Wound Repair Regen.202230215617110.1111/wrr.1299435130362
    [Google Scholar]
  10. PatryJ. BlanchetteV. Enzymatic debridement with collagenase in wounds and ulcers: a systematic review and meta-analysis.Int. Wound J.20171461055106510.1111/iwj.1276028440050
    [Google Scholar]
  11. ThomasD.C. TsuC.L. NainR.A. ArsatN. FunS.S. Sahid Nik LahN.A. The role of debridement in wound bed preparation in chronic wound: A narrative review.Ann. Med. Surg. (Lond.)20217110287610.1016/j.amsu.2021.10287634745599
    [Google Scholar]
  12. WilkinsonH.N. HardmanM.J. Wound healing: cellular mechanisms and pathological outcomes.Open Biol.202010920022310.1098/rsob.20022332993416
    [Google Scholar]
  13. ZhuS. YuY. RenY. XuL. WangH. LingX. JinL. HuY. ZhangH. MiaoC. GuoK. The emerging roles of neutrophil extracellular traps in wound healing.Cell Death Dis.2021121198410.1038/s41419‑021‑04294‑334686654
    [Google Scholar]
  14. XiaoT. YanZ. XiaoS. XiaY. Proinflammatory cytokines regulate epidermal stem cells in wound epithelialization.Stem Cell Res. Ther.202011123210.1186/s13287‑020‑01755‑y32527289
    [Google Scholar]
  15. WangW. YanX. LinY. GeH. TanQ. Wnt7a promotes wound healing by regulation of angiogenesis and inflammation: Issues on diabetes and obesity.J. Dermatol. Sci.201891212413310.1016/j.jdermsci.2018.02.00729853224
    [Google Scholar]
  16. ShiY. ShiH. NomiA. Lei-leiZ.H.A.N.G. ZhangB. QianH. Mesenchymal stem cell–derived extracellular vesicles: a new impetus of promoting angiogenesis in tissue regeneration.Cytotherapy201921549750810.1016/j.jcyt.2018.11.01231079806
    [Google Scholar]
  17. GushikenL.F.S. BeserraF.P. BastosJ.K. JacksonC.J. PellizzonC.H. Cutaneous wound healing: An update from physiopathology to current therapies.Life (Basel)202111766510.3390/life1107066534357037
    [Google Scholar]
  18. MatarD.Y. NgB. DarwishO. WuM. OrgillD.P. PanayiA.C. Skin inflammation with a focus on wound healing.Adv. Wound Care (New Rochelle)202312526928710.1089/wound.2021.012635287486
    [Google Scholar]
  19. WinklerJ. Abisoye-OgunniyanA. MetcalfK.J. WerbZ. Concepts of extracellular matrix remodelling in tumour progression and metastasis.Nat. Commun.2020111512010.1038/s41467‑020‑18794‑x33037194
    [Google Scholar]
  20. RenL.L. LiX.J. DuanT.T. LiZ.H. YangJ.Z. ZhangY.M. ZhaoY.Y. Transforming growth factor-β signaling: from tissue fibrosis to therapeutic opportunities.Chem. Biol. Interact.202211028910.1016/j.cbi.2022.11028936455676
    [Google Scholar]
  21. de Castro BrásL.E. FrangogiannisN.G. Extracellular matrix-derived peptides in tissue remodeling and fibrosis.Matrix Biol.202091-9217618710.1016/j.matbio.2020.04.00632438055
    [Google Scholar]
  22. EmingS.A. MartinP. Tomic-CanicM. Wound repair and regeneration: Mechanisms, signaling, and translation.Sci. Transl. Med.20146265265sr610.1126/scitranslmed.300933725473038
    [Google Scholar]
  23. BonoraM. PatergnaniS. RimessiA. De MarchiE. SuskiJ.M. BononiA. GiorgiC. MarchiS. MissiroliS. PolettiF. WieckowskiM.R. PintonP. ATP synthesis and storage.Purinergic Signal.20128334335710.1007/s11302‑012‑9305‑822528680
    [Google Scholar]
  24. GuoS. DiPietroL.A. Factors affecting wound healing.J. Dent. Res.201089321922910.1177/002203450935912520139336
    [Google Scholar]
  25. HongW.X. HuM.S. EsquivelM. LiangG.Y. RennertR.C. McArdleA. PaikK.J. DuscherD. GurtnerG.C. LorenzH.P. LongakerM.T. The role of hypoxia-inducible factor in wound healing.Adv. Wound Care (New Rochelle)20143539039910.1089/wound.2013.052024804159
    [Google Scholar]
  26. SchremlS. SzeimiesR.M. PrantlL. KarrerS. LandthalerM. BabilasP. Oxygen in acute and chronic wound healing.Br. J. Dermatol.2010163225726810.1111/j.1365‑2133.2010.09804.x20394633
    [Google Scholar]
  27. WildT. RahbarniaA. KellnerM. SobotkaL. EberleinT. Basics in nutrition and wound healing.Nutrition201026986286610.1016/j.nut.2010.05.00820692599
    [Google Scholar]
  28. StechmillerJ.K. Understanding the role of nutrition and wound healing.Nutr. Clin. Pract.2010251616810.1177/088453360935899720130158
    [Google Scholar]
  29. ShieldsB. Diet in wound care: Can nutrition impact healing?Cutis2021108632532810.12788/cutis.040735167786
    [Google Scholar]
  30. EdwardsR. HardingK.G. Bacteria and wound healing.Curr. Opin. Infect. Dis.2004172919610.1097/00001432‑200404000‑0000415021046
    [Google Scholar]
  31. MihaiM.M. DimaM.B. DimaB. HolbanA.M. Nanomaterials for wound healing and infection control.Materials (Basel)20191213217610.3390/ma1213217631284587
    [Google Scholar]
  32. GouinJ.P. Kiecolt-GlaserJ.K. The impact of psychological stress on wound healing: methods and mechanisms.Immunol. Allergy Clin. North Am.2011311819310.1016/j.iac.2010.09.01021094925
    [Google Scholar]
  33. GosainA. DiPietroL.A. Aging and wound healing.World J. Surg.200428332132610.1007/s00268‑003‑7397‑614961191
    [Google Scholar]
  34. BlairM.J. JonesJ.D. WoessnerA.E. QuinnK.P. Skin structure–function relationships and the wound healing response to intrinsic aging.Adv. Wound Care (New Rochelle)20209312714310.1089/wound.2019.102131993254
    [Google Scholar]
  35. HorngH.C. ChangW.H. YehC.C. HuangB.S. ChangC.P. ChenY.J. TsuiK.H. WangP.H. Estrogen effects on wound healing.Int. J. Mol. Sci.20171811232510.3390/ijms1811232529099810
    [Google Scholar]
  36. GilliverS.C. AshworthJ.J. AshcroftG.S. The hormonal regulation of cutaneous wound healing.Clin. Dermatol.2007251566210.1016/j.clindermatol.2006.09.01217276202
    [Google Scholar]
  37. EmingS.A. MurrayP.J. PearceE.J. Metabolic orchestration of the wound healing response.Cell Metab.20213391726174310.1016/j.cmet.2021.07.01734384520
    [Google Scholar]
  38. AndersonK. HammR.L. Factors that impair wound healing.J. Am. Coll. Clin. Wound Spec.201244849110.1016/j.jccw.2014.03.00126199879
    [Google Scholar]
  39. WangA.S. ArmstrongE.J. ArmstrongA.W. Corticosteroids and wound healing: clinical considerations in the perioperative period.Am. J. Surg.2013206341041710.1016/j.amjsurg.2012.11.01823759697
    [Google Scholar]
  40. XiaN. MortezaA. YangF. CaoH. WangA. Review of the role of cigarette smoking in diabetic foot.J. Diabetes Investig.201910220221510.1111/jdi.1295230300476
    [Google Scholar]
  41. CohenA.J. NikbakhtN. UittoJ. Keloid disorder: genetic basis, gene expression profiles, and immunological modulation of the fibrotic processes in the skin.Cold Spring Harb. Perspect. Biol.2023157a04124510.1101/cshperspect.a04124536411063
    [Google Scholar]
  42. ObagiZ. DamianiG. GradaA. FalangaV. Principles of wound dressings: a review.Surg. Technol. Int.201935505731480092
    [Google Scholar]
  43. KusK.J.B. RuizE.S. Wound dressings–a practical review.Curr. Dermatol. Rep.20209429830810.1007/s13671‑020‑00319‑w
    [Google Scholar]
  44. AkbarA.R. SuS. AmjadB. CaiY. LinL. Effect of bamboo viscose on the wicking and moisture management properties of gauze.IOP Conf. Ser.: Mater. Sci. Eng.201727501204210.1088/1757‑899X/275/1/012042
    [Google Scholar]
  45. PowersJ.G. MortonL.M. PhillipsT.J. Dressings for chronic wounds.Dermatol. Ther.201326319720610.1111/dth.1205523742280
    [Google Scholar]
  46. DabiriG. DamstetterE. PhillipsT. Choosing a wound dressing based on common wound characteristics.Adv. Wound Care (New Rochelle)201651324110.1089/wound.2014.058626858913
    [Google Scholar]
  47. AhmedE.M. Hydrogel: Preparation, characterization, and applications: A review.J. Adv. Res.20156210512110.1016/j.jare.2013.07.00625750745
    [Google Scholar]
  48. UllahF. OthmanM.B.H. JavedF. AhmadZ. AkilH.M. Classification, processing and application of hydrogels: A review.Mater. Sci. Eng. C20155741443310.1016/j.msec.2015.07.05326354282
    [Google Scholar]
  49. ShamlooA. AghababaieZ. AfjoulH. JamiM. BidgoliM.R. VossoughiM. RamazaniA. KamyabhesariK. Fabrication and evaluation of chitosan/gelatin/PVA hydrogel incorporating honey for wound healing applications: An in vitro, in vivo study.Int. J. Pharm.202159212006810.1016/j.ijpharm.2020.12006833188894
    [Google Scholar]
  50. ChopraH. BibiS. KumarS. KhanM.S. KumarP. SinghI. Preparation and evaluation of chitosan/PVA based hydrogel films loaded with honey for wound healing application.Gels20228211110.3390/gels802011135200493
    [Google Scholar]
  51. El-KasedR.F. AmerR.I. AttiaD. ElmazarM.M. Honey-based hydrogel: In vitro and comparative In vivo evaluation for burn wound healing.Sci. Rep.201771969210.1038/s41598‑017‑08771‑828851905
    [Google Scholar]
  52. ŞalvaE. AkdağA.E. AlanS. ArısoyS. AkbuğaF.J. Evaluation of the effect of honey-containing chitosan/hyaluronic acid hydrogels on wound healing.Gels202391185610.3390/gels911085637998945
    [Google Scholar]
  53. XiaoJ. ZhouY. YeM. AnY. WangK. WuQ. SongL. ZhangJ. HeH. ZhangQ. WuJ. Freeze-thawing chitosan/ions hydrogel coated gauzes releasing multiple metal ions on demand for improved infected wound healing.Adv. Healthc. Mater.2021106200159110.1002/adhm.20200159133320448
    [Google Scholar]
  54. Farasati FarB. Naimi-JamalM.R. JahanbakhshiM. HadizadehA. DehghanS. HadizadehS. Enhanced antibacterial activity of porous chitosan-based hydrogels crosslinked with gelatin and metal ions.Sci. Rep.2024141750510.1038/s41598‑024‑58174‑938553565
    [Google Scholar]
  55. MasoodN. AhmedR. TariqM. AhmedZ. MasoudM.S. AliI. AsgharR. AndleebA. HasanA. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits.Int. J. Pharm.2019559233610.1016/j.ijpharm.2019.01.01930668991
    [Google Scholar]
  56. HeX. LiuX. YangJ. DuH. ChaiN. ShaZ. GengM. ZhouX. HeC. Tannic acid-reinforced methacrylated chitosan/methacrylated silk fibroin hydrogels with multifunctionality for accelerating wound healing.Carbohydr. Polym.202024711668910.1016/j.carbpol.2020.11668932829817
    [Google Scholar]
  57. LiuS. JiangN. ChiY. PengQ. DaiG. QianL. XuK. ZhongW. YueW. Injectable and self-healing hydrogel based on chitosan-tannic acid and oxidized hyaluronic acid for wound healing.ACS Biomater. Sci. Eng.2022893754376410.1021/acsbiomaterials.2c0032135993819
    [Google Scholar]
  58. GuptaA. BriffaS.M. SwinglerS. GibsonH. KannappanV. AdamusG. KowalczukM. MartinC. RadeckaI. Synthesis of silver nanoparticles using curcumin-cyclodextrins loaded into bacterial cellulose-based hydrogels for wound dressing applications.Biomacromolecules20202151802181110.1021/acs.biomac.9b0172431967794
    [Google Scholar]
  59. DengL. LiF. HanZ. QuX. LiJ. ZhouZ. ChenS. WangH. LvX. Bacterial cellulose-based hydrogel with regulated rehydration and enhanced antibacterial activity for wound healing.Int. J. Biol. Macromol.2024267Pt 113129110.1016/j.ijbiomac.2024.13129138583839
    [Google Scholar]
  60. PaganoC. CeccariniM.R. FaietaM. di MicheleA. BlasiF. CossignaniL. BeccariT. OlivaE. PittiaP. SergiM. PrimavillaS. SerafiniD. BenedettiL. RicciM. PerioliL. Starch-based sustainable hydrogel loaded with Crocus sativus petals extract: A new product for wound care.Int. J. Pharm.202262512206710.1016/j.ijpharm.2022.12206735931396
    [Google Scholar]
  61. ZhangM. ZhaoX. Alginate hydrogel dressings for advanced wound management.Int. J. Biol. Macromol.20201621414142810.1016/j.ijbiomac.2020.07.31132777428
    [Google Scholar]
  62. YingH. ZhouJ. WangM. SuD. MaQ. LvG. ChenJ. In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing.Mater. Sci. Eng. C201910148749810.1016/j.msec.2019.03.09331029343
    [Google Scholar]
  63. WangD. XuP. WangS. LiW. LiuW. Rapidly curable hyaluronic acid-catechol hydrogels inspired by scallops as tissue adhesives for hemostasis and wound healing.Eur. Polym. J.202013410976310.1016/j.eurpolymj.2020.109763
    [Google Scholar]
  64. NgJ.Y. ZhuX. MukherjeeD. ZhangC. HongS. KumarY. GokhaleR. EeP.L.R. Pristine gellan gum–collagen interpenetrating network hydrogels as mechanically enhanced anti-inflammatory biologic wound dressings for burn wound therapy.ACS Appl. Bio Mater.2021421470148210.1021/acsabm.0c0136335014496
    [Google Scholar]
  65. MahmoodH. KhanI.U. AsifM. KhanR.U. AsgharS. KhalidI. KhalidS.H. IrfanM. RehmanF. ShahzadY. YousafA.M. YounusA. NiaziZ.R. AsimM. In vitro and in vivo evaluation of gellan gum hydrogel films: Assessing the co impact of therapeutic oils and ofloxacin on wound healing.Int. J. Biol. Macromol.202116648349510.1016/j.ijbiomac.2020.10.20633130262
    [Google Scholar]
  66. ChatterjeeN.S. SukumaranH.G. DaraP.K. GanesanB. AshrafM. AnandanR. MathewS. NagarajaraoR.C. Nano-encapsulation of curcumin in fish collagen grafted succinyl chitosan hydrogel accelerates wound healing process in experimental rats.Food Hydrocolloids Health2022210006110.1016/j.fhfh.2022.100061
    [Google Scholar]
  67. FloraT. de TorreI.G. AlonsoM. Rodríguez-CabelloJ.C. Tethering QK peptide to enhance angiogenesis in elastin-like recombinamer (ELR) hydrogels.J. Mater. Sci. Mater. Med.20193023010.1007/s10856‑019‑6232‑z30762134
    [Google Scholar]
  68. NorahanM.H. Pedroza-GonzálezS.C. Sánchez-SalazarM.G. ÁlvarezM.M. Trujillo de SantiagoG. Structural and biological engineering of 3D hydrogels for wound healing.Bioact. Mater.20232419723510.1016/j.bioactmat.2022.11.01936606250
    [Google Scholar]
  69. FirlarI. AltunbekM. McCarthyC. RamalingamM. Camci-UnalG. Functional hydrogels for treatment of chronic wounds.Gels20228212710.3390/gels802012735200508
    [Google Scholar]
  70. KharazihaM. BaidyaA. AnnabiN. Rational design of immunomodulatory hydrogels for chronic wound healing.Adv. Mater.20213339210017610.1002/adma.20210017634251690
    [Google Scholar]
  71. GaoY. LiZ. HuangJ. ZhaoM. WuJ. In situ formation of injectable hydrogels for chronic wound healing.J. Mater. Chem. B Mater. Biol. Med.20208388768878010.1039/D0TB01074J33026387
    [Google Scholar]
  72. SolankiD. VinchhiP. PatelM.M. Design considerations, formulation approaches, and strategic advances of hydrogel dressings for chronic wound management.ACS Omega2023898172818910.1021/acsomega.2c0680636910992
    [Google Scholar]
  73. JiJ.Y. RenD.Y. WengY.Z. Efficiency of multifunctional antibacterial hydrogels for chronic wound healing in Diabetes: A comprehensive review.Int. J. Nanomed.202220223163317610.2147/IJN.S363827
    [Google Scholar]
  74. LiuW.S. LiuY. GaoJ. ZhengH. LuZ.M. LiM. Biomembrane-based nanostructure-and microstructure-loaded hydrogels for promoting chronic wound healing.Int. J. Nanomed.2023202338541110.2147/IJN.S387382
    [Google Scholar]
  75. RainaN. PahwaR. ThakurV.K. GuptaM. Polysaccharide-based hydrogels: New insights and futuristic prospects in wound healing.Int. J. Biol. Macromol.2022223Pt A1586160310.1016/j.ijbiomac.2022.11.11536395945
    [Google Scholar]
  76. HuangC. DongL. ZhaoB. LuY. HuangS. YuanZ. LuoG. XuY. QianW. Anti-inflammatory hydrogel dressings and skin wound healing.Clin. Transl. Med.20221211e109410.1002/ctm2.109436354147
    [Google Scholar]
  77. HeJ.J. McCarthyC. Camci-UnalG. Development of Hydrogel-Based Sprayable Wound Dressings for Second- and Third-Degree Burns.Adv. NanoBiomed Res.202116210000410.1002/anbr.202100004
    [Google Scholar]
  78. Maaz ArifM. KhanS.M. GullN. TabishT.A. ZiaS. Ullah KhanR. AwaisS.M. Arif ButtM. Polymer-based biomaterials for chronic wound management: Promises and challenges.Int. J. Pharm.202159812027010.1016/j.ijpharm.2021.12027033486030
    [Google Scholar]
  79. HuH. XuF.J. Rational design and latest advances of polysaccharide-based hydrogels for wound healing.Biomater. Sci.2020882084210110.1039/D0BM00055H32118241
    [Google Scholar]
  80. TangY. ZhangX. LiX. MaC. ChuX. WangL. XuW. A review on recent advances of protein-polymer hydrogels.Eur. Polym. J.202216211088110.1016/j.eurpolymj.2021.110881
    [Google Scholar]
  81. SanjanwalaD. LondheV. TrivediR. BondeS. SawarkarS. KaleV. PatravaleV. Polysaccharide-based hydrogels for drug delivery and wound management: a review.Expert Opin. Drug Deliv.202219121664169510.1080/17425247.2022.215279136440488
    [Google Scholar]
  82. ChengJ. LiuJ. LiM. LiuZ. WangX. ZhangL. WangZ. Hydrogel-based biomaterials engineered from natural-derived polysaccharides and proteins for hemostasis and wound healing.Front. Bioeng. Biotechnol.2021978018710.3389/fbioe.2021.78018734881238
    [Google Scholar]
  83. LazaridouM. BikiarisD.N. LamprouD.A. 3D bioprinted chitosan-based hydrogel scaffolds in tissue engineering and localised drug delivery.Pharmaceutics2022149197810.3390/pharmaceutics1409197836145727
    [Google Scholar]
  84. AlvenS. AderibigbeB.A. Chitosan and cellulose-based hydrogels for wound management.Int. J. Mol. Sci.20202124965610.3390/ijms2124965633352826
    [Google Scholar]
  85. XiongY. ZhangX. MaX. WangW. YanF. ZhaoX. ChuX. XuW. SunC. A review of the properties and applications of bioadhesive hydrogels.Polym. Chem.202112263721373910.1039/D1PY00282A
    [Google Scholar]
  86. ByrneM. AlyA. The surgical suture.Aesthet. Surg. J.201939Suppl. 2S67S7210.1093/asj/sjz03630869751
    [Google Scholar]
  87. BaoZ. XianC. YuanQ. LiuG. WuJ. Natural polymer-based hydrogels with enhanced mechanical performances: preparation, structure, and property.Adv. Healthc. Mater.2019817190067010.1002/adhm.20190067031364824
    [Google Scholar]
  88. GowdaA.H.J. BuY. KudinaO. KrishnaK.V. BoharaR.A. EglinD. PanditA. Design of tunable gelatin-dopamine based bioadhesives.Int. J. Biol. Macromol.20201641384139110.1016/j.ijbiomac.2020.07.19532721461
    [Google Scholar]
  89. ShaoQ. ZhangW. QiJ. LiaoH. GuoH. TanX. ChiB. Laponite stabilized endogenous antibacterial hydrogel as wet-tissue adhesive.J. Mech. Behav. Biomed. Mater.202314514510600910.1016/j.jmbbm.2023.10600937423008
    [Google Scholar]
  90. JiangY. ZhangX. ZhangW. WangM. YanL. WangK. HanL. LuX. Infant skin friendly adhesive hydrogel patch activated at body temperature for bioelectronics securing and diabetic wound healing.ACS Nano20221668662867610.1021/acsnano.2c0066235549213
    [Google Scholar]
  91. HanL. LuX. LiuK. WangK. FangL. WengL.T. ZhangH. TangY. RenF. ZhaoC. SunG. LiangR. LiZ. Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization.ACS Nano20171132561257410.1021/acsnano.6b0531828245107
    [Google Scholar]
  92. LiuK. ZhangC. ChangR. HeY. GuanF. YaoM. Ultra-stretchable, tissue-adhesive, shape-adaptive, self-healing, on-demand removable hydrogel dressings with multiple functions for infected wound healing in regions of high mobility.Acta Biomater.202316622424010.1016/j.actbio.2023.05.02537207743
    [Google Scholar]
  93. FalangaV. IsseroffR.R. SoulikaA.M. RomanelliM. MargolisD. KappS. GranickM. HardingK. Chronic wounds.Nat. Rev. Dis. Primers2022815010.1038/s41572‑022‑00377‑335864102
    [Google Scholar]
  94. KalelkarP.P. RiddickM. GarcíaA.J. Biomaterial-based antimicrobial therapies for the treatment of bacterial infections.Nat. Rev. Mater.202171395410.1038/s41578‑021‑00362‑435330939
    [Google Scholar]
  95. JiaB. LiG. CaoE. LuoJ. ZhaoX. HuangH. Recent progress of antibacterial hydrogels in wound dressings.Mater. Today Bio.20231910058210.1016/j.mtbio.2023.10058236896416
    [Google Scholar]
  96. WangW. UmmartyotinS. NarainR. Advances and challenges on hydrogels for wound dressing.Curr. Opin. Biomed. Eng.20232610044310.1016/j.cobme.2022.100443
    [Google Scholar]
  97. SalehiM. EhteramiA. FarzamfarS. VaezA. Ebrahimi-BaroughS. Accelerating healing of excisional wound with alginate hydrogel containing naringenin in rat model.Drug Deliv. Transl. Res.202111114215310.1007/s13346‑020‑00731‑632086788
    [Google Scholar]
  98. KubiczekD. RaberH. Gonzalez-GarcíaM. Morales-VicenteF. StaendkerL. Otero-GonzalezA.J. RosenauF. Derivates of the antifungal peptide Cm-p5 inhibit development of Candida auris biofilms in vitro.Antibiotics (Basel)20209736310.3390/antibiotics907036332605024
    [Google Scholar]
  99. ZhongY. XiaoH. SeidiF. JinY. Natural polymer-based antimicrobial hydrogels without synthetic antibiotics as wound dressings.Biomacromolecules20202182983300610.1021/acs.biomac.0c0076032672446
    [Google Scholar]
  100. TamahkarE. ÖzkahramanB. SüloğluA.K. İdilN. PerçinI. A novel multilayer hydrogel wound dressing for antibiotic release.J. Drug Deliv. Sci. Technol.20205810153610.1016/j.jddst.2020.101536
    [Google Scholar]
  101. ThapaR.K. Winther-LarsenH.C. OvchinnikovK. CarlsenH. DiepD.B. TønnesenH.H. Hybrid hydrogels for bacteriocin delivery to infected wounds.Eur. J. Pharm. Sci.202116610599010.1016/j.ejps.2021.10599034481880
    [Google Scholar]
  102. HaidariH. BrightR. GargS. VasilevK. CowinA.J. KopeckiZ. Eradication of mature bacterial biofilms with concurrent improvement in chronic wound healing using silver nanoparticle hydrogel treatment.Biomedicines202199118210.3390/biomedicines909118234572368
    [Google Scholar]
  103. WangJ. ChenX.Y. ZhaoY. YangY. WangW. WuC. YangB. ZhangZ. ZhangL. LiuY. DuX. LiW. QiuL. JiangP. MouX.Z. LiY.Q. pH-switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled healing in chronic wounds.ACS Nano20191310116861169710.1021/acsnano.9b0560831490650
    [Google Scholar]
  104. KhoshnoodS. HeidaryM. AsadiA. SoleimaniS. MotaharM. SavariM. SakiM. AbdiM. A review on mechanism of action, resistance, synergism, and clinical implications of mupirocin against Staphylococcus aureus.Biomed. Pharmacother.20191091809181810.1016/j.biopha.2018.10.13130551435
    [Google Scholar]
  105. HurlerJ. SørensenK.K. FallareroA. VuorelaP. Škalko-BasnetN. Liposomes-in-hydrogel delivery system with mupirocin: In vitro antibiofilm studies and in vivo evaluation in mice burn model.BioMed Res. Int.201320131810.1155/2013/49848524369533
    [Google Scholar]
  106. HuangW.C. YingR. WangW. GuoY. HeY. MoX. XueC. MaoX. A macroporous hydrogel dressing with enhanced antibacterial and anti-inflammatory capabilities for accelerated wound healing.Adv. Funct. Mater.20203021200064410.1002/adfm.202000644
    [Google Scholar]
  107. UrciuoloF. CasaleC. ImparatoG. NettiP.A. Bioengineered skin substitutes: the role of extracellular matrix and vascularization in the healing of deep wounds.J. Clin. Med.2019812208310.3390/jcm812208331805652
    [Google Scholar]
  108. TavakoliS. KlarA.S. Bioengineered skin substitutes: Advances and future trends.Appl. Sci. (Basel)2021114149310.3390/app11041493
    [Google Scholar]
  109. AleemardaniM. TrikićM.Z. GreenN.H. ClaeyssensF. The importance of mimicking dermal-epidermal junction for skin tissue engineering: a review.Bioengineering (Basel)202181114810.3390/bioengineering811014834821714
    [Google Scholar]
  110. DaL.C. HuangY.Z. XieH.Q. ZhengB.H. HuangY.C. DuS.R. Membranous extracellular matrix-based scaffolds for skin wound healing.Pharmaceutics20211311179610.3390/pharmaceutics1311179634834211
    [Google Scholar]
  111. KaurG. NarayananG. GargD. SachdevA. MataiI. Biomaterials-based regenerative strategies for skin tissue wound healing.ACS Appl. Bio Mater.2022552069210610.1021/acsabm.2c0003535451829
    [Google Scholar]
  112. MoreiraH.R. MarquesA.P. Vascularization in skin wound healing: where do we stand and where do we go?Curr. Opin. Biotechnol.20227325326210.1016/j.copbio.2021.08.01934555561
    [Google Scholar]
  113. DixitS. BaganiziD.R. SahuR. DosunmuE. ChaudhariA. VigK. PillaiS.R. SinghS.R. DennisV.A. Immunological challenges associated with artificial skin grafts: available solutions and stem cells in future design of synthetic skin.J. Biol. Eng.20171114910.1186/s13036‑017‑0089‑929255480
    [Google Scholar]
  114. Oualla-BachiriW. Fernández-GonzálezA. Quiñones-VicoM.I. Arias-SantiagoS. From grafts to human bioengineered vascularized skin substitutes.Int. J. Mol. Sci.20202121819710.3390/ijms2121819733147759
    [Google Scholar]
  115. PiejkoM. RadziunK. Bobis-WozowiczS. WaligórskaA. ZimolągE. NesslerM. ChrapustaA. MadejaZ. DrukałaJ. Adipose-derived stromal cells seeded on integra® dermal regeneration template improve post-burn wound reconstruction.Bioengineering (Basel)2020736710.3390/bioengineering703006732630660
    [Google Scholar]
  116. AbabzadehS. FarzinA. GoodarziA. KarimiR. Sagharjoghi FarahaniM. Eslami FarsaniM. GharibzadK. ZahiriM. AiJ. High porous electrospun poly(ε-caprolactone)/gelatin/ MgO scaffolds preseeded with endometrial stem cells promote tissue regeneration in full-thickness skin wounds: An in vivo study.J. Biomed. Mater. Res. B Appl. Biomater.202010872961297010.1002/jbm.b.3462632386283
    [Google Scholar]
  117. Arslan-YildizA. AssalR.E. ChenP. GuvenS. InciF. DemirciU. Towards artificial tissue models: past, present, and future of 3D bioprinting.Biofabrication20168101410310.1088/1758‑5090/8/1/01410326930133
    [Google Scholar]
  118. TappaK. JammalamadakaU. Novel biomaterials used in medical 3D printing techniques.J. Funct. Biomater.2018911710.3390/jfb901001729414913
    [Google Scholar]
  119. RazaF. ZafarH. ZhuY. RenY. -UllahA. KhanA. HeX. HanH. AquibM. Boakye-YiadomK. GeL. -Ullah, A.; Khan, A. U.; Ge, L. A review on recent advances in stabilizing peptides/proteins upon fabrication in hydrogels from biodegradable polymers.Pharmaceutics20181011610.3390/pharmaceutics1001001629346275
    [Google Scholar]
  120. IbanezR.I.R. do AmaralR.J.F.C. SimpsonC.R. CaseyS.M. ReisR.L. MarquesA.P. MurphyC.M. O’BrienF.J. 3D printed scaffolds incorporated with platelet-rich plasma show enhanced angiogenic potential while not inducing fibrosis.Adv. Funct. Mater.202232102109915https://doi.org/10.1002/adfm.202109915
    [Google Scholar]
  121. RadmaneshS. ShabangizS. KoupaeiN. Hassanzadeh-TabriziS.A. 3D printed bio polymeric materials as a new perspective for wound dressing and skin tissue engineering applications: a review.J. Polym. Res.20222925010.1007/s10965‑022‑02899‑6
    [Google Scholar]
  122. YangX. LiS. RenY. QiangL. LiuY. WangJ. DaiK. 3D printed hydrogel for articular cartilage regeneration.Compos., Part B Eng.202223710986310.1016/j.compositesb.2022.109863
    [Google Scholar]
  123. LiL. WangZ. WangK. FuS. LiD. WangM. CaoY. ZhuH. LiZ. WengL. LiZ. DingX. WangL. Paintable bioactive extracellular vesicle ink for wound healing.ACS Appl. Mater. Interfaces20231521254272543610.1021/acsami.3c0363037204052
    [Google Scholar]
  124. YangP. JuY. HuY. XieX. FangB. LeiL. Emerging 3D bioprinting applications in plastic surgery.Biomater. Res.2023271110.1186/s40824‑022‑00338‑736597149
    [Google Scholar]
  125. JorgensenA.M. VarkeyM. GorkunA. ClouseC. XuL. ChouZ. MurphyS.V. MolnarJ. LeeS.J. YooJ.J. SokerS. AtalaA. Bioprinted skin recapitulates normal collagen remodeling in full-thickness wounds.Tissue Eng. Part A2020269-1051252610.1089/ten.tea.2019.031931861970
    [Google Scholar]
  126. BaltazarT. MerolaJ. CatarinoC. XieC.B. Kirkiles-SmithN.C. LeeV. HottaS. DaiG. XuX. FerreiraF.C. SaltzmanW.M. PoberJ.S. KarandeP. Three dimensional bioprinting of a vascularized and perfusable skin graft using human keratinocytes, fibroblasts, pericytes, and endothelial cells.Tissue Eng. Part A2020265-622723810.1089/ten.tea.2019.020131672103
    [Google Scholar]
  127. RoshangarL. RadJ.S. KheirjouR. KhosroshahiA.F. Using 3D-bioprinting scaffold loaded with adipose-derived stem cells to burns wound healing.J. Tissue Eng. Regen. Med.202115654655510.1002/term.319433779071
    [Google Scholar]
  128. MansoG.M.C. Elias-OliveiraJ. GuimarãesJ.B. PereiraÍ.S. RodriguesV.F. BurgerB. FantaciniD.M.C. de SouzaL.E.B. RodriguesH.G. BonatoV.L.D. SilvaJ.S. RamosS.G. TostesR.C. ManfiolliA.O. Caliari-OliveiraC. CarlosD. Xenogeneic mesenchymal stem cell biocurative improves skin wounds healing in diabetic mice by increasing mast cells and the regenerative profile.Regen. Ther.202322798910.1016/j.reth.2022.12.00636712958
    [Google Scholar]
  129. AbaciH.E. GuoZ. CoffmanA. GilletteB. LeeW. SiaS.K. ChristianoA.M. Human skin constructs with spatially controlled vasculature using primary and iPSC-derived endothelial cells.Adv. Healthc. Mater.20165141800180710.1002/adhm.20150093627333469
    [Google Scholar]
  130. Sierra-SánchezÁ. Fernández-GonzálezA. Lizana-MorenoA. Espinosa-IbáñezO. Martinez-LopezA. Guerrero-CalvoJ. Fernández-PorcelN. Ruiz-GarcíaA. Ordóñez-LuqueA. CarrielV. Arias-SantiagoS. Hyaluronic acid biomaterial for human tissue-engineered skin substitutes: Preclinical comparative in vivo study of wound healing.J. Eur. Acad. Dermatol. Venereol.202034102414242710.1111/jdv.1634232173915
    [Google Scholar]
  131. AndriotisE.G. EleftheriadisG.K. KaravasiliC. FatourosD.G. Development of bio-active patches based on pectin for the treatment of ulcers and wounds using 3D-bioprinting technology.Pharmaceutics20201215610.3390/pharmaceutics1201005631936630
    [Google Scholar]
  132. PiolaB. SabbatiniM. GinoS. InvernizziM. RenòF. 3D bioprinting of gelatin–xanthan gum composite hydrogels for growth of human skin cells.Int. J. Mol. Sci.202223153910.3390/ijms2301053935008965
    [Google Scholar]
  133. MadniA. KousarR. NaeemN. WahidF. Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering.J. Bioresour. Bioprod.202161112510.1016/j.jobab.2021.01.002
    [Google Scholar]
  134. WangX. WangQ. XuC. Nanocellulose-based inks for 3d bioprinting: Key aspects in research development and challenging perspectives in applications-A mini review.Bioengineering (Basel)2020724010.3390/bioengineering702004032365578
    [Google Scholar]
  135. LeeJ.M. SuenS.K.Q. NgW.L. MaW.C. YeongW.Y. Bioprinting of collagen: considerations, potentials, and applications.Macromol. Biosci.2021211200028010.1002/mabi.20200028033073537
    [Google Scholar]
  136. AgarwalT. CostantiniM. MaitiT.K. Extrusion 3D printing with Pectin-based ink formulations: Recent trends in tissue engineering and food manufacturing.Biomed. Eng. Adv.2021210001810.1016/j.bea.2021.100018
    [Google Scholar]
  137. MüllerM. BecherJ. SchnabelrauchM. Zenobi-WongM. Nanostructured pluronic hydrogels as bioinks for 3D bioprinting.Biofabrication20157303500610.1088/1758‑5090/7/3/03500626260872
    [Google Scholar]
  138. ChiapponeA. FantinoE. RoppoloI. LorussoM. ManfrediD. FinoP. PirriC.F. CalignanoF. 3D printed PEG-based hybrid nanocomposites obtained by sol–gel technique.ACS Appl. Mater. Interfaces2016885627563310.1021/acsami.5b1257826871993
    [Google Scholar]
  139. YinM. WangX. YuZ. WangY. WangX. DengM. ZhaoD. JiS. JiaN. ZhangW. γ-PGA hydrogel loaded with cell-free fat extract promotes the healing of diabetic wounds.J. Mater. Chem. B Mater. Biol. Med.20208368395840410.1039/D0TB01190H32966542
    [Google Scholar]
  140. ChangT. YinH. YuX. WangL. FanL. XinJ.H. YuH. 3D PCL/collagen nanofibrous medical dressing for one-time treatment of diabetic foot ulcers.Colloids Surf. B Biointerfaces202221411248010.1016/j.colsurfb.2022.11248035358884
    [Google Scholar]
  141. KondejK. ZawrzykrajM. CzerwiecK. DeptułaM. TymińskaA. PikułaM. Bioengineering skin substitutes for wound management—perspectives and challenges.Int. J. Mol. Sci.2024257370210.3390/ijms2507370238612513
    [Google Scholar]
  142. GreavesN.S. IqbalS.A. HodgkinsonT. MorrisJ. BenatarB. Alonso-RasgadoT. BaguneidM. BayatA. Skin substitute-assisted repair shows reduced dermal fibrosis in acute human wounds validated simultaneously by histology and optical coherence tomography.Wound Repair Regen.201523448349410.1111/wrr.1230826053202
    [Google Scholar]
  143. KumarP. GuptaA. Updated classification of skin substitutes.Indian J. Plast. Surg.202356438838910.1055/s‑0043‑177129237705824
    [Google Scholar]
  144. HansbroughJ. Dermagraft-TC for partial-thickness burns: a clinical evaluation.J. Burn Care Rehabil.1997181 Pt 2Suppl. 1s25s2810.1097/00004630‑199701001‑000119063806
    [Google Scholar]
  145. TavakoliS. KlarA.S. Advanced hydrogels as wound dressings.Biomolecules2020108116910.3390/biom1008116932796593
    [Google Scholar]
  146. SeeA. WrightS. DenhamJ.W. A pilot study of dermofilm in acute radiation-induced desquamative skin reactions.Clin. Oncol. (R. Coll. Radiol.)199810318218510.1016/S0936‑6555(98)80064‑29704181
    [Google Scholar]
  147. VecinN.M. KirsnerR.S. Skin substitutes as treatment for chronic wounds: current and future directions.Front. Med. (Lausanne)202310115456710.3389/fmed.2023.115456737711741
    [Google Scholar]
  148. TakamiY. YamaguchiR. OnoS. HyakusokuH. Clinical application and histological properties of autologous tissue-engineered skin equivalents using an acellular dermal matrix.J. Nippon Med. Sch.201481635636310.1272/jnms.81.35625744478
    [Google Scholar]
  149. CarsinH. AinaudP. Le BeverH. RivesJ.M. LakhelA. StephanazziJ. LambertF. PerrotJ. Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients.Burns200026437938710.1016/S0305‑4179(99)00143‑610751706
    [Google Scholar]
  150. JohnsenS. ErmuthT. TanczosE. BannaschH. HorchR.E. ZschockeI. PeschenM. SchöpfE. VanscheidtW. AugustinM. Treatment of therapy-refractive ulcera cruris of various origins with autologous keratinocytes in fibrin sealant.Vasa2005341252910.1024/0301‑1526.34.1.2515786934
    [Google Scholar]
  151. VanscheidtW. UkatA. HorakV. BrüningH. HunyadiJ. PavlicekR. EmterM. HartmannA. BendeJ. ZwingersT. ErmuthT. EberhardtR. Treatment of recalcitrant venous leg ulcers with autologous keratinocytes in fibrin sealant: A multinational randomized controlled clinical trial.Wound Repair Regen.200715330831510.1111/j.1524‑475X.2007.00231.x17537117
    [Google Scholar]
  152. LamP.K. ChanE.S.Y. ToE.W.H. LauC.H. YenS.C. KingW.W.K. Development and evaluation of a new composite Laserskin graft.J. Trauma Inj. Infect. Crit. Care199947591892210.1097/00005373‑199911000‑0001710568722
    [Google Scholar]
  153. PajardiG. RapisardaV. SomalvicoF. ScottiA. RussoG.L. CiancioF. SgròA. NebuloniM. AlleviR. TorreM.L. TrabucchiE. MarazziM. Skin substitutes based on allogenic fibroblasts or keratinocytes for chronic wounds not responding to conventional therapy: a retrospective observational study.Int. Wound J.2016131445210.1111/iwj.1222324517418
    [Google Scholar]
  154. PrzekoraA. A concise review on tissue engineered artificial skin grafts for chronic wound treatment: Can we reconstruct functional skin tissue in vitro?Cells202097162210.3390/cells907162232640572
    [Google Scholar]
  155. FoleyE. RobinsonA. MaloneyM. Skin substitutes and dermatology: A review.Curr. Dermatol. Rep.20132210111210.1007/s13671‑013‑0044‑z
    [Google Scholar]
  156. JacksonS.R. RomanS. Matriderm and split skin grafting for full-thickness pediatric facial burns.J. Burn Care Res.201940225125410.1093/jbcr/irz00630649378
    [Google Scholar]
  157. WesterJ.L. PittmanA.L. LindauR.H. WaxM.K. AlloDerm with split-thickness skin graft for coverage of the forearm free flap donor site.Otolaryngol. Head Neck Surg.20141501475210.1177/019459981351371324270163
    [Google Scholar]
  158. WidmyerA.S. MirhaidariS.J. WagnerD.S. Implant-based breast reconstruction outcomes comparing freeze-dried aseptic alloderm and sterile ready-to-use alloderm.Plast. Reconstr. Surg. Glob. Open2019712e253010.1097/GOX.000000000000253032537289
    [Google Scholar]
  159. VyasK. VasconezH. Wound healing: Biologics, skin substitutes, biomembranes and scaffolds.Healthcare (Basel)20142335640010.3390/healthcare203035627429283
    [Google Scholar]
  160. StillJ. GlatP. SilversteinP. GriswoldJ. MozingoD. The use of a collagen sponge/living cell composite material to treat donor sites in burn patients.Burns200329883784110.1016/S0305‑4179(03)00164‑514636761
    [Google Scholar]
  161. SantemaT.B.K. PoyckP.P.C. UbbinkD.T. Systematic review and meta-analysis of skin substitutes in the treatment of diabetic foot ulcers: Highlights of a Cochrane systematic review.Wound Repair Regen.201624473774410.1111/wrr.1243427062201
    [Google Scholar]
  162. SubhanF. HussainZ. TauseefI. ShehzadA. WahidF. A review on recent advances and applications of fish collagen.Crit. Rev. Food Sci. Nutr.20216161027103710.1080/10408398.2020.175158532345036
    [Google Scholar]
  163. PateiroM. DomínguezR. VarzakasT. MunekataP.E.S. Movilla FierroE. LorenzoJ.M. Omega-3-rich oils from marine side streams and their potential application in food.Mar. Drugs202119523310.3390/md1905023333919462
    [Google Scholar]
  164. KotronoulasA. de LomanaA.L.G. KarvelssonS.T. HeijinkM. StoneR.II GieraM. RolfssonO. Lipid mediator profiles of burn wound healing: Acellular cod fish skin grafts promote the formation of EPA and DHA derived lipid mediators following seven days of treatment.Prostaglandins Leukot. Essent. Fatty Acids202117510235810.1016/j.plefa.2021.10235834753002
    [Google Scholar]
  165. IbrahimA. SolimanM. KotbS. AliM.M. Evaluation of fish skin as a biological dressing for metacarpal wounds in donkeys.BMC Vet. Res.202016147210.1186/s12917‑020‑02693‑w33272259
    [Google Scholar]
  166. MichaelS. WintersC. KhanM. Acellular fish skin graft use for diabetic lower extremity wound healing: A retrospective study of 58 ulcerations and a literature review.Wounds2019311026226831730505
    [Google Scholar]
  167. KirsnerR.S. MargolisD.J. BaldurssonB.T. PetursdottirK. DavidssonO.B. WeirD. LantisJ.C.II Fish skin grafts compared to human amnion/chorion membrane allografts: A double-blind, prospective, randomized clinical trial of acute wound healing.Wound Repair Regen.2020281758010.1111/wrr.1276131509319
    [Google Scholar]
  168. StoneR.II SaathoffE.C. LarsonD.A. WallJ.T. WienandtN.A. MagnussonS. KjartanssonH. NatesanS. ChristyR.J. Accelerated wound closure of deep partial thickness burns with acellular fish skin graft.Int. J. Mol. Sci.2021224159010.3390/ijms2204159033557424
    [Google Scholar]
  169. CaoX. SunL. LuoZ. LinX. ZhaoY. Aquaculture derived hybrid skin patches for wound healing.Engineered Regeneration202341283510.1016/j.engreg.2022.11.002
    [Google Scholar]
  170. MohapatraS. MirzaM.A. HillesA.R. ZakirF. GomesA.C. AnsariM.J. IqbalZ. MahmoodS. Biomedical application, patent repository, clinical trial and regulatory updates on hydrogel: An extensive review.Gels20217420710.3390/gels704020734842705
    [Google Scholar]
  171. SeidiK. Ayoubi-JoshaghaniM.H. AziziM. JavaheriT. JaymandM. AlizadehE. WebsterT.J. YazdiA.A. NiaziM. HamblinM.R. AmoozgarZ. Jahanban-EsfahlanR. Bioinspired hydrogels build a bridge from bench to bedside.Nano Today20213910115710.1016/j.nantod.2021.101157
    [Google Scholar]
  172. ArshadR. RazlansariM. Maryam HosseinikhahS. Tiwari PandeyA. AjalliN. Ezra ManicumA.L. ThoratN. RahdarA. ZhuY. TabishT.A. Antimicrobial and anti-biofilm activities of bio-inspired nanomaterials for wound healing applications.Drug Discov. Today202328910367310.1016/j.drudis.2023.10367337331691
    [Google Scholar]
  173. MaX. BianQ. HuJ. GaoJ. Stem from nature: Bioinspired adhesive formulations for wound healing.J. Control. Release202234529230510.1016/j.jconrel.2022.03.02735314262
    [Google Scholar]
  174. XuK. WuX. ZhangX. XingM. Bridging wounds: tissue adhesives’ essential mechanisms, synthesis and characterization, bioinspired adhesives and future perspectives.Burns Trauma202210tkac03310.1093/burnst/tkac03336225327
    [Google Scholar]
  175. CaiC. ChenZ. ChenY. LiH. YangZ. LiuH. Mechanisms and applications of bioinspired underwater/wet adhesives.J. Polym. Sci.202159232911294510.1002/pol.20210521
    [Google Scholar]
  176. SoleimaniK. ArkanE. DerakhshankhahH. HaghshenasB. Jahanban-EsfahlanR. JaymandM. A novel bioreducible and pH-responsive magnetic nanohydrogel based on β-cyclodextrin for chemo/hyperthermia therapy of cancer.Carbohydr. Polym.202125211722910.1016/j.carbpol.2020.11722933183649
    [Google Scholar]
  177. KimS. ParkJ. KimE.M. ChoiJ.J. KimH.N. ChinI.L. ChoiY.S. MoonS.H. ShinH. Lotus seedpod-inspired hydrogels as an all-in-one platform for culture and delivery of stem cell spheroids.Biomaterials201922511953410.1016/j.biomaterials.2019.11953431590118
    [Google Scholar]
  178. KondaveetiS. ChoiG. VeerlaS.C. KimS. KimJ. LeeH.J. KuzhiumparambilU. RalphP.J. YeoJ. JeongH.E. Mussel-inspired resilient hydrogels with strong skin adhesion and high-sensitivity for wearable device.Nano Converg.20241111210.1186/s40580‑024‑00419‑438512587
    [Google Scholar]
  179. WeiK. SenturkB. MatterM.T. WuX. HerrmannI.K. RottmarM. ToncelliC. Mussel-inspired injectable hydrogel adhesive formed under mild conditions features near-native tissue properties.ACS Appl. Mater. Interfaces20191151477074771910.1021/acsami.9b1646531765122
    [Google Scholar]
  180. HuangW. QiC. GaoY. Injectable self-healable nanocomposite hydrogels with mussel-inspired adhesive properties for 3D printing ink.ACS Appl. Nano Mater.2019285000500810.1021/acsanm.9b00936
    [Google Scholar]
  181. YanS. WangW. LiX. RenJ. YunW. ZhangK. LiG. YinJ. Preparation of mussel-inspired injectable hydrogels based on dual-functionalized alginate with improved adhesive, self-healing, and mechanical properties.J. Mater. Chem. B Mater. Biol. Med.20186406377639010.1039/C8TB01928B32254646
    [Google Scholar]
  182. DengJ. TangY. ZhangQ. WangC. LiaoM. JiP. SongJ. LuoG. ChenL. RanX. WeiZ. ZhengL. DangR. LiuX. ZhangH. ZhangY.S. ZhangX. TanH. A bioinspired medical adhesive derived from skin secretion of Andrias davidianus for wound healing.Adv. Funct. Mater.20192931180911010.1002/adfm.201809110
    [Google Scholar]
  183. GuoY. WangY. ZhaoX. LiX. WangQ. ZhongW. MequanintK. ZhanR. XingM. LuoG. Snake extract–laden hemostatic bioadhesive gel cross-linked by visible light.Sci. Adv.2021729eabf963510.1126/sciadv.abf963534261653
    [Google Scholar]
  184. HuangL.C. WangH.C. ChenL.H. HoC.Y. HsiehP.H. HuangM.Y. WuH.C. WangT.W. Bioinspired self-assembling peptide hydrogel with proteoglycan-assisted growth factor delivery for therapeutic angiogenesis.Theranostics20199237072708710.7150/thno.3580331660087
    [Google Scholar]
  185. ZhengX. DingZ. ChengW. LuQ. KongX. ZhouX. LuG. KaplanD.L. Microskin-inspired injectable MSC-laden hydrogels for scarless wound healing with hair follicles.Adv. Healthc. Mater.2020910200004110.1002/adhm.20200004132338466
    [Google Scholar]
  186. MiaoF. LiY. TaiZ. ZhangY. GaoY. HuM. ZhuQ. Antimicrobial peptides: the promising therapeutics for cutaneous wound healing.Macromol. Biosci.20212110210010310.1002/mabi.20210010334405955
    [Google Scholar]
  187. de SouzaG.S. de Jesus SonegoL. Santos MundimA.C. de Miranda MoraesJ. Sales-CamposH. LorenzónE.N. Antimicrobial-wound healing peptides: Dual-function molecules for the treatment of skin injuries.Peptides202214817070710.1016/j.peptides.2021.17070734896165
    [Google Scholar]
  188. NiyonsabaF. KiatsurayanonC. ChieosilapathamP. OgawaH. Friends or Foes? Host defense (antimicrobial) peptides and proteins in human skin diseases.Exp. Dermatol.2017261198999810.1111/exd.1331428191680
    [Google Scholar]
  189. TakahashiM. UmeharaY. YueH. Trujillo-PaezJ.V. PengG. NguyenH.L.T. IkutamaR. OkumuraK. OgawaH. IkedaS. NiyonsabaF. The antimicrobial peptide human β-defensin-3 accelerates wound healing by promoting angiogenesis, cell migration, and proliferation through the FGFR/JAK2/STAT3 signaling pathway.Front. Immunol.20211271278110.3389/fimmu.2021.71278134594328
    [Google Scholar]
  190. ThapaR.K. DiepD.B. TønnesenH.H. Topical antimicrobial peptide formulations for wound healing: Current developments and future prospects.Acta Biomater.2020103526710.1016/j.actbio.2019.12.02531874224
    [Google Scholar]
  191. KanaujiaK.A. MishraN. RajinikanthP.S. SarafS.A. Antimicrobial peptides as antimicrobials for wound care management: A comprehensive review.J. Drug Deliv. Sci. Technol.20249510557010.1016/j.jddst.2024.105570
    [Google Scholar]
  192. DemirciM. YiginA. DemirC. Efficacy of antimicrobial peptide LL-37 against biofilm forming Staphylococcus aureus strains obtained from chronic wound infections.Microb. Pathog.202216210536810.1016/j.micpath.2021.10536834942309
    [Google Scholar]
  193. FahimiradS. Ghaznavi-RadE. AbtahiH. SarlakN. Antimicrobial activity, stability and wound healing performances of chitosan nanoparticles loaded recombinant LL37 antimicrobial peptide.Int. J. Pept. Res. Ther.20212742505251510.1007/s10989‑021‑10268‑y
    [Google Scholar]
  194. HuelsboemerL. KnoedlerL. KochenA. YuC.T. HosseiniH. HollmannK.S. ChoiA.E. StögnerV.A. KnoedlerS. HsiaH.C. PomahacB. Kauke-NavarroM. Cellular therapeutics and immunotherapies in wound healing – on the pulse of time?Mil. Med. Res.20241112310.1186/s40779‑024‑00528‑538637905
    [Google Scholar]
  195. HuangY.Z. GouM. DaL.C. ZhangW.Q. XieH.Q. Mesenchymal stem cells for chronic wound healing: current status of preclinical and clinical studies.Tissue Eng. Part B Rev.202026655557010.1089/ten.teb.2019.035132242479
    [Google Scholar]
  196. LauranoR. BoffitoM. CiardelliG. ChionoV. Wound dressing products: A translational investigation from the bench to the market.Engineered Regeneration20223218220010.1016/j.engreg.2022.04.002
    [Google Scholar]
  197. DwivediJ. SachanP. WalP. WalA. RaiA.K. Current state and future perspective of diabetic wound healing treatment: Present evidence from clinical trials.Curr. Diabetes Rev.2024205e28082322040510.2174/157339982066623082809170837641999
    [Google Scholar]
  198. ZensY. BarthM. BucherH.C. DreckK. FelschM. GroßW. JaschinskiT. KölschH. KrompM. OvereschI. SauerlandS. GregorS. Negative pressure wound therapy in patients with wounds healing by secondary intention: a systematic review and meta-analysis of randomised controlled trials.Syst. Rev.20209123810.1186/s13643‑020‑01476‑633038929
    [Google Scholar]
  199. GodoiM.M. ReisE.M. KoeppJ. FerreiraJ. Perspective from developers: Tissue-engineered products for skin wound healing.Int. J. Pharm.202466012431910.1016/j.ijpharm.2024.12431938866084
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673312649240829103906
Loading
/content/journals/cmc/10.2174/0109298673312649240829103906
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test