Anti-Cancer Agents in Medicinal Chemistry - Online First
Description text for Online First listing goes here...
41 - 60 of 71 results
-
-
The Role of Kinase Inhibitors in Cancer Neuroscience: Mechanisms, Therapeutic Potential, and Future Directions
Available online: 21 July 2025More LessIntroductionCancer progression is increasingly understood to be influenced by neural mechanisms, including neurotransmitter signaling, neurotrophic factor activity, neuroinflammation, and neurogenic inflammation. These neurobiological interactions contribute to tumor proliferation, angiogenesis, and metastasis. Kinase inhibitors, a class of targeted therapies that block dysregulated kinase activity, have demonstrated promise not only in direct tumor suppression but also in modulating neural pathways associated with cancer progression.
MethodsThis review examines the role of kinase inhibitors in modulating cancer-associated neural mechanisms. A comprehensive literature search was conducted to identify studies exploring the effects of kinase inhibition on: (1) neurotransmitter signaling pathways; (2) neurotrophic factors such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF); (3) neuroinflammation through glial cell modulation; and (4) neurogenic inflammation. Additionally, we assessed the impact of kinase inhibitors on tumor-induced axonogenesis and stress-related signaling. Clinical relevance was evaluated through analysis of preclinical models, human case studies, and outcomes from relevant clinical trials.
ResultsKinase inhibitors were found to significantly modulate neural factors that facilitate tumor growth. Specifically, they can suppress neurotrophic signaling (e.g., NGF/TrkA, BDNF/TrkB), inhibit glial activation, reduce pro-inflammatory cytokine production, and block neurotransmitter-induced proliferation. Inhibition of stress-responsive kinases such as p38 MAPK and JNK also disrupted tumor-associated axonogenesis and inflammation. Clinical trials demonstrate improved outcomes in cancers such as glioblastoma, breast cancer, and pancreatic cancer when kinase inhibitors are employed with consideration of neural mechanisms.
DiscussionThese findings support the emerging concept of targeting the neural tumor microenvironment as a therapeutic strategy. Kinase inhibitors represent a dual-action approach, suppressing both cancer cell intrinsic growth pathways and the neural factors that sustain them. However, several challenges persist, including resistance mechanisms, variability in patient neural profiles, and off-target effects. Future research should focus on the development of neural-specific kinase inhibitors, the use of neural biomarkers for therapy selection, and the integration of neuro-oncology into personalized treatment plans.
ConclusionKinase inhibitors offer a promising frontier in cancer treatment by targeting neural mechanisms that contribute to tumor progression. While current evidence is encouraging, further investigation is required to optimize their use within neuro-oncology. Personalized approaches and novel targets within the neural-cancer axis will be essential for translating this strategy into clinical practice and improving long-term patient outcomes.
-
-
-
Innovative Nanocarriers: Magnetosomes in the Fight against Cancer
Authors: Shivani Yadav and Manoj Kumar MishraAvailable online: 17 July 2025More LessRecent advancements in medication formulations and drug delivery systems over the past two decades have improved patient adherence and pharmacological responses. Efficient, target-specific medication delivery remains challenging, with many current systems designed to minimize drug loss and degradation. Magnetosomes, as nanocarriers, show promise for delivering antibodies, vaccine DNA, and siRNA, enhancing the stability of chemotherapeutics, and enabling targeted delivery to malignant tumors. Targeted drug delivery is crucial in cancer treatment, as anticancer drugs often cannot differentiate between healthy and malignant cells, causing side effects and systemic toxicity. Magnetosome-based drug delivery offers a potential solution, minimizing adverse effects and promoting drug accumulation at the target site. This review covers the design, development, and advancements in magnetosome-based drug delivery for cancer therapy.
-
-
-
Polyamines in Cancer: Mechanisms, Metabolic Targets, and Therapeutic Opportunities
Available online: 17 July 2025More LessIntroductionPolyamine metabolism is essential for cancer cell growth, with enzymes like ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC) playing key roles in polyamine (PA) biosynthesis. These polyamines (putrescine, spermidine, and spermine) regulate vital cellular processes, including DNA replication, protein synthesis, and cell cycle progression. Dysregulated polyamine metabolism is common in cancer, making ODC and AdoMetDC attractive therapeutic targets. This review highlights polyamines’ role in cancer and explores combination therapies targeting polyamine metabolism and critical signaling pathways for improved clinical outcomes.
MethodsA comprehensive analysis of both historical and recent literature on polyamine metabolism in cancer was performed using PubMed, which provides access to over 37 million citations from biomedical literature. Expression data for key polyamine biosynthetic enzymes, ODC and AdoMetDC, were obtained from the UALCAN portal - an interactive web resource for the analysis of cancer OMICS data. The IUPAC names of drugs and inhibitors targeting the polyamine pathway were retrieved from the PubChem database and used to generate molecular structures using the BIOVIA Draw 2025 program. Additionally, the ClinicalTrials.gov database was explored to identify ongoing and completed clinical research studies, as well as to gather detailed information on therapeutic agents targeting polyamine metabolism.
ResultsAberrant polyamine metabolism in cancer is driven by oncogenic pathways like MYC, Akt, and mTOR. MYC upregulates ODC1, promoting polyamine dysregulation. Defects in enzymes such as MTA phosphorylase (MTAP) enhance cancer cell sensitivity to inhibitors of purine/pyrimidine synthesis and the ubiquitin-proteasome pathway, suggesting alternative therapeutic strategies.
DiscussionTherapeutic strategies combining polyamine biosynthesis inhibition with targeting nucleotide synthesis or proteasome function have shown synergistic potential. However, the dual nature of polyamines - supporting both, tumor growth and ferroptotic cell death - poses a therapeutic challenge. Balancing these effects is key to designing effective interventions. Advancing this field requires not only selective inhibitors but also a deeper understanding of context-dependent polyamine functions in tumor biology.
ConclusionDeveloping more potent inhibitors with improved drug-like properties is crucial for advancing polyamine-targeted therapies and positioning this field at the forefront of cancer research.
-
-
-
Design, Synthesis and Biological Evaluation of New 4-(4-(Methylsulfonyl)Phenyl)-6-Phenylpyrimidin-2-Amine Derivatives as Selective Cyclooxygenase (COX-2) Inhibitors
Available online: 16 July 2025More LessIntroductionCyclooxygenase, an enzyme that occurs in at least two distinct variants (COX-1 and COX-2), is the target of classical inhibitors, which lack selectivity and inhibit both types of COX. However, a recent approach focuses explicitly on inhibiting COX-2, commonly found in inflamed tissue, resulting in fewer adverse effects than COX-1 inhibitors.
MethodsA series of 4-(4-(methylsulfonyl)phenyl)-6-phenylpyrimidin-2-amine derivatives were synthesized through a two-step process. First, 4-substituted acetophenones underwent base-catalyzed Claisen-Schmidt condensation with 4-(methylsulfonyl)benzaldehyde to yield chalcones, which were then cyclized with guanidine hydrochloride under basic reflux conditions. Molecular docking was performed using AutoDock Vina software. The inhibitory activities of COX-1 and COX-2 were evaluated using enzymatic assays. Antiplatelet aggregation was measured via a turbidimetric method, and antiproliferative activity was assessed using the MTT assay.
ResultsThe in vitro experiments on COX inhibition revealed that a substantial number of the synthesized compounds presented a strong suppressive effect against COX-2. The assessment of antiplatelet aggregation activity indicated that most of the derivatives effectively inhibited ADP-induced platelet aggregation. Compound 4i exhibited the most potent antiproliferative activity, comparable to cisplatin. The docking studies and molecular modeling results demonstrated that the designed compounds, except for 4b, exhibited a binding behavior comparable to that of celecoxib. In addition, the insertion of the SO2Me moiety within the secondary binding site of COX-2 was observed.
DiscussionThese findings suggest that the structural modifications introduced in the synthesized derivatives contribute significantly to their selective COX-2 inhibition and antiplatelet properties. The correlation between docking results and biological assays supports the rationale behind the design of the compound.
ConclusionThe 4-(4-(methylsulfonyl)phenyl)-6-phenylpyrimidin-2-amine exhibits unique properties as a COX-2 inhibitor, displaying effective inhibition of COX-2 while showing minimal interaction with the COX-1 enzyme. Furthermore, our study revealed that most of these compounds exhibited inhibitory effects on ADP-induced platelet aggregation.
-
-
-
Investigating the Therapeutic Potential of Cisplatin- and Rutin-Loaded Nanoliposomes against Colorectal Cancer Cells
Available online: 16 July 2025More LessIntroductionColorectal cancer is an important cause of cancer-related mortality, necessitating innovative therapies to improve efficacy and reduce side effects. This study explores the potential of Cisplatin and Rutin-loaded nanoliposomes (Cis-NLs and Rut-NLs) for anti-colorectal cancer activity.
MethodsCis-NLs and Rut-NLs were prepared using thin-film hydration, achieving encapsulation efficiencies of 95.5% and 62.5%, respectively. Drug release studies revealed controlled profiles, with Cis-NLs showing a complete release (100%) and Rut-NLs reaching 23.48% over 48 hours. Stability assessments demonstrated minimal changes in size, polydispersity index (PDI), and zeta potential over three months. Encapsulation efficiency decreased slightly for Cis-NLs (92.87%) and significantly for Rut-NLs (26.55%). Several tests were performed to evaluate the biological activity of this combination on colorectal cancer cells and HDF cells to check its selectivity.
ResultsIn vitro cytotoxicity studies on HT29 colorectal cancer cells revealed IC50 values of 1.72 µg/mL for free Cisplatin, 2.35 µg/mL for Cis-NLs, >100 µg/mL for free Rutin, and 63.33 µg/mL for Rut-NLs. A combination of Cis-NLs and Rut-NLs reduced the IC50 to 2.2 µg/mL. Selective toxicity evaluation using human dermal fibroblasts showed an IC50 of 79.24 µM for cisplatin, reduced to 63.3 µM in Cis-NLs, with Rut-NLs demonstrating negligible toxicity.
DiscussionWound healing assays confirmed significant inhibition of cell migration, with wound closure reduced from 62.41% in controls to 34.35% in treated groups. Utilizing nanotechnology, liposomal formulations were synthesized to enhance drug delivery and therapeutic synergy.
ConclusionThese results highlight the potential of Cisplatin and Rutin-loaded nanoliposomes as a combination therapy for colorectal cancer.
-
-
-
The Safety and Efficacy of Anti-LAG-3 for Patients with Melanoma: A Systematic Review and Meta-analysis Study
Available online: 11 July 2025More LessIntroductionMelanoma, an aggressive skin cancer, has seen treatment advancements with immune checkpoint inhibitors (ICIs) like ipilimumab and nivolumab. Despite improved survival rates, resistance remains a challenge. The recent focus on lymphocyte activation gene-3 (LAG-3) inhibitors, such as relatlimab, shows promise in combination therapies, potentially improving outcomes with fewer adverse effects. This review evaluates the safety and efficacy of anti-LAG-3 antibodies in melanoma treatment.
MethodsThis systematic review and meta-analysis, following the PRISMA guidelines and registered in PROSPERO (CRD42024565756), assessed anti-LAG-3 antibodies in melanoma treatment. A thorough search across PubMed, Embase, Scopus, and Web of Science up to January 2024 yielded relevant studies. Data on study characteristics, patient demographics, disease characteristics, treatment details, and clinical outcomes were extracted. Quality assessment was performed using the MINOR criteria. The meta-analysis, using STATA and random-effects models, addressed heterogeneity to determine safety and efficacy outcomes.
ResultsWe examined the clinical benefit of this combination therapeutic approach by measuring several primary endpoints and running a meta-analysis to determine the pooled estimate of 6-month progression-free survival (PFS), 1-year PFS, 6-month duration of response (DoR), 1-year DoR, 1-year overall survival (OS), 2-year OS, partial response (PR), complete response (CR), objective response rate (ORR), disease control rate (DCR), stable disease (SD), and progressive disease (PD) for patients diagnosed with melanoma. Our analysis showed 66% of any grade treatment-related adverse events (trAEs) (95% CI: 51%-81%), 19% of grade ≥ 3 trAEs (95% CI: 11%-27%), 12% of any grade AEs leading to discontinuation (95% CI: 9%-14%), and 8% of grade ≥ 3 AEs leading to discontinuation (95% CI: 6%-10%). 76% of any grade overall AEs (95% CI: 34%-100%), and 33% of grade ≥ 3 overall AEs (95% CI: 15%-50%). The most common AEs were fatigue, pneumonitis, rash, pruritus, colitis, hepatitis, diarrhea, hypothyroidism, thyroiditis, and adrenal insufficiency.
DiscussionThis systematic review and meta-analysis provide comprehensive evidence regarding the safety and efficacy of anti-LAG-3 antibodies in melanoma therapy. Pooled data reveals encouraging outcomes across several key endpoints, including PFS, OS, and ORR. While trAEs were common (66% for any grade and 19% for grade ≥3), most were manageable.
ConclusionAnti-LAG-3 therapy is an active and safe treatment that shows promising results in melanoma treatment.
-
-
-
Lifileucel Therapy for Metastatic Melanoma: Advancements in Tumor-infiltrating Lymphocyte-based Immunotherapy
Available online: 04 July 2025More LessMetastatic melanoma is an aggressive malignancy with limited treatment options at advanced stages. Lifileucel, an FDA-approved autologous Tumor-Infiltrating Lymphocyte (TIL) therapy, marks a major advancement in immunotherapy, particularly for patients who fail conventional treatments like immune checkpoint inhibitors and targeted therapies. The mechanism of lifileucel involves the ex vivo expansion of patient-derived TILs to boost immune responses against melanoma cells. These expanded TILs are re-infused into patients, enhancing tumor-specific cytotoxicity and modulating the tumor microenvironment for sustained immune activation. Clinical trials have demonstrated its efficacy, with the overall response rate (ORR) reaching up to 36% in heavily pretreated populations, offering durable responses and improved progression-free survival compared to traditional therapies. The personalized approach of lifileucel, leveraging the patient’s own T-cell repertoire, highlights its potential for precision oncology by targeting individual tumor profiles. Its integration with combination therapies, particularly immune checkpoint inhibitors, shows promising synergistic effects, broadening its clinical applicability. In addition to clinical success, the role of lifileucel in influencing the melanogenesis pathway offers insights into optimizing therapeutic strategies for melanoma. Ongoing research focuses on enhancing TIL functionality, overcoming challenges like tumor-induced immune suppression, and extending the applicability of lifileucel to other solid tumors. This breakthrough therapy not only addresses a critical unmet need in melanoma treatment but also represents a paradigm shift toward personalized medicine in oncology. Lifileucel underscores the potential of TIL-based approaches to revolutionize cancer care, setting the stage for future advancements in immunotherapy.
-
-
-
Anticancer Compounds from Myxobacteria: Current Scenario and Future Perspectives
Authors: Swati Sihag, Shweta Sinha and Ramandeep KaurAvailable online: 04 July 2025More LessNatural products and their derivatives have played a dominant role in the development of therapeutic agents. Traditionally, most of the natural products developed for the effective treatment of different diseases have been sourced from plants. Natural product discovery has seen a shift of focus towards microorganisms due to the chemical diversity of bioactive products they synthesize. Myxobacteria produce a large variety of novel chemical entities with diverse structures and varied bioactivities. In the last few decades, secondary metabolites from different genera of myxobacteria have been recognized as harbouring potent anticancer activity. Several analogs of these anticancer compounds have been prepared to address the limitations such as, poor solubility, high toxicity and low production yield, in order to obtain the compounds in higher quantities with better pharmacological properties and target selectivity. For example, a semi-synthetic derivative of epothilone obtained from a strain of myxobacterium has been approved for clinical use against taxane-resistant breast cancer. The anticancer compounds from myxobacteria target microtubules, the cytoskeleton, vacuolar ATPase, methionine aminopeptidase, exportin, the proteasome or translation elongation factor to exert anticancer activity. The focus of this review is on the promising anticancer compounds produced by myxobacteria, their targets and their mechanisms of action in cancer cells.
-
-
-
CD98 Light Chain LAT1 Tracers in PET-CT Diagnosis of Cancer Patients
By Pu XiaAvailable online: 02 July 2025More LessAmino acid-based PET tracers have become vital tools for non-invasive tumor imaging, offering greater specificity and sensitivity than conventional 18F-FDG. These tracers target amino acid transporters, particularly L-type Amino Acid Transporter 1 (LAT1), which is overexpressed in rapidly proliferating tumor cells. Various
18F-labeled amino acid tracers have been explored for imaging different malignancies, including gliomas, neuroendocrine tumors, and lung cancers. This review summarizes the performance of LAT1-specific radiotracers, comparing their uptake ratios, sensitivity, and specificity in cancer diagnosis. These tracers have led to significant advancements in tumor imaging, providing better diagnostic accuracy, enhanced tumor delineation, and reduced interference from inflammatory tissue. Although promising, the clinical utility of these tracers requires further research and clinical trials to refine their applications and optimize their role in routine clinical practice. Continued development will be crucial in making these tracers more effective and widely applicable for cancer diagnosis and treatment planning.
-
-
-
Secondary Malignancies of Chimeric Antigen Receptor T-cell Therapy: A Multidimensional Analysis of Mechanisms, Risk Factors, and Treatment Strategies
Authors: Ye Kang, Da-Sheng Dang, Xue Sun and Xiao ZhangAvailable online: 26 June 2025More LessChimeric Antigen Receptor T-cell (CAR-T) therapy represents a pioneering advancement in immunotherapy, demonstrating substantial clinical success in the treatment of hematologic malignancies, particularly in B-cell hematologic malignancies. This therapeutic approach involves the genetic modification of a patient's T-cells to express receptors specific to tumor antigens, thereby enabling the CAR T-cells to identify and eradicate tumor cells, which significantly enhances the patient's treatment prognosis. Despite the remarkable efficacy of CAR-T therapy, concerns regarding its safety have emerged during clinical implementation. Notably, research has indicated that CAR T-cell therapy may be associated with the development of secondary primary malignancies, prompting considerable apprehension within the clinical community regarding the long-term adverse effects of this treatment modality. This article aims to investigate the potential mechanisms responsible for the induction of secondary primary malignancies by CAR T-cells, evaluate the associated risk factors, and discuss therapeutic strategies to mitigate this issue. Furthermore, the article will explore future research directions focused on optimizing the safety profile of CAR-T therapy, thereby providing a theoretical foundation for the development of safer and more effective therapeutic interventions.
-
-
-
Advances in Metal-based Nanotechnology-based Optical Therapy for the Targeted Treatment of Colorectal Cancer
Authors: Huiling Zuo, Yuhang Jiao, Fengyu Wang, Junzi Wu and Wenling ChenAvailable online: 19 June 2025More LessColorectal cancer (CRC) is one of the most prevalent gastrointestinal malignancies in the world. To overcome clinical challenges, such as high postoperative recurrence rates and prominent resistance to chemotherapy, new therapeutic strategies are urgently needed. Phototherapy, particularly Photodynamic Therapy (PDT) and Photothermal Therapy (PTT), has unique advantages in selectively killing tumor cells. However, traditional Photosensitizers (PSs) and Photothermal Agents (PTAs) have inherent defects, such as limited tissue penetration depth, poor optical stability, and insufficient targeting ability, which severely restrict phototherapy in clinical applications. Significant advancements have been made in enhancing the phototherapeutic effects of metal nanomaterials in recent years. This progress can be attributed to their tunable optical properties, exceptional Photothermal Conversion Efficiency (PCE), and unique Surface Plasmon Resonance (SPR) effects. In this review, we systematically summarized the latest progress in research on the use of metal nanomaterials for the optical diagnosis and treatment of colorectal cancer. We focused on the mechanism by which typical nanomaterials such as gold, silver, and platinum enhance the therapeutic effect of PDT/PTT. Additionally, a comprehensive analysis was conducted to evaluate the application and potential of nano-optical sensitizers incorporating metallic cores such as gold, silver, iridium, platinum, iron, zinc, copper, ruthenium, and titanium for the diagnosis and treatment of Colorectal Cancer (CRC). This review may provide theoretical guidance for developing new-generation optical diagnostic and therapeutic strategies for treating colorectal cancer.
-
-
-
Unveiling the Vital Role of ACTA2-AS1 in Human Cancers: Molecular Mechanisms and Clinical Applications
Authors: Haodong He, Lumei Xiang, Baoqin Pi, Jingjie Yang, Wenjin Peng, Moyu Li, Haoran Liu, Xinyan Zheng, Haoyi Liu, Yuxiang Peng, Pengbo Zhang, Jiahe Zhang, Xin Chen, Yanlin Zhang, Meiyan Shuai, Feng Xu, Yan Cai and Chengfu YuanAvailable online: 19 June 2025More LessBackgroundThe smooth muscle α-actin 2-antisense 1 (ACTA2-AS1), also known as ZXF1, is an emerging cancer-associated long non-coding RNA (lncRNA) that has garnered significant attention in recent years. ACTA2-AS1 is situated on human chromosome 10 at location 10q23.31, comprising five exons and a single transcript. The aberrant expression of ACTA2-AS1 has been noted in 10 malignant tumors, correlating significantly with unfavorable clinicopathological characteristics and poor patient prognosis.
ObjectiveThis review encapsulates recent progress in ACTA2-AS1 research, examining its expression profile, biological functions, molecular mechanisms, and anticipated influence on cancer diagnosis, treatment, and prognosis, emphasizing its potential as a novel therapeutic target based on lncRNA and its prognostic utility as a biomarker.
MethodsBased on a comprehensive search of the PubMed database for the biological function of lncRNA ACTA2-AS1 in malignant tumors, the current research is systematically summarized and critically analyzed.
ResultsACTA2-AS1 plays a complex role in various biological processes in tumor cells, encompassing proliferation, apoptosis, and cell cycle arrest. It also contributes to migration, invasion, epithelial-mesenchymal transition (EMT), and drug resistance. Mechanistically, ACTA2-AS1 influences oncogenic or tumor-suppressive effects via a complex regulatory network. It can adsorb specific 5 miRNAs as competitive endogenous RNAs (ceRNAs), thereby mitigating the suppression of downstream mRNA targets implicated in tumorigenesis (e.g., SOX7, KLF9, CXCL2, BCL2L11, etc.) and modulating their downstream signaling pathways (e.g., Wnt5a/PKC, SMAD3, mTOR, etc.), demonstrating a broad spectrum of dual roles in carcinogenesis and tumor suppression.
ConclusionACTA2-AS1 is a promising biomarker and molecular target for the treatment of cancer.
-
-
-
Exploring Natural Coumarins: Breakthroughs in Anticancer Therapeutics
Authors: Emine Terzi, Beyza Ecem Oz-Bedir and Jean-Yves WinumAvailable online: 19 June 2025More LessNatural coumarins, a class of compounds found abundantly in various plants, are emerging as promising candidates in fight against cancer. Their ability to target multiple cancer-related processes has drawn significant interest from researchers. Natural coumarins exhibit anticancer effects through mechanisms such as inducing apoptosis, which is the programmed death of cancer cells, inhibiting cell proliferation, and disrupting angiogenesis, the process by which tumors develop their own blood supply to sustain growth. What makes coumarins particularly intriguing is their broad-spectrum activity against various types of cancer cells, from breast to lung to colon cancers. They interact with key molecular pathways that drive tumor progression, making them versatile agents in cancer therapy. Additionally, unlike many conventional chemotherapy drugs, natural coumarins generally have lower toxicity, which could translate to fewer side effects for patients. This characteristic makes them attractive as potential standalone treatments or as complementary therapies that enhance the efficacy of existing drugs while minimizing harm to normal cells. Ongoing research continues to explore the therapeutic potential of natural coumarins to better understand their full therapeutic potential and how they might work in combination with other anticancer agents. As the body of evidence grows, these natural compounds could become integral components of more effective and less harmful cancer treatment regimens, offering new hope for patients facing this challenging disease. This review was conducted by systematically analyzing the existing literature on natural coumarins and their anticancer potential.
-
-
-
Determination of PD-L1 Expression in Circulating Tumor Cells of Hypopharyngeal and Laryngeal Cancers and Correlation with Tissue Detection
Authors: Chen Li, Hongyu Zhu, Qin Lin, Wei Chen, Xiaoting Huang and Desheng WangAvailable online: 12 June 2025More LessBackgroundPD-L1 plays a pivotal role as an immunoregulatory checkpoint within the immune system, exerting a critical influence on the internal functioning and survival mechanisms of cancer cells. Our study aimed to elucidate the clinical significance of PD-L1 expression in circulating tumor cells (CTCs) derived from individuals afflicted with Hypopharyngeal and Laryngeal Cancers (HLC).
ObjectiveTo verify the relationship between the expression of PD-L1 in CTCs in HLC and the consistency in tissue and the preliminary clinical application.
MethodsA laboratory-based experimental study was carried out at Fujian Medical University Union Hospital. CTCs were identified using an immunomagnetic positive sorting methodology. Simultaneous detection was conducted on the CTC levels among PD-L1 positive patients, aiming to ascertain the dynamic relationship between real-time CTC fluctuations and the clinicopathological indices of the patients. This investigation encompassed a cohort of 38 individuals, wherein PD-L1 expression analysis was executed to delineate CTC variations in PD-L1-positive patients.
ResultsThe constructed immunolipid magnetic nano-beads demonstrated pronounced efficacy in capturing CTCs, and the lipid nanoparticles exhibited noteworthy capture efficiency coupled with minimal cytotoxic effects. The assessment of PD-L1 expression consistency between CTCs and tissue specimens revealed a substantial agreement surpassing 70%. Furthermore, inhibition of PD-L1 yielded a significant elevation in the cytokine TNF-α levels, accompanied by a concomitant reduction in IL-10 levels.
ConclusionThe CTC sorting system devised in this investigation boasts attributes of remarkable specificity and sensitivity. By virtue of PD-L1 expression analysis, it holds the potential to offer instructive implications for tailoring individualized treatments in clinical scenarios.
-
-
-
HSP Inhibitor Sensitize Resistant MCF-7 Cells to Doxorubicin through Suppressing HSP90AB4P Pseudogene and HSPB1 Expression
Available online: 11 June 2025More LessIntroductionDoxorubicin, a first-line chemotherapeutic agent, often faces resistance in breast cancer subtypes, leading to treatment failure. HSPs (Heat shock proteins), especially HSP90, and their pseudogenes like HSP90AB4P have been implicated in fostering resistance mechanisms by regulating apoptotic and survival pathways in cancer cells. The aim of this study is to investigate how inhibiting HSPs using a novel pyro-salicylic acid derivative (7A) can sensitize doxorubicin-resistant breast cancer cells (MCF-7/ADR) to chemotherapy.
MethodsThe potential role of HSP inhibitor with doxorubicin at different concentrations was tested to reveal synergetic and additive effects by combination index (CI) analysis. Cell cycle analysis, apoptosis assays, and gene expression profiling via PCR arrays supported the impact of 7A over MCF-7/ADR cells' molecular pathways.
ResultsHSP inhibitor efficiently suppressed doxorubicin resistance over invasive breast ductal carcinoma and has a synergetic effect. The inhibitor decreases HSP90AB4P and small HSPB1 expression efficiently.
ConclusionOur findings demonstrate that 7A suppresses doxorubicin resistance in MCF-7/ADR cells by reducing the expression of HSP90AB4P and small HSPB1, leading to an increase in apoptosis and cell cycle arrest. The combination of 7A and doxorubicin exhibits a synergistic effect (CI < 1), enhancing cytotoxicity and overcoming resistance mechanisms. The cells are driven to apoptosis and the inhibitor significantly decreases doxorubicin resistance.
Targeting HSPB1 and its pseudogene HSP90AB4P with 7A offers a promising therapeutic strategy to overcome doxorubicin resistance in breast cancer.
-
-
-
Exploring the Therapeutic Potential of Ocimum sanctum and Phanera variegata in Breast Cancer Treatment: A Promising Natural Approach
Authors: Tohfa Siddiqui, Md. Nasar Mallick and Vikram SharmaAvailable online: 11 June 2025More LessBreast cancer is one of the most common malignancies affecting women worldwide. It is a complex, heterogeneous disease, classified into several subtypes, including hormone receptor-positive and triple-negative breast cancer (TNBC), each with distinct therapeutic challenges. TNBC, in particular, is characterized by its aggressive nature and lack of targeted therapies due to the absence of estrogen, progesterone, and HER2 receptors. This review explores the potential of natural plant-based compounds, especially focusing on Clove Basil (Ocimum sanctum) and Phanera variegata, in combating breast cancer. These plants have been traditionally used for their medicinal properties and are now being studied for their anticancer effects. Ocimum sanctum has demonstrated significant antiproliferative and pro-apoptotic effects against breast cancer cells, particularly the MCF-7 line, through mitochondrial pathway activation and gene regulation. Similarly, Phanera variegata exhibits potential through its rich content of flavonoids and other bioactive compounds, which have been shown to induce apoptosis, reduce tumor growth, and offer antioxidant benefits. The review highlights how these plant extracts, with their multiple mechanisms, including immune modulation and direct cytotoxic effects, hold promise as adjunctive or alternative therapies in breast cancer treatment, particularly for hard-to-treat subtypes like TNBC. Continued research into their molecular pathways and therapeutic efficacy could lead to new, less toxic treatment options.
-
-
-
Novel Heterocyclic Compounds Exhibit Potent Antileukemic Activity through Selective Induction of Apoptosis and HDAC8 Interaction in AML Cells
Available online: 05 June 2025More LessIntroductionHeterocyclic compounds serve as the structural framework for many commercially available drugs and are well known for their antitumor properties.
AimThis study aimed to evaluate the cytotoxic effects, apoptosis induction, changes in cell cycle progression, and gene expression alterations of new heterocyclic compounds and their precursors against the acute monocytic leukemia cell line THP-1 through in vitro experimentation and computational approaches.
MethodsThe study employed cytotoxicity assays, flow cytometry analyses, gene expression evaluations, oral bioavailability studies, and molecular modeling. Among the compounds tested, 6, 25, and 26 demonstrated the greatest potency and selectivity, exhibiting substantially increased cytotoxicity (1.18 μM < IC50 < 7.66 μM) against the THP-1 cell line. Investigations into apoptosis induction and cell cycle changes revealed that these compounds primarily caused an increase in the number of THP-1 cells undergoing apoptosis after 48 hours of treatment. Additionally, compounds 6 and 25 induced an accumulation of cells in the G0/G1 phase in the same cell line.
ResultsRegarding gene expression, a shift in the expression profile of genes associated with apoptotic mechanisms was observed. Furthermore, in silico analysis revealed that these three active compounds potentially interact with histone deacetylase 8 (HDAC8), a protein known to be associated with cancer.
ConclusionThese findings underscore the potential of these compounds as candidates for the development of novel therapeutic approaches in oncology.
-
-
-
Innovative Therapies for Oncogenic KRAS Mutations: Precision Strategies with PROTACs in Cancer Treatment
Available online: 04 June 2025More LessThe KRAS (Kirsten rat sarcoma viral oncogene homolog) gene mutation is commonly found in colorectal, lung, and pancreatic carcinomas. Unfortunately, blocking KRAS straight away has proven to be challenging. PROTACs (Proteolysis Targeting Chimeras), a class of bifunctional molecules, are designed to break down proteins, offering a unique strategy to target KRAS and overcome the limitations of traditional inhibition. This review discusses PROTACs targeting KRAS mutations in cancer, highlighting major findings, current limitations, and future perspectives. The review was performed using the databases, namely, Medline, Embase, Science Direct, and Scopus, using the keywords “PROTACs, protein degradation, anti-tumor action, cancer treatment, KRAS mutation”. Additional information was gathered from related textbooks, reviews, and documents. PROTAC treatment results in the suppression of downstream signalling pathways associated with KRAS, such as the MAPK and PI3K/AKT pathways. Animal studies demonstrate the ability of the PROTAC to effectively target KRAS-mutant tumors, inhibiting tumour growth without significant toxicities. New advances in this field can lead to cancer treatments that specifically target KRAS-mutant tumors.
-
-
-
Analytical Techniques as Indicators of Biomarkers in Proteomics Cancer Diagnosis
Authors: Pawan Kumar Goswami, Ranjeet Kumar, Dharmendra Kumar and Shubham DhimanAvailable online: 29 May 2025More LessBackgroundCancer is a complex disease marked by changes in the levels and functions of key cellular proteins, including oncogenes and tumor suppressors. Proteomics technology enables the identification of crucial protein targets and signaling pathways involved in cancer cell proliferation and metastasis. Various proteomics techniques have been employed to investigate the molecular mechanisms of cancer, aiding in the confirmation and characterization of heritable disorders.
MethodsA comprehensive literature search was conducted using PubMed, ScienceDirect, and Google Scholar with search terms like “Cancer and proteomics” and “Mass spectrometry in oncology,” utilizing Boolean operators for refinement. Selection criteria included peer-reviewed articles in English on MS-based biomarker detection, tumor-specific proteins, and drug resistance markers, excluding non-peer-reviewed works and pre-2000 publications unless foundational. Extracted data focused on MS methodologies, biomarker sensitivity, and clinical applications, particularly advances in detecting low-abundance biomarkers and monitoring treatment response. Methodological quality was assessed using PRISMA, evaluating study design, sample size, reproducibility, and statistical analysis. Ethical approval was not required, but adherence to systematic review guidelines and proper citation were ensured.
ResultsIn this review, we highlighted the advanced analytical technique for cancer diagnosis and management of cancer, and described the objective of novel cancer biomarkers. Mass spectrometry (MS) is transforming cancer diagnostics and personalized medicine by enabling precise biomarker detection and monitoring. Unlike traditional antibody-based methods, MS provides high-throughput, quantitative analysis of tumor-specific proteins in clinical samples like blood and tissue. Advanced MS techniques improve sensitivity, allowing for the identification of low-abundance biomarkers and tumor-associated proteoforms, including post-translational modifications and drug resistance markers. In research, MS-based proteomics supports multi-center biomarker validation studies with standardized protocols, enhancing reproducibility. The integration of proteomic data with genomic and transcriptomic datasets through proteogenomics is refining precision oncology strategies. These advancements are bridging the gap between research and clinical application, making MS a critical tool for early cancer detection, prognosis, and therapy selection.
ConclusionAdvancements in technology and analytical techniques have helped to produce more accurate and sensitive cancer-specific biomarkers. These methods are advancing rapidly, and developing high-throughput platforms has yielded great results. However, the substantial variation in protein concentrations makes cancer protein profiling extremely complicated. This shows that more technical developments are required in the future to improve proteome broad screening of cancer cells.
-
-
-
Computational Optimization and In silico Analysis for the Discovery of New HER2 and CDK4/6 Drug Candidates for Breast Cancer
Available online: 13 May 2025More LessBackgroundBreast cancer is an abnormal cell growth that develops in the breast and spreads throughout the body. Despite cancer being the second leading cause of death, survival rates are increasing as a result of progress in cancer screening and therapy. Breast cancer is the most frequently diagnosed cancer type among women, but in most cases, there are no obvious symptoms. Screening mammograms can be used for early detection of cancer. The size of the tumor and the extent of cancer spread determine the type of needed treatment. There are different forms of treatment, where targeted therapy is generally the least harmful. It targets specific characteristics of cancer cells, such as human epidermal growth factor receptor 2 (HER2). Tyrosine kinase inhibitors are effective targeted treatment of HER2 positive breast cancer. A newer class has emerged, cyclin dependent kinase (CDK4/6), which is used to treat metastatic breast cancer.
ObjectivesAlthough CDK4/6 inhibitors class of therapy has revolutionized the treatment of metastatic breast cancer, some patients showed resistance and decreased efficacy. This study is the first to propose innovative computational strategies to improve the effectiveness and pharmacokinetic properties of existing HER2/CDK4/6 inhibitors anti-cancer agents. Through computer-aided drug design, the activity of existing breast cancer drug candidates has been tested. Structural modifications have been applied for in-silico optimization of their biological activity.
MethodsIn this research, twenty-two analogues of the tested compounds have been proposed. Their biological activity and pharmacokinetic properties (ADMET) have been tested using BIOVIA Discovery Studio software.
ResultsOut of the designed analogous compounds, seven proposed structures demonstrated superior efficacy compared to the original drugs. The research study docking studies revealed that modifications to lapatinib and tucatinib improved binding affinity to HER2 by 15-25%, with docking scores of -18.34 kcal/mol and -1.04 kcal/mol, respectively. Similarly, CDK4/6 inhibitors exhibited enhanced selectivity, with abemaciclib showing the highest binding energy of -13.2 kcal/mol. ADMET predictions suggested improved solubility and reduced toxicity risks compared to the original drugs.
ConclusionThe research study results demonstrate that the synthesis of more lipophilic analogues of lapatinib or tucatinib and, likewise designing of fluorinated derivatives of CDK4/6 inhibitors play a crucial role in improving the efficacy of these anti-cancer agents. These findings highlight the potential of the proposed modifications as promising candidates for further pharmacological and in vitro and in vivo clinical validation.
-