Skip to content
2000
image of Advances in Metal-based Nanotechnology-based Optical Therapy for the Targeted Treatment of Colorectal Cancer

Abstract

Colorectal cancer (CRC) is one of the most prevalent gastrointestinal malignancies in the world. To overcome clinical challenges, such as high postoperative recurrence rates and prominent resistance to chemotherapy, new therapeutic strategies are urgently needed. Phototherapy, particularly Photodynamic Therapy (PDT) and Photothermal Therapy (PTT), has unique advantages in selectively killing tumor cells. However, traditional Photosensitizers (PSs) and Photothermal Agents (PTAs) have inherent defects, such as limited tissue penetration depth, poor optical stability, and insufficient targeting ability, which severely restrict phototherapy in clinical applications. Significant advancements have been made in enhancing the phototherapeutic effects of metal nanomaterials in recent years. This progress can be attributed to their tunable optical properties, exceptional Photothermal Conversion Efficiency (PCE), and unique Surface Plasmon Resonance (SPR) effects. In this review, we systematically summarized the latest progress in research on the use of metal nanomaterials for the optical diagnosis and treatment of colorectal cancer. We focused on the mechanism by which typical nanomaterials such as gold, silver, and platinum enhance the therapeutic effect of PDT/PTT. Additionally, a comprehensive analysis was conducted to evaluate the application and potential of nano-optical sensitizers incorporating metallic cores such as gold, silver, iridium, platinum, iron, zinc, copper, ruthenium, and titanium for the diagnosis and treatment of Colorectal Cancer (CRC). This review may provide theoretical guidance for developing new-generation optical diagnostic and therapeutic strategies for treating colorectal cancer.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206378631250611101427
2025-06-19
2025-09-26
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Simelane N.N.W. Kruger C.A. Abrahamse H. Photodynamic diagnosis and photodynamic therapy of colorectal cancer in vitro and in vivo. RSC Advances 2020 10 68 41560 41576 10.1039/D0RA08617G 35516575
    [Google Scholar]
  3. Huyghe N. Baldin P. Van den Eynde M. Immunotherapy with immune checkpoint inhibitors in colorectal cancer: What is the future beyond deficient mismatch-repair tumours? Gastroenterol. Rep. 2020 8 1 11 24 10.1093/gastro/goz061 32104582
    [Google Scholar]
  4. Brand M. Gaylard P. Ramos J. Colorectal cancer in South Africa: An assessment of disease presentation, treatment pathways and 5-year survival. S. Afr. Med. J. 2018 108 2 118 122 10.7196/SAMJ.2018.v108i2.12338 29429443
    [Google Scholar]
  5. Golfinopoulou R. Hatziagapiou K. Mavrikou S. Kintzios S. Unveiling colorectal cancer biomarkers: Harnessing biosensor technology for volatile organic compound detection. Sensors 2024 24 14 4712 10.3390/s24144712 39066110
    [Google Scholar]
  6. Pös O. Styk J. Buglyó G. Zeman M. Lukyova L. Bernatova K. Turnova H.E. Rendek T. Csók Á. Repiska V. Nagy B. Szemes T. Cross-kingdom interaction of mirnas and gut microbiota with non-invasive diagnostic and therapeutic implications in colorectal cancer. Int. J. Mol. Sci. 2023 24 13 10520 10.3390/ijms241310520 37445698
    [Google Scholar]
  7. Provenzale D. Gray R.N. Colorectal cancer screening and treatment: Review of outcomes research. JNCI Monographs 2004 2004 33 45 55 10.1093/jncimonographs/lgh005 15504919
    [Google Scholar]
  8. Liu Y. Yang F. Li Z. Wang T. Mu Y. Fan Y. Xue H. Hu X. Guan X. Feng H. Concurrent immune checkpoint blockade for enhanced cancer immunotherapy utilizing engineered hybrid nanovesicles. Front. Pharmacol. 2024 15 1487940 10.3389/fphar.2024.1487940 39588148
    [Google Scholar]
  9. Thomas N. Puluhulawa L.E. Cindana Mo’o F.R. Rusdin A. Gazzali A.M. Budiman A. Potential of pullulan-based polymeric nanoparticles for improving drug physicochemical properties and effectiveness. Polymers 2024 16 15 2151 10.3390/polym16152151 39125177
    [Google Scholar]
  10. Sahu N. Jain P. Sahu D. Kaur K. Nagori K. Ajazuddin, Recent trends in the treatment of vitiligo using novel drug delivery system. Int. J. Pharm. 2025 670 125106 10.1016/j.ijpharm.2024.125106 39716607
    [Google Scholar]
  11. Sahu N. Jain P. Nagori K. Ajazuddin, Recent advancement and novel treatment strategies for breast fibroadenoma: Clinical approach and prospects. Curr. Cancer Ther. Rev. 2024 20 1 9 10.2174/0115733947318171240802100419
    [Google Scholar]
  12. Raza M.A. Sharma M.K. Nagori K. Jain P. Ghosh V. Gupta U. Ajazuddin, Recent trends on polycaprolactone as sustainable polymer-based drug delivery system in the treatment of cancer: Biomedical applications and nanomedicine. Int. J. Pharm. 2024 666 124734 10.1016/j.ijpharm.2024.124734 39343332
    [Google Scholar]
  13. Abedizadeh R. Majidi F. Khorasani H.R. Abedi H. Sabour D. Colorectal cancer: A comprehensive review of carcinogenesis, diagnosis, and novel strategies for classified treatments. Cancer Metastasis Rev. 2024 43 2 729 753 10.1007/s10555‑023‑10158‑3 38112903
    [Google Scholar]
  14. Kolligs F.T. Diagnostics and epidemiology of colorectal cancer. Visc. Med. 2016 32 3 158 164 10.1159/000446488 27493942
    [Google Scholar]
  15. Biller L.H. Schrag D. Diagnosis and treatment of metastatic colorectal cancer. JAMA 2021 325 7 669 685 10.1001/jama.2021.0106 33591350
    [Google Scholar]
  16. Vega P. Valentín F. Cubiella J. Colorectal cancer diagnosis: Pitfalls and opportunities. World J. Gastrointest. Oncol. 2015 7 12 422 433 10.4251/wjgo.v7.i12.422 26690833
    [Google Scholar]
  17. Naidoo C. Kruger C.A. Abrahamse H. Simultaneous photodiagnosis and photodynamic treatment of metastatic melanoma. Molecules 2019 24 17 3153 10.3390/molecules24173153 31470637
    [Google Scholar]
  18. Zhou M. Liu X. Chen F. Yang L. Yuan M. Fu D.Y. Wang W. Yu H. Stimuli-activatable nanomaterials for phototherapy of cancer. Biomed. Mater. 2021 16 4 042008 10.1088/1748‑605X/abfa6e 33882463
    [Google Scholar]
  19. Dai T. He W. Tu S. Han J. Yuan B. Yao C. Ren W. Wu A. Black TiO2 nanoprobe-mediated mild phototherapy reduces intracellular lipid levels in atherosclerotic foam cells via cholesterol regulation pathways instead of apoptosis. Bioact. Mater. 2022 17 18 28 10.1016/j.bioactmat.2022.01.013 35386468
    [Google Scholar]
  20. Tan M. Li X. Zhang H. Zheng M. Xiong J. Cao Y. Cao G. Wang Z. Ran H. Förster resonance energy transfer nanobullet for photoacoustic imaging and amplified photothermal‐photodynamic therapy of cancer. Adv. Healthc. Mater. 2023 12 15 2202943 10.1002/adhm.202202943 36773308
    [Google Scholar]
  21. Nasseri B. Alizadeh E. Bani F. Davaran S. Akbarzadeh A. Rabiee N. Bahadori A. Ziaei M. Bagherzadeh M. Saeb M.R. Mozafari M. Hamblin M.R. Nanomaterials for photothermal and photodynamic cancer therapy. Appl. Phys. Rev. 2022 9 1 011317 10.1063/5.0047672
    [Google Scholar]
  22. Huang H. Liu R. Yang J. Dai J. Fan S. Pi J. Wei Y. Guo X. Gold nanoparticles: Construction for drug delivery and application in cancer immunotherapy. Pharmaceutics 2023 15 7 1868 10.3390/pharmaceutics15071868 37514054
    [Google Scholar]
  23. Lin M Gao Y Hornicek F Xu F Lu T J Amiji M Duan Z Near-infrared light activated delivery platform for cancer therapy. Adv. Colloid Interface Sci. 2015 226 PT B 123 137 10.1016/j.cis.2015.10.003
    [Google Scholar]
  24. McKenzie L.K. Sazanovich I.V. Baggaley E. Bonneau M. Guerchais V. Williams J.A.G. Weinstein J.A. Bryant H.E. Metal complexes for two‐photon photodynamic therapy: A cyclometallated iridium complex induces two‐photon photosensitization of cancer cells under near‐IR light. Chemistry 2017 23 2 234 238 10.1002/chem.201604792 27740703
    [Google Scholar]
  25. Zhao W. Li A. Zhang A. Zheng Y. Liu J. Recent advances in functional‐polymer‐decorated transition‐metal nanomaterials for bioimaging and cancer therapy. ChemMedChem 2018 13 20 2134 2149 10.1002/cmdc.201800462 30152914
    [Google Scholar]
  26. Zhang L. Li Y. Che W. Zhu D. Li G. Xie Z. Song N. Liu S. Tang B.Z. Liu X. Su Z. Bryce M.R. AIe multinuclear IR(III) complexes for biocompatible organic nanoparticles with highly enhanced photodynamic performance. Adv. Sci. 2019 6 5 1802050 10.1002/advs.201802050 30886811
    [Google Scholar]
  27. Estelrich J. Busquets M.A. Iron oxide nanoparticles in photothermal therapy. Molecules 2018 23 7 1567 10.3390/molecules23071567 29958427
    [Google Scholar]
  28. Dhanalekshmi K.I. Sangeetha K. Magesan P. Johnson J. Zhang X. Jayamoorthy K. Photodynamic cancer therapy: Role of Ag- and Au-based hybrid nano-photosensitizers. J. Biomol. Struct. Dyn. 2022 40 10 4766 4773 10.1080/07391102.2020.1858965 33300461
    [Google Scholar]
  29. Shang L. Zhou X. Zhang J. Shi Y. Zhong L. Metal nanoparticles for photodynamic therapy: A potential treatment for breast cancer. Molecules 2021 26 21 6532 10.3390/molecules26216532 34770941
    [Google Scholar]
  30. Hesemans E. Buttiens K. Manshian B. Soenen S. The role of optical imaging in translational nanomedicine. J. Funct. Biomater. 2022 13 3 137 10.3390/jfb13030137 36135572
    [Google Scholar]
  31. Huang Y. Wang J. Xu J. Ruan N. Remodeling tumor microenvironment using pH-sensitive biomimetic co-delivery of TRAIL/R848 liposomes against colorectal cancer. Oncol. Res. 2024 0 0 1 10 10.32604/or.2024.045564 39449815
    [Google Scholar]
  32. Xie J. Liu G. Eden H.S. Ai H. Chen X. Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc. Chem. Res. 2011 44 10 883 892 10.1021/ar200044b 21548618
    [Google Scholar]
  33. Chen N.T. Tang K.C. Chung M.F. Cheng S.H. Huang C.M. Chu C.H. Chou P.T. Souris J.S. Chen C.T. Mou C.Y. Lo L.W. Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy. Theranostics 2014 4 8 798 807 10.7150/thno.8934 24955141
    [Google Scholar]
  34. Llevot A. Astruc D. Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chem. Soc. Rev. 2012 41 1 242 257 10.1039/C1CS15080D 21785769
    [Google Scholar]
  35. Kim M. Lee J.H. Nam J.M. Plasmonic photothermal nanoparticles for biomedical applications. Adv. Sci. 2019 6 17 1900471 10.1002/advs.201900471 31508273
    [Google Scholar]
  36. Pornpattananangkul D. Olson S. Aryal S. Sartor M. Huang C.M. Vecchio K. Zhang L. Stimuli-responsive liposome fusion mediated by gold nanoparticles. ACS Nano 2010 4 4 1935 1942 10.1021/nn9018587 20235571
    [Google Scholar]
  37. Rodríguez-Castillo M. Lugo-Preciado G. Laurencin D. Tielens F. van der Lee A. Clément S. Guari Y. López-de-Luzuriaga J.M. Monge M. Remacle F. Richeter S. Experimental and theoretical study of the reactivity of gold nanoparticles towards benzimidazole‐2‐ylidene ligands. Chemistry 2016 22 30 10446 10458 10.1002/chem.201601253 27344993
    [Google Scholar]
  38. Ghaemi F. Amiri A. Bajuri M.Y. Yuhana N.Y. Ferrara M. Role of different types of nanomaterials against diagnosis, prevention and therapy of COVID-19. Sustain Cities Soc. 2021 72 103046 10.1016/j.scs.2021.103046 34055576
    [Google Scholar]
  39. Ullah I. Khan S.S. Ahmad W. Liu L. Rady A. Aldahmash B. Yu Y. Wang J. Wang Y. NIR light-activated nanocomposites combat biofilm formation and enhance antibacterial efficacy for improved wound healing. Commun. Chem. 2024 7 1 131 10.1038/s42004‑024‑01215‑1 38851819
    [Google Scholar]
  40. Oladipo A.O. Lebepe T.C. Ncapayi V. Tsolekile N. Parani S. Songca S.P. Mori S. Kodama T. Oluwafemi O.S. The therapeutic effect of second near-infrared absorbing gold nanorods on metastatic lymph nodes via lymphatic delivery system. Pharmaceutics 2021 13 9 1359 10.3390/pharmaceutics13091359 34575435
    [Google Scholar]
  41. Nukaly H.Y. Ansari S.A. An insight into the physicochemical properties of gold nanoparticles in relation to their clinical and diagnostic applications. Cureus 2023 15 4 e37803 10.7759/cureus.37803 37213974
    [Google Scholar]
  42. Abed Z. Beik J. Laurent S. Eslahi N. Khani T. Davani E.S. Ghaznavi H. Shakeri-Zadeh A. Iron oxide–gold core–shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance. J. Cancer Res. Clin. Oncol. 2019 145 5 1213 1219 10.1007/s00432‑019‑02870‑x 30847551
    [Google Scholar]
  43. He X. Liu F. Liu L. Duan T. Zhang H. Wang Z. Lectin-conjugated Fe2O3@Au core@Shell nanoparticles as dual mode contrast agents for in vivo detection of tumor. Mol. Pharm. 2014 11 3 738 745 10.1021/mp400456j 24472046
    [Google Scholar]
  44. Osanloo N. Ahmadi V. Naser-Moghaddasi M. Darabi E. Analytical study of gold–DNA nano core–shell cloaking characteristics for drug delivery and cancer therapy. RSC Advances 2023 13 33 23244 23253 10.1039/D3RA03338D 37533786
    [Google Scholar]
  45. Cheng T.M. Chu H.Y. Huang H.M. Li Z.L. Chen C.Y. Shih Y.J. Whang-Peng J. Cheng R.H. Mo J.K. Lin H.Y. Wang K. Toxicologic concerns with current medical nanoparticles. Int. J. Mol. Sci. 2022 23 14 7597 10.3390/ijms23147597 35886945
    [Google Scholar]
  46. Franzolin M.R. Courrol D.S. Silva F.R.O. Courrol L.C. Antimicrobial activity of silver and gold nanoparticles prepared by photoreduction process with leaves and fruit extracts of Plinia cauliflora and Punica granatum. Molecules 2022 27 20 6860 10.3390/molecules27206860 36296456
    [Google Scholar]
  47. Deng W. McKelvey K.J. Guller A. Fayzullin A. Campbell J.M. Clement S. Habibalahi A. Wargocka Z. Liang L. Shen C. Howell V.M. Engel A.F. Goldys E.M. Application of mitochondrially targeted nanoconstructs to neoadjuvant X-ray-induced photodynamic therapy for rectal cancer. ACS Cent. Sci. 2020 6 5 715 726 10.1021/acscentsci.9b01121 32490188
    [Google Scholar]
  48. Gu X. Shu T. Deng W. Shen C. Wu Y. An X-ray activatable gold nanorod encapsulated liposome delivery system for mitochondria-targeted photodynamic therapy (PDT). J. Mater. Chem. B Mater. Biol. Med. 2023 11 20 4539 4547 10.1039/D3TB00608E 37161717
    [Google Scholar]
  49. Mei W. Yao S. Cai X. Xu Q. Hu H. Xu Z. Dai X. A multifunctional metal-based nanozyme for CT/PTI-guided photothermal/starvation/chemodynamic therapy against colon tumor. J. Mater. Chem. B Mater. Biol. Med. 2025 13 5 1781 1793 10.1039/D4TB02578D 39744855
    [Google Scholar]
  50. Parchur A.K. Sharma G. Jagtap J.M. Gogineni V.R. LaViolette P.S. Flister M.J. White S.B. Joshi A. Vascular interventional radiology-guided photothermal therapy of colorectal cancer liver metastasis with theranostic gold nanorods. ACS Nano 2018 12 7 6597 6611 10.1021/acsnano.8b01424 29969226
    [Google Scholar]
  51. Tasan S. Licona C. Doulain P.E. Michelin C. Gros C.P. Gendre L.P. Harvey P.D. Paul C. Gaiddon C. Bodio E. Gold–phosphine–porphyrin as potential metal-based theranostics. J. Biol. Inorg. Chem. 2015 20 1 143 154 10.1007/s00775‑014‑1220‑8 25476859
    [Google Scholar]
  52. Liu J. Yang T. Zhang H. Weng L. Peng X. Liu T. Cheng C. Zhang Y. Chen X. Intelligent nanoreactor coupling tumor microenvironment manipulation and H2O2-dependent photothermal-chemodynamic therapy for accurate treatment of primary and metastatic tumors. Bioact. Mater. 2024 34 354 365 10.1016/j.bioactmat.2023.12.028 38269307
    [Google Scholar]
  53. Žiemytė M. Escudero A. Díez P. Ferrer M.D. Murguía J.R. Martí-Centelles V. Mira A. Martínez-Máñez R. Ficin–cyclodextrin-based docking nanoarchitectonics of self-propelled nanomotors for bacterial biofilm eradication. Chem. Mater. 2023 35 11 4412 4426 10.1021/acs.chemmater.3c00587 37332683
    [Google Scholar]
  54. Wang Y. Yang Y. Yang L. Lin Y. Tian Y. Ni Q. Wang S. Ju H. Guo J. Lu G. Gold Nanostar@Polyaniline Theranostic agent with high photothermal conversion efficiency for photoacoustic imaging-guided anticancer phototherapy at a low dosage. ACS Appl. Mater. Interfaces 2022 14 25 28570 28580 10.1021/acsami.2c05679 35726862
    [Google Scholar]
  55. Depciuch J. Stec M. Kandler M. Baran J. Parlinska-Wojtan M. From spherical to bone-shaped gold nanoparticles—Time factor in the formation of Au NPs, their optical and photothermal properties. Photodiagn. Photodyn. Ther. 2020 30 101670 10.1016/j.pdpdt.2020.101670 31988022
    [Google Scholar]
  56. Hirn S. Semmler-Behnke M. Schleh C. Wenk A. Lipka J. Schäffler M. Takenaka S. Möller W. Schmid G. Simon U. Kreyling W.G. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur. J. Pharm. Biopharm. 2011 77 3 407 416 10.1016/j.ejpb.2010.12.029 21195759
    [Google Scholar]
  57. Luo Y.H. Chang L.W. Lin P. Metal-based nanoparticles and the immune system: Activation, inflammation, and potential applications. BioMed Res. Int. 2015 2015 1 12 10.1155/2015/143720 26125021
    [Google Scholar]
  58. Kyriakides T.R. Raj A. Tseng T.H. Xiao H. Nguyen R. Mohammed F.S. Halder S. Xu M. Wu M.J. Bao S. Sheu W.C. Biocompatibility of nanomaterials and their immunological properties. Biomed. Mater. 2021 16 4 042005 10.1088/1748‑605X/abe5fa 33578402
    [Google Scholar]
  59. Depciuch J. Stec M. Maximienko A. Baran J. Parlinska-Wojtan M. Size-dependent theoretical and experimental photothermal conversion efficiency of spherical gold nanoparticles. Photodiagn. Photodyn. Ther. 2022 39 102979 10.1016/j.pdpdt.2022.102979 35728753
    [Google Scholar]
  60. Liu G. Wang S. Wang S. Wu R. Li H. Zha M. Song J. Yin Y. Li K. Mu J. Shi Y. Carbon dots-mediated synthesis of gold nanodendrites with extended absorption into NIR-II window for in vivo photothermal therapy. J. Nanobiotechnology 2023 21 1 151 10.1186/s12951‑023‑01887‑2 37161467
    [Google Scholar]
  61. Mendes de Almeida A. Junior Ferreira A.S. Camacho S.A. Moreira G.L. Toledo D.K.A. Oliveira O.N. Aoki P.H.B. Enhancing phototoxicity in human colorectal tumor cells through nanoarchitectonics for synergistic photothermal and photodynamic therapies. ACS Appl. Mater. Interfaces 2024 acsami.4c02247 10.1021/acsami.4c02247 38652860
    [Google Scholar]
  62. Azhdarzadeh M. Atyabi F. Saei A.A. Varnamkhasti B.S. Omidi Y. Fateh M. Ghavami M. Shanehsazzadeh S. Dinarvand R. Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids Surf. B Biointerfaces 2016 143 224 232 10.1016/j.colsurfb.2016.02.058 27015647
    [Google Scholar]
  63. Kim Y. Kim H. Kang H.W. Enhancement of gold nanorods‐assisted photothermal treatment on cancer with laser power in stepwise modulation. Lasers Surg. Med. 2022 54 6 841 850 10.1002/lsm.23549 35419820
    [Google Scholar]
  64. Xiao Y. Zhu T. Zeng Q. Tan Q. Jiang G. Huang X. Functionalized biomimetic nanoparticles combining programmed death-1/programmed death-ligand 1 blockade with photothermal ablation for enhanced colorectal cancer immunotherapy. Acta Biomater. 2023 157 451 466 10.1016/j.actbio.2022.11.043 36442821
    [Google Scholar]
  65. Nam J. Son S. Ochyl L.J. Kuai R. Schwendeman A. Moon J.J. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 2018 9 1 1074 10.1038/s41467‑018‑03473‑9 29540781
    [Google Scholar]
  66. Costantini P.E. Giosia D.M. Ulfo L. Petrosino A. Saporetti R. Fimognari C. Pompa P.P. Danielli A. Turrini E. Boselli L. Calvaresi M. Spiky gold nanoparticles for the photothermal eradication of colon cancer cells. Nanomaterials 2021 11 6 1608 10.3390/nano11061608 34207455
    [Google Scholar]
  67. Wang B. Wu S. Lin Z. Jiang Y. Chen Y. Chen Z.S. Yang X. Gao W. A personalized and long-acting local therapeutic platform combining photothermal therapy and chemotherapy for the treatment of multidrug-resistant colon tumor. Int. J. Nanomedicine 2018 13 8411 8427 10.2147/IJN.S184728 30587968
    [Google Scholar]
  68. Abed Z. Shakeri-Zadeh A. Eyvazzadeh N. Magnetic targeting of magneto-plasmonic nanoparticles and their effects on temperature profile of nir laser irradiated to CT26 tumor in BALB/C mice. J. Biomed. Phys. Eng. 2021 11 3 281 288 10.31661/jbpe.v0i0.1032 34189116
    [Google Scholar]
  69. Li X. Takashima M. Yuba E. Harada A. Kono K. PEGylated PAMAM dendrimer–doxorubicin conjugate-hybridized gold nanorod for combined photothermal-chemotherapy. Biomaterials 2014 35 24 6576 6584 10.1016/j.biomaterials.2014.04.043 24816361
    [Google Scholar]
  70. Wang S. Song Y. Cao K. Zhang L. Fang X. Chen F. Feng S. Yan F. Photothermal therapy mediated by gold nanocages composed of anti-PDL1 and galunisertib for improved synergistic immunotherapy in colorectal cancer. Acta Biomater. 2021 134 621 632 10.1016/j.actbio.2021.07.051 34329782
    [Google Scholar]
  71. Dai J. Li J. Zhang Y. Wen Q. Lu Y. Fan Y. Zeng F. Qian Z. Zhang Y. Fu S. GM-CSF augmented the photothermal immunotherapeutic outcome of self-driving gold nanoparticles against a mouse CT-26 colon tumor model. Biomater. Res. 2023 27 1 105 10.1186/s40824‑023‑00430‑6 37872620
    [Google Scholar]
  72. Lee S.B. Lee J.E. Cho S.J. Chin J. Kim S.K. Lee I.K. Lee S.W. Lee J. Jeon Y.H. Crushed gold shell nanoparticles labeled with radioactive iodine as a theranostic nanoplatform for macrophage-mediated photothermal therapy. Nano-Micro Lett. 2019 11 1 36 10.1007/s40820‑019‑0266‑0 34137977
    [Google Scholar]
  73. Meir R. Shamalov K. Sadan T. Motiei M. Yaari G. Cohen C.J. Popovtzer R. Fast image-guided stratification using anti-programmed death ligand 1 gold nanoparticles for cancer immunotherapy. ACS Nano 2017 11 11 11127 11134 10.1021/acsnano.7b05299 29028305
    [Google Scholar]
  74. Adewale O.B. Cairncross L. Xakaza H. Wickens N. Anadozie S.O. Davids H. Roux S. Short- and long-term effect of colorectal cancer targeting peptides conjugated to gold nanoparticles in rats’ liver and colon after single exposure. Toxicol. Res. 2022 38 3 259 273 10.1007/s43188‑021‑00108‑y 35874503
    [Google Scholar]
  75. Seo S.H. Joe A. Han H.W. Manivasagan P. Jang E.S. Mesoporous silica-layered gold nanorod core@silver shell nanostructures for intracellular sers imaging and phototherapy. Pharmaceutics 2024 16 1 137 10.3390/pharmaceutics16010137 38276508
    [Google Scholar]
  76. Seo S.H. Kim B.M. Joe A. Han H.W. Chen X. Cheng Z. Jang E.S. NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites. Biomaterials 2014 35 10 3309 3318 10.1016/j.biomaterials.2013.12.066 24424205
    [Google Scholar]
  77. Licciardi M. Varvarà P. Tranchina L. Puleio R. Cicero L. Cassata G. Giammona G. In vivo efficacy of verteporfin loaded gold nanorods for combined photothermal/photodynamic colon cancer therapy. Int. J. Pharm. 2022 625 122134 10.1016/j.ijpharm.2022.122134 36007850
    [Google Scholar]
  78. Sun J. Kormakov S. Liu Y. Huang Y. Wu D. Yang Z. Recent progress in metal-based nanoparticles mediated photodynamic therapy. Molecules 2018 23 7 1704 10.3390/molecules23071704 30002333
    [Google Scholar]
  79. Rheder D.T. Guilger M. Bilesky-José N. Germano-Costa T. Pasquoto-Stigliani T. Gallep T.B.B. Grillo R. Carvalho C.S. Fraceto L.F. Lima R. Synthesis of biogenic silver nanoparticles using Althaea officinalis as reducing agent: Evaluation of toxicity and ecotoxicity. Sci. Rep. 2018 8 1 12397 10.1038/s41598‑018‑30317‑9 30120279
    [Google Scholar]
  80. Cameron S.J. Hosseinian F. Willmore W.G. A current overview of the biological and cellular effects of nanosilver. Int. J. Mol. Sci. 2018 19 7 2030 10.3390/ijms19072030 30002330
    [Google Scholar]
  81. Nikolopoulou S.G. Kalska B. Basa A. Papadopoulou A. Efthimiadou E.K. Novel hybrid silver–silica nanoparticles synthesized by modifications of the sol–gel method and their theranostic potential in cancer. ACS Appl. Bio Mater. 2023 6 12 5235 5251 10.1021/acsabm.3c00494 37955979
    [Google Scholar]
  82. Zhang Y. Zhang S. Zhang Z. Ji L. Zhang J. Wang Q. Guo T. Ni S. Cai R. Mu X. Long W. Wang H. Recent progress on NIR-II photothermal therapy. Front Chem. 2021 9 728066 10.3389/fchem.2021.728066 34395388
    [Google Scholar]
  83. Deng Z. Jiang M. Li Y. Liu H. Zeng S. Hao J. Endogenous H2S-triggered in situ synthesis of NIR-II-emitting nanoprobe for in vivo intelligently lighting up colorectal cancer. iScience 2019 17 217 224 10.1016/j.isci.2019.06.034 31301632
    [Google Scholar]
  84. Freitas D.C.F. Kimura E. Rubira A.F. Muniz E.C. Curcumin and silver nanoparticles carried out from polysaccharide-based hydrogels improved the photodynamic properties of curcumin through metal-enhanced singlet oxygen effect. Mater. Sci. Eng. C 2020 112 110853 10.1016/j.msec.2020.110853 32409030
    [Google Scholar]
  85. Miethling-Graff R. Rumpker R. Richter M. Verano-Braga T. Kjeldsen F. Brewer J. Hoyland J. Rubahn H.G. Erdmann H. Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol. In Vitro 2014 28 7 1280 1289 10.1016/j.tiv.2014.06.005 24997297
    [Google Scholar]
  86. Cui X. Hu Z. Li R. Jiang P. Wei Y. Chen Z. CA IX-targeted Ag2S quantum dots bioprobe for NIR-II imaging-guided hypoxia tumor chemo-photothermal therapy. J. Pharm. Anal. 2024 14 6 100969 10.1016/j.jpha.2024.100969 39027913
    [Google Scholar]
  87. He J. Wei Q. Wang S. Hua S. Zhou M. Bioinspired protein corona strategy enhanced biocompatibility of Ag-Hybrid hollow Au nanoshells for surface-enhanced Raman scattering imaging and on-demand activation tumor-phototherapy. Biomaterials 2021 271 120734 10.1016/j.biomaterials.2021.120734 33647873
    [Google Scholar]
  88. Liu B. Monro S. Lystrom L. Cameron C.G. Colón K. Yin H. Kilina S. McFarland S.A. Sun W. Photophysical and photobiological properties of dinuclear iridium(III) bis-tridentate complexes. Inorg. Chem. 2018 57 16 9859 9872 10.1021/acs.inorgchem.8b00789 30091916
    [Google Scholar]
  89. Ma D.L. Wu C. Wu K.J. Leung C.H. Iridium(III) complexes targeting apoptotic cell death in cancer cells. Molecules 2019 24 15 2739 10.3390/molecules24152739 31357712
    [Google Scholar]
  90. Zhou J. Li J. Zhang K.Y. Liu S. Zhao Q. Phosphorescent iridium(III) complexes as lifetime-based biological sensors for photoluminescence lifetime imaging microscopy. Coord. Chem. Rev. 2022 453 214334 10.1016/j.ccr.2021.214334
    [Google Scholar]
  91. Jing S. Wu X. Niu D. Wang J. Leung C.H. Wang W. Recent advances in organometallic NIR Iridium(III) complexes for detection and therapy. Molecules 2024 29 1 256 10.3390/molecules29010256 38202839
    [Google Scholar]
  92. Zhuang W. Yang L. Ma B. Kong Q. Li G. Wang Y. Tang B.Z. Multifunctional two-photon AIE luminogens for highly mitochondria-specific bioimaging and efficient photodynamic therapy. ACS Appl. Mater. Interfaces 2019 11 23 20715 20724 10.1021/acsami.9b04813 31144501
    [Google Scholar]
  93. Kim S. Tachikawa T. Fujitsuka M. Majima T. Far-red fluorescence probe for monitoring singlet oxygen during photodynamic therapy. J. Am. Chem. Soc. 2014 136 33 11707 11715 10.1021/ja504279r 25075870
    [Google Scholar]
  94. Tang Y. Bisoyi H.K. Chen X.M. Liu Z. Chen X. Zhang S. Li Q. Pyroptosis‐mediated synergistic photodynamic and photothermal immunotherapy enabled by a tumor‐membrane‐targeted photosensitive dimer. Adv. Mater. 2023 35 25 2300232 10.1002/adma.202300232 36921347
    [Google Scholar]
  95. Wang S. Liao Y. Wu Z. Peng Y. Liu Y. Chen Y. Shao L. Zeng Z. Liu Y. A lysosomes and mitochondria dual-targeting AIE-active NIR photosensitizer: Constructing amphiphilic structure for enhanced antitumor activity and two-photon imaging. Mater. Today Bio 2023 21 100721 10.1016/j.mtbio.2023.100721 37502829
    [Google Scholar]
  96. Das U. Shanavas S. Nagendra A.H. Kar B. Roy N. Vardhan S. Sahoo S.K. Panda D. Bose B. Paira P. Luminescent 11-naphthalen-1-yldipyrido[3,2-a:2′,3′-c]phenazine-based Ru(II)/Ir(III)/ Re(I) complexes for HCT-116 colorectal cancer stem cell therapy. ACS Appl. Bio Mater. 2023 6 2 410 424 10.1021/acsabm.2c00556 36638050
    [Google Scholar]
  97. Negi M. Dixit T. Venkatesh V. Ligand dictated photosensitization of iridium(III) dithiocarbamate complexes for photodynamic therapy. Inorg. Chem. 2023 62 49 20080 20095 10.1021/acs.inorgchem.3c02942 37994001
    [Google Scholar]
  98. Ji L. Shen W. Zhang F. Qian J. Jiang J. Weng L. Tan J. Li L. Chen Y. Cheng H. Sun D. Worenine reverses the Warburg effect and inhibits colon cancer cell growth by negatively regulating HIF-1α. Cell. Mol. Biol. Lett. 2021 26 1 19 10.1186/s11658‑021‑00263‑y 34006215
    [Google Scholar]
  99. Li X. Wu J. Wang L. He C. Chen L. Jiao Y. Duan C. Mitochondrial‐DNA‐targeted IR(III)‐containing metallohelices with tunable photodynamic therapy efficacy in cancer cells. Angew. Chem. Int. Ed. 2020 59 16 6420 6427 10.1002/anie.201915281 31970856
    [Google Scholar]
  100. Guan R. Chen Y. Zeng L. Rees T.W. Jin C. Huang J. Chen Z.S. Ji L. Chao H. Oncosis-inducing cyclometalated iridium(iii) complexes. Chem. Sci. 2018 9 23 5183 5190 10.1039/C8SC01142G 29997872
    [Google Scholar]
  101. Yu L. Peng Y. Jiang L. Qiu L. Sequential diagnosis and treatment for colon cancer via derived iridium and indocyanine green hybrid nanomicelles. ACS Appl. Mater. Interfaces 2023 15 29 34617 34630 10.1021/acsami.3c07742 37437265
    [Google Scholar]
  102. Yao Y. Zhao Z. He J. Ali B. Wang M. Liao F. Zhuang J. Zheng Y. Guo W. Zhang D.Y. Iridium nanozyme-mediated photoacoustic imaging-guided NIR-II photothermal therapy and tumor microenvironment regulation for targeted eradication of cancer stem cells. Acta Biomater. 2023 172 369 381 10.1016/j.actbio.2023.10.018 37852456
    [Google Scholar]
  103. Wu H. Jiang Q. Luo K. Zhu C. Xie M. Wang S. Fei Z. Zhao J. Synthesis of iridium-based nanocomposite with catalase activity for cancer phototherapy. J. Nanobiotechnology 2021 19 1 203 10.1186/s12951‑021‑00948‑8 34233696
    [Google Scholar]
  104. Yerpude S.T. Potbhare A.K. Bhilkar P. Rai A.R. Singh R.P. Abdala A.A. Adhikari R. Sharma R. Chaudhary R.G. Biomedical,clinical and environmental applications of platinum-based nanohybrids: An updated review. Environ. Res. 2023 231 Pt 2 116148 10.1016/j.envres.2023.116148 37211181
    [Google Scholar]
  105. Zhou Z. Liu Y. Jiang X. Zheng C. Luo W. Xiang X. Qi X. Shen J. Metformin modified chitosan as a multi-functional adjuvant to enhance cisplatin-based tumor chemotherapy efficacy. Int. J. Biol. Macromol. 2023 224 797 809 10.1016/j.ijbiomac.2022.10.167 36283555
    [Google Scholar]
  106. Hao Y. Chen Y. He X. Yu Y. Han R. Li Y. Yang C. Hu D. Qian Z. Polymeric nanoparticles with ROS‐responsive prodrug and platinum nanozyme for enhanced chemophotodynamic therapy of colon cancer. Adv. Sci. 2020 7 20 2001853 10.1002/advs.202001853 33101874
    [Google Scholar]
  107. Song H. Cai Z. Li J. Xiao H. Qi R. Zheng M. Light triggered release of a triple action porphyrin-cisplatin conjugate evokes stronger immunogenic cell death for chemotherapy, photodynamic therapy and cancer immunotherapy. J. Nanobiotechnology 2022 20 1 329 10.1186/s12951‑022‑01531‑5 35842642
    [Google Scholar]
  108. Zheng C. Luo W. Liu Y. Chen J. Deng H. Zhou Z. Shen J. Killing three birds with one stone: Multi-stage metabolic regulation mediated by clinically usable berberine liposome to overcome photodynamic immunotherapy resistance. Chem. Eng. J. 2022 454 Part 2 140164 10.1016/j.cej.2022.14016
    [Google Scholar]
  109. Depciuch J. Stec M. Klebowski B. Baran J. Parlinska-Wojtan M. Platinum–gold nanoraspberries as effective photosensitizer in anticancer photothermal therapy. J. Nanobiotechnology 2019 17 1 107 10.1186/s12951‑019‑0539‑2 31615520
    [Google Scholar]
  110. Depciuch J. Stec M. Klebowski B. Maximenko A. Drzymała E. Baran J. Parlinska-Wojtan M. Size effect of platinum nanoparticles in simulated anticancer photothermal therapy. Photodiagn. Photodyn. Ther. 2020 29 101594 10.1016/j.pdpdt.2019.101594 31704506
    [Google Scholar]
  111. Spector D.V. Bykusov V. Zharova A. Kuzmichev I. Isaeva Y.A. Khaydukov E.V. Trifanova E. Stepanov M. Erofeev A.S. Gorelkin P. Kuanaeva R. Nikitina V.N. Dubenskii A. Maksimova Y. Skvortsov D.A. Ipatova D. Rodin I.A. Vokuev M.F. Martynov A.G. Bunin D. Pokrovsky V.S. Babayeva G. Uskova T. Abakumov M.A. Beloglazkina E.K. Akasov R.A. Krasnovskaya O.O. Nanoformulation of the photoactive cisplatin prodrug for combined photothermal therapy and bioimaging. ACS Appl. Nano Mater. 2024 7 22 25603 25618 10.1021/acsanm.4c04680
    [Google Scholar]
  112. Laurent S. Forge D. Port M. Roch A. Robic C. Elst V.L. Muller R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008 108 6 2064 2110 10.1021/cr068445e 18543879
    [Google Scholar]
  113. Kim J. Cho H.R. Jeon H. Kim D. Song C. Lee N. Choi S.H. Hyeon T. Continuous O2-evolving mn Fe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J. Am. Chem. Soc. 2017 139 32 10992 10995 10.1021/jacs.7b05559 28737393
    [Google Scholar]
  114. Kudr J. Haddad Y. Richtera L. Heger Z. Cernak M. Adam V. Zitka O. Magnetic nanoparticles: From design and synthesis to real world applications. Nanomaterials 2017 7 9 243 10.3390/nano7090243 28850089
    [Google Scholar]
  115. Kong J. Xu S. Dai Y. Wang Y. Zhao Y. Zhang P. Study of the Fe3O4 @ZIF-8@Sor composite modified by tannic acid for the treatment of sorafenib-resistant hepatocellular carcinoma. ACS Omega 2023 8 42 39174 39185 10.1021/acsomega.3c04215 37901534
    [Google Scholar]
  116. Hu P. Wu T. Fan W. Chen L. Liu Y. Ni D. Bu W. Shi J. Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy. Biomaterials 2017 141 86 95 10.1016/j.biomaterials.2017.06.035 28668609
    [Google Scholar]
  117. Khuyen H.T. Huong T.T. Van N.D. Huong N.T. Vu N. Lien P.T. Nam P.H. Nghia V.X. Synthesis of multifunctional EU(III) complex doped Fe3O4/AU nanocomposite for dual photo-magnetic hyperthermia and fluorescence bioimaging. Molecules 2023 28 2 749 10.3390/molecules28020749 36677807
    [Google Scholar]
  118. Dhar D. Ghosh S. Mukherjee S. Dhara S. Chatterjee J. Das S. Assessment of chitosan-coated zinc cobalt ferrite nanoparticle as a multifunctional theranostic platform facilitating pH-sensitive drug delivery and OCT image contrast enhancement. Int. J. Pharm. 2024 654 123999 10.1016/j.ijpharm.2024.123999 38490403
    [Google Scholar]
  119. Lan G. Ni K. Xu Z. Veroneau S.S. Song Y. Lin W. Nanoscale metal–organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J. Am. Chem. Soc. 2018 140 17 5670 5673 10.1021/jacs.8b01072 29665677
    [Google Scholar]
  120. Bilici K. Muti A. Sennaroğlu A. Acar Y.H. Indocyanine green loaded APTMS coated SPIONs for dual phototherapy of cancer. J. Photochem. Photobiol. B 2019 201 111648 10.1016/j.jphotobiol.2019.111648 31710924
    [Google Scholar]
  121. Liang X. Chen M. Bhattarai P. Hameed S. Tang Y. Dai Z. Complementing cancer photodynamic therapy with ferroptosis through iron oxide loaded porphyrin-grafted lipid nanoparticles. ACS Nano 2021 15 12 20164 20180 10.1021/acsnano.1c08108 34898184
    [Google Scholar]
  122. An L. Wang X. Rui X. Lin J. Yang H. Tian Q. Tao C. Yang S. The in situ sulfidation of CU2O by endogenous H2S for colon cancer theranostics. Angew. Chem. Int. Ed. 2018 57 48 15782 15786 10.1002/anie.201810082 30307092
    [Google Scholar]
  123. Tao C. An L. Lin J. Tian Q. Yang S. Surface plasmon resonance–enhanced photoacoustic imaging and photothermal therapy of endogenous H2S‐triggered Au@Cu2O. Small 2019 15 44 1903473 10.1002/smll.201903473 31513347
    [Google Scholar]
  124. Li Y. Chen W. Qi Y. Wang S. Li L. Li W. Xie T. Zhu H. Tang Z. Zhou M. H2S‐scavenged and activated iron oxide‐hydroxide nanospindles for mri‐guided photothermal therapy and ferroptosis in colon cancer. Small 2020 16 37 2001356 10.1002/smll.202001356 32789963
    [Google Scholar]
  125. Feng J. Ren W.X. Kong F. Dong Y.B. A covalent organic framework-based nanoagent for H 2 S-activable phototherapy against colon cancer. Chem. Commun. 2021 57 59 7240 7243 10.1039/D1CC02258J 34190264
    [Google Scholar]
  126. Liu F. He X. Chen H. Zhang J. Zhang H. Wang Z. Gram-scale synthesis of coordination polymer nanodots with renal clearance properties for cancer theranostic applications. Nat. Commun. 2015 6 1 8003 10.1038/ncomms9003 26245151
    [Google Scholar]
  127. Ghorbani F. Imanparast A. Hataminia F. Sazgarnia A. A novel nano-superparamagnetic agent for photodynamic and photothermal therapies: An in-vitro study. Photodiagn. Photodyn. Ther. 2018 23 314 324 10.1016/j.pdpdt.2018.07.008 30016753
    [Google Scholar]
  128. Ji Y. Wang C. Magnetic iron oxide nanoparticle-loaded hydrogels for photothermal therapy of cancer cells. Front. Bioeng. Biotechnol. 2023 11 1130523 10.3389/fbioe.2023.1130523 37008029
    [Google Scholar]
  129. Zhou R. Xu H. Qu J. Ohulchanskyy T.Y. Hemoglobin nanocrystals for drugs free, synergistic theranostics of colon tumor. Small 2023 19 8 2205165 10.1002/smll.202205165 36508710
    [Google Scholar]
  130. Xu J.J. Zhang W.C. Guo Y.W. Chen X.Y. Zhang Y.N. Metal nanoparticles as a promising technology in targeted cancer treatment. Drug Deliv. 2022 29 1 664 678 10.1080/10717544.2022.2039804 35209786
    [Google Scholar]
  131. Roshani M. Rezaian-Isfahni A. Lotfalizadeh M.H. Khassafi N. Abadi M.H.J.N. Nejati M. Metal nanoparticles as a potential technique for the diagnosis and treatment of gastrointestinal cancer: A comprehensive review. Cancer Cell Int. 2023 23 1 280 10.1186/s12935‑023‑03115‑1 37981671
    [Google Scholar]
  132. Sivakumar P. Lee M. Kim Y.S. Shim M.S. Photo-triggered antibacterial and anticancer activities of zinc oxide nanoparticles. J. Mater. Chem. B Mater. Biol. Med. 2018 6 30 4852 4871 10.1039/C8TB00948A 32255062
    [Google Scholar]
  133. Murali M. Kalegowda N. Gowtham H.G. Ansari M.A. Alomary M.N. Alghamdi S. Shilpa N. Singh S.B. Thriveni M.C. Aiyaz M. Angaswamy N. Lakshmidevi N. Adil S.F. Hatshan M.R. Amruthesh K.N. Plant-mediated zinc oxide nanoparticles: Advances in the new millennium towards understanding their therapeutic role in biomedical applications. Pharmaceutics 2021 13 10 1662 10.3390/pharmaceutics13101662 34683954
    [Google Scholar]
  134. Nash G.T. Luo T. Lan G. Ni K. Kaufmann M. Lin W. Nanoscale metal–organic layer isolates phthalocyanines for efficient mitochondria-targeted photodynamic therapy. J. Am. Chem. Soc. 2021 143 5 2194 2199 10.1021/jacs.0c12330 33528255
    [Google Scholar]
  135. Abrahamse H. Hamblin M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016 473 4 347 364 10.1042/BJ20150942 26862179
    [Google Scholar]
  136. Simelane N.W.N. Kruger C.A. Abrahamse H. Targeted nanoparticle photodynamic diagnosis and therapy of colorectal cancer. Int. J. Mol. Sci. 2021 22 18 9779 10.3390/ijms22189779 34575942
    [Google Scholar]
  137. Abrahamse H. Houreld N.N. Genetic aberrations associated with photodynamic therapy in colorectal cancer cells. Int. J. Mol. Sci. 2019 20 13 3254 10.3390/ijms20133254 31269724
    [Google Scholar]
  138. Gholizadeh M. Doustvandi M.A. Mohammadnejad F. Shadbad M.A. Tajalli H. Brunetti O. Argentiero A. Silvestris N. Baradaran B. Photodynamic therapy with zinc phthalocyanine inhibits the stemness and development of colorectal cancer: Time to overcome the challenging barriers? Molecules 2021 26 22 6877 10.3390/molecules26226877 34833970
    [Google Scholar]
  139. Simelane N.W.N. Abrahamse H. Zinc phthalocyanine loaded- antibody functionalized nanoparticles enhance photodynamic therapy in monolayer (2-D) and multicellular tumour spheroid (3-D) cell cultures. Front. Mol. Biosci. 2024 10 1340212 10.3389/fmolb.2023.1340212 38259685
    [Google Scholar]
  140. Repetowski P. Warszyńska M. Kostecka A. Pucelik B. Barzowska A. Emami A. İşci Ü. Dumoulin F. Dąbrowski J.M. Synthesis, photo-characterizations, and pre-clinical studies on advanced cellular and animal models of zinc(II) and platinum(II) sulfonyl-substituted phthalocyanines for enhanced vascular-targeted photodynamic therapy. ACS Appl. Mater. Interfaces 2024 16 37 48937 48954 10.1021/acsami.4c04138 39241197
    [Google Scholar]
  141. Joe A. Han H.W. Lim Y.R. Manivasagan P. Jang E.S. Triphenylphosphonium-functionalized gold nanorod/zinc oxide core–shell nanocomposites for mitochondrial-targeted phototherapy. Pharmaceutics 2024 16 2 284 10.3390/pharmaceutics16020284 38399337
    [Google Scholar]
  142. Quan Z. Li H. Quan Z. Qing H. Appropriate macronutrients or mineral elements are beneficial to improve depression and reduce the risk of depression. Int. J. Mol. Sci. 2023 24 8 7098 10.3390/ijms24087098 37108261
    [Google Scholar]
  143. Tang X. Yan Z. Miao Y. Ha W. Li Z. Yang L. Mi D. Copper in cancer: From limiting nutrient to therapeutic target. Front. Oncol. 2023 13 1209156 10.3389/fonc.2023.1209156 37427098
    [Google Scholar]
  144. Lelièvre P. Sancey L. Coll J.L. Deniaud A. Busser B. The multifaceted roles of copper in cancer: A trace metal element with dysregulated metabolism, but also a target or a bullet for therapy. Cancers 2020 12 12 3594 10.3390/cancers12123594 33271772
    [Google Scholar]
  145. Roy D. Pal A. Pal T. Electrochemical aspects of coinage metal nanoparticles for catalysis and spectroscopy. RSC Advances 2022 12 19 12116 12135 10.1039/D2RA00403H 35481094
    [Google Scholar]
  146. Zheng R. Cheng Y. Qi F. Wu Y. Han X. Yan J. Zhang H. Biodegradable copper‐based nanoparticles augmented chemodynamic therapy through deep penetration and suppressing antioxidant activity in tumors. Adv. Healthc. Mater. 2021 10 14 2100412 10.1002/adhm.202100412 34075731
    [Google Scholar]
  147. Koh J.Y. Lee S.J. Metallothionein-3 as a multifunctional player in the control of cellular processes and diseases. Mol. Brain 2020 13 1 116 10.1186/s13041‑020‑00654‑w 32843100
    [Google Scholar]
  148. Tsymbal S. Li G. Agadzhanian N. Sun Y. Zhang J. Dukhinova M. Fedorov V. Shevtsov M. Recent advances in copper-based organic complexes and nanoparticles for tumor theranostics. Molecules 2022 27 20 7066 10.3390/molecules27207066 36296659
    [Google Scholar]
  149. Mehdizadeh T. Zamani A. Froushani A.S.M. Preparation of Cu nanoparticles fixed on cellulosic walnut shell material and investigation of its antibacterial, antioxidant and anticancer effects. Heliyon 2020 6 3 e03528 10.1016/j.heliyon.2020.e03528 32154429
    [Google Scholar]
  150. Camats M. Pla D. Gómez M. Copper nanocatalysts applied in coupling reactions: A mechanistic insight. Nanoscale 2021 13 45 18817 18838 10.1039/D1NR05894K 34757356
    [Google Scholar]
  151. Shanbhag V.C. Gudekar N. Jasmer K. Papageorgiou C. Singh K. Petris M.J. Copper metabolism as a unique vulnerability in cancer. Biochim. Biophys. Acta Mol. Cell Res. 2021 1868 2 118893 10.1016/j.bbamcr.2020.118893 33091507
    [Google Scholar]
  152. a Batooei S. Khajeali A. Khodadadi R. Islamian J.P. Metal-based nanoparticles as radio-sensitizer in gastric cancer therapy. J. Drug Deliv. Sci. Technol. 2020 56 101576 10.1016/j.jddst.2020.101576
    [Google Scholar]
  153. b Zhang Y. Fang J. Ye S. Zhao Y. Wang A. Mao Q. Cui C. Feng Y. Li J. Li S. Zhang M. Shi H. A hydrogen sulphide-responsive and depleting nanoplatform for cancer photodynamic therapy. Nat. Commun. 2022 13 1 1685 10.1038/s41467‑022‑29284‑7 35354794
    [Google Scholar]
  154. Huang L. Yang J. Liang Z. Liang R. Luo H. Sun Z. Han D. Niu L. Ternary heterojunction graphitic carbon nitride/cupric sulfide/titanium dioxide photoelectrochemical sensor for sesamol quantification and antioxidant synergism. Biosensors 2023 13 9 859 10.3390/bios13090859 37754093
    [Google Scholar]
  155. Jiang Z. Li T. Cheng H. Zhang F. Yang X. Wang S. Zhou J. Ding Y. Nanomedicine potentiates mild photothermal therapy for tumor ablation. Asian J. Pharm. Sci. 2021 16 6 738 761 10.1016/j.ajps.2021.10.001 35027951
    [Google Scholar]
  156. Wang C. Xue F. Wang M. An L. Wu D. Tian Q. 2D cu-bipyridine mof nanosheet as an agent for colon cancer therapy: A three-in-one approach for enhancing chemodynamic therapy. ACS Appl. Mater. Interfaces 2022 14 34 38604 38616 10.1021/acsami.2c11999 35979620
    [Google Scholar]
  157. Shi B. Yan Q. Tang J. Xin K. Zhang J. Zhu Y. Xu G. Wang R. Chen J. Gao W. Zhu T. Shi J. Fan C. Zhao C. Tian H. Hydrogen sulfide-activatable second near-infrared fluorescent nanoassemblies for targeted photothermal cancer therapy. Nano Lett. 2018 18 10 6411 6416 10.1021/acs.nanolett.8b02767 30239208
    [Google Scholar]
  158. Li K.C. Chu H.C. Lin Y. Tuan H.Y. Hu Y.C. PEGylated copper nanowires as a novel photothermal therapy agent. ACS Appl. Mater. Interfaces 2016 8 19 12082 12090 10.1021/acsami.6b04579 27111420
    [Google Scholar]
  159. Hessel C.M. Pattani V.P. Rasch M. Panthani M.G. Koo B. Tunnell J.W. Korgel B.A. Copper selenide nanocrystals for photothermal therapy. Nano Lett. 2011 11 6 2560 2566 10.1021/nl201400z 21553924
    [Google Scholar]
  160. Jang B. Xu L. Moorthy M.S. Zhang W. Zeng L. Kang M. Kwak M. Oh J. Jin J.O. Lipopolysaccharide-coated CuS nanoparticles promoted anti-cancer and anti-metastatic effect by immuno-photothermal therapy. Oncotarget 2017 8 62 105584 105595 10.18632/oncotarget.22331 29285274
    [Google Scholar]
  161. Zhao S. Zhu X. Cao C. Sun J. Liu J. Transferrin modified ruthenium nanoparticles with good biocompatibility for photothermal tumor therapy. J. Colloid Interface Sci. 2018 511 325 334 10.1016/j.jcis.2017.10.023 29031152
    [Google Scholar]
  162. Zhu X. Zhou H. Liu Y. Wen Y. Wei C. Yu Q. Liu J. Transferrin/aptamer conjugated mesoporous ruthenium nanosystem for redox-controlled and targeted chemo-photodynamic therapy of glioma. Acta Biomater. 2018 82 143 157 10.1016/j.actbio.2018.10.012 30316026
    [Google Scholar]
  163. Chen G. Xu M. Zhao S. Sun J. Yu Q. Liu J. Pompon-like RuNPs-based theranostic nanocarrier system with stable photoacoustic imaging characteristic for accurate tumor detection and efficient phototherapy guidance. ACS Appl. Mater. Interfaces 2017 9 39 33645 33659 10.1021/acsami.7b10553 28895715
    [Google Scholar]
  164. White J.K. Schmehl R.H. Turro C. An overview of photosubstitution reactions of Ru(II) imine complexes and their application in photobiology and photodynamic therapy. Inorg. Chim. Acta 2017 454 7 20 10.1016/j.ica.2016.06.007 28042171
    [Google Scholar]
  165. Knoll J.D. Turro C. Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy. Coord. Chem. Rev. 2015 282-283 110 126 10.1016/j.ccr.2014.05.018 25729089
    [Google Scholar]
  166. Zhou Z. Wang H. Li J. Jiang X. Li Z. Shen J. Recent progress, perspectives, and issues of engineered PD-L1 regulation nano-system to better cure tumor: A review. Int. J. Biol. Macromol. 2024 254 Pt 2 127911 10.1016/j.ijbiomac.2023.127911 37939766
    [Google Scholar]
  167. Allardyce C.S. Dyson P.J. Metal-based drugs that break the rules. Dalton Trans. 2016 45 8 3201 3209 10.1039/C5DT03919C 26820398
    [Google Scholar]
  168. Wang Y. Felder P.S. Mesdom P. Blacque O. Mindt T.L. Cariou K. Gasser G. Towards ruthenium(II)‐rhenium(I) binuclear complexes as photosensitizers for photodynamic therapy. ChemBioChem 2023 24 19 e202300467 10.1002/cbic.202300467 37526951
    [Google Scholar]
  169. Ortega-Forte E. Rovira A. López-Corrales M. Hernández-García A. Ballester F.J. Izquierdo-García E. Jordà-Redondo M. Bosch M. Nonell S. Santana M.D. Ruiz J. Marchán V. Gasser G. A near-infrared light-activatable Ru(ii)-coumarin photosensitizer active under hypoxic conditions. Chem. Sci. 2023 14 26 7170 7184 10.1039/D3SC01844J 37416722
    [Google Scholar]
  170. Zhu X. Gong Y. Liu Y. Yang C. Wu S. Yuan G. Guo X. Liu J. Qin X. Ru@CeO2 yolk shell nanozymes: Oxygen supply in situ enhanced dual chemotherapy combined with photothermal therapy for orthotopic/subcutaneous colorectal cancer. Biomaterials 2020 242 119923 10.1016/j.biomaterials.2020.119923 32145506
    [Google Scholar]
  171. Haghighi H.F. Mercurio M. Cerra S. Salamone T.A. Bianymotlagh R. Palocci C. Spica R.V. Fratoddi I. Surface modification of TiO2 nanoparticles with organic molecules and their biological applications. J. Mater. Chem. B Mater. Biol. Med. 2023 11 11 2334 2366 10.1039/D2TB02576K 36847384
    [Google Scholar]
  172. Zhang H. Shan Y. Dong L. A comparison of TiO2 and ZnO nanoparticles as photosensitizers in photodynamic therapy for cancer. J. Biomed. Nanotechnol. 2014 10 8 1450 1457 10.1166/jbn.2014.1961 25016645
    [Google Scholar]
  173. Younis M.R. He G. Qu J. Lin J. Huang P. Xia X.H. Inorganic nanomaterials with intrinsic singlet oxygen generation for photodynamic therapy. Adv. Sci. 2021 8 21 2102587 10.1002/advs.202102587 34561971
    [Google Scholar]
  174. Asrar A. Sobhani Z. Behnam M.A. Melanoma cancer therapy using PEGYlated nanoparticles and semiconductor laser. Adv. Pharm. Bull. 2022 12 3 524 530 10.34172/apb.2022.055 35935047
    [Google Scholar]
  175. Noghreiyan V.A. Sazegar M.R. Shaegh M.S.A. Sazgarnia A. Investigation of the emission spectra and cytotoxicity of TiO2 and TiN/PpIX nanoparticles to induce photodynamic effects using X-ray. Photodiagn. Photodyn. Ther. 2020 30 101770 10.1016/j.pdpdt.2020.101770 32311544
    [Google Scholar]
  176. Noghreiyan A.V. Soleymanifard S. Sazgarnia A. Design of a novel nanoparticle to use X-ray fluorescence of TiO2 to induce photodynamic effects in the presence of PpIX. Photodiagn. Photodyn. Ther. 2024 45 103890 10.1016/j.pdpdt.2023.103890 37981223
    [Google Scholar]
  177. Wang Z. Run Z. Wang H. He X. Li J. TiO2-Ti3C2 nanocomposites utilize their photothermal activity for targeted treatment of colorectal cancer. Int. J. Nanomedicine 2024 19 1041 1054 10.2147/IJN.S446537 38317849
    [Google Scholar]
  178. Zhang R. Xu H. Yao Y. Ran G. Zhang W. Zhang J. Sessler J.L. Gao S. Zhang J.L. Nickel(II) phototheranostics: A case study in photoactivated H2O2-enhanced immunotherapy. J. Am. Chem. Soc. 2023 145 42 23257 23274 10.1021/jacs.3c08181 37831944
    [Google Scholar]
  179. Pérez-Arnaiz C. Acuña M.I. Busto N. Echevarría I. Martínez-Alonso M. Espino G. García B. Domínguez F. Thiabendazole-based Rh(III) and Ir(III) biscyclometallated complexes with mitochondria-targeted anticancer activity and metal-sensitive photodynamic activity. Eur. J. Med. Chem. 2018 157 279 293 10.1016/j.ejmech.2018.07.065 30099251
    [Google Scholar]
  180. Cui M. Tang Z. Ahmad Z. Pan C. Lu Y. Ali K. Huang S. Lin X. Wahab A. Iqbal M.Z. Kong X. Facile synthesis of manganese-hafnium nanocomposites for multimodal MRI/CT imaging and in vitro photodynamic therapy of colon cancer. Colloids Surf. B Biointerfaces 2024 237 113834 10.1016/j.colsurfb.2024.113834 38479259
    [Google Scholar]
  181. Li X. Liu L. Fu Y. Chen H. Abualrejal M.M.A. Zhang H. Wang Z. Zhang H. Peptide-enhanced tumor accumulation of upconversion nanoparticles for sensitive upconversion luminescence/magnetic resonance dual-mode bioimaging of colorectal tumors. Acta Biomater. 2020 104 167 175 10.1016/j.actbio.2020.01.003 31923719
    [Google Scholar]
  182. Jiao Y. Lou J. Ma Z. Cong L. Xu X. Zhang B. Li D. Yu Y. Sun W. Yan Y. Hu S. Liu B. Huang Y. Sun L. Wang R. Singh R. Fan Y. Chang C. Du X. Photoactive terahertz metasurfaces for ultrafast switchable sensing of colorectal cells. Mater. Horiz. 2022 9 12 2984 2992 10.1039/D2MH00787H 36073353
    [Google Scholar]
  183. Yalçın C.Ö. Barut B. Barut E.N. Demirbaş Ü. Dinçer T. Engin S. Özel A. Sezen S.F. Photodynamic therapy effect of morpholinium containing silicon (IV) phthalocyanine on HCT-116 cells. Photodiagn. Photodyn. Ther. 2020 32 101975 10.1016/j.pdpdt.2020.101975 32835884
    [Google Scholar]
  184. Karuppusamy S. Hyejin K. Kang H.W. Nanoengineered chlorin e6 conjugated with hydrogel for photodynamic therapy on cancer. Colloids Surf. B Biointerfaces 2019 181 778 788 10.1016/j.colsurfb.2019.06.040 31238210
    [Google Scholar]
  185. Bae I. Kim T.G. Kim T. Kim D. Kim D.H. Jo J. Lee Y.J. Jeong Y.I. Phenethyl isothiocyanate-conjugated chitosan oligosaccharide nanophotosensitizers for photodynamic treatment of human cancer cells. Int. J. Mol. Sci. 2022 23 22 13802 10.3390/ijms232213802 36430279
    [Google Scholar]
  186. Sundaram P. Abrahamse H. Effective photodynamic therapy for colon cancer cells using chlorin e6 coated hyaluronic acid-based carbon nanotubes. Int. J. Mol. Sci. 2020 21 13 4745 10.3390/ijms21134745 32635295
    [Google Scholar]
  187. Taba F. Onoda A. Hasegawa U. Enoki T. Ooyama Y. Ohshita J. Hayashi T. Mitochondria‐targeting polyamine–protoporphyrin conjugates for photodynamic therapy. ChemMedChem 2018 13 1 15 19 10.1002/cmdc.201700467 28961376
    [Google Scholar]
  188. Feng J. Yang S.P. Shao Y.Q. Sun Y.Y. He Z.L. Wang Y. Zhai Y.N. Dong Y.B. Covalent organic framework‐based nanomotor for multimodal cancer photo‐theranostics. Adv. Healthc. Mater. 2023 12 30 2301645 10.1002/adhm.202301645 37557883
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206378631250611101427
Loading
/content/journals/acamc/10.2174/0118715206378631250611101427
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test