Skip to content
2000
image of Polyamines in Cancer: Mechanisms, Metabolic Targets, and Therapeutic Opportunities

Abstract

Introduction

Polyamine metabolism is essential for cancer cell growth, with enzymes like ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC) playing key roles in polyamine (PA) biosynthesis. These polyamines (putrescine, spermidine, and spermine) regulate vital cellular processes, including DNA replication, protein synthesis, and cell cycle progression. Dysregulated polyamine metabolism is common in cancer, making ODC and AdoMetDC attractive therapeutic targets. This review highlights polyamines’ role in cancer and explores combination therapies targeting polyamine metabolism and critical signaling pathways for improved clinical outcomes.

Methods

A comprehensive analysis of both historical and recent literature on polyamine metabolism in cancer was performed using PubMed, which provides access to over 37 million citations from biomedical literature. Expression data for key polyamine biosynthetic enzymes, ODC and AdoMetDC, were obtained from the UALCAN portal - an interactive web resource for the analysis of cancer OMICS data. The IUPAC names of drugs and inhibitors targeting the polyamine pathway were retrieved from the PubChem database and used to generate molecular structures using the BIOVIA Draw 2025 program. Additionally, the ClinicalTrials.gov database was explored to identify ongoing and completed clinical research studies, as well as to gather detailed information on therapeutic agents targeting polyamine metabolism.

Results

Aberrant polyamine metabolism in cancer is driven by oncogenic pathways like MYC, Akt, and mTOR. MYC upregulates , promoting polyamine dysregulation. Defects in enzymes such as MTA phosphorylase (MTAP) enhance cancer cell sensitivity to inhibitors of purine/pyrimidine synthesis and the ubiquitin-proteasome pathway, suggesting alternative therapeutic strategies.

Discussion

Therapeutic strategies combining polyamine biosynthesis inhibition with targeting nucleotide synthesis or proteasome function have shown synergistic potential. However, the dual nature of polyamines - supporting both, tumor growth and ferroptotic cell death - poses a therapeutic challenge. Balancing these effects is key to designing effective interventions. Advancing this field requires not only selective inhibitors but also a deeper understanding of context-dependent polyamine functions in tumor biology.

Conclusion

Developing more potent inhibitors with improved drug-like properties is crucial for advancing polyamine-targeted therapies and positioning this field at the forefront of cancer research.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206390332250711060007
2025-07-17
2025-09-03
Loading full text...

Full text loading...

References

  1. Pegg A.E. McCann P.P. Polyamine metabolism and function. Am. J. Physiol. Cell Physiol. 1982 243 5 C212 C221 10.1152/ajpcell.1982.243.5.C212 6814260
    [Google Scholar]
  2. Tabor C.W. Tabor H. Polyamines. Annu. Rev. Biochem. 1984 53 1 749 790 10.1146/annurev.bi.53.070184.003533 6206782
    [Google Scholar]
  3. Kim D.G. Du J. Miao C. Jung J. Park S. Kim D.K. The possible roles for polyamines in the initiation process of SV40 DNA replication in vitro. Oncol. Rep. 2008 19 2 535 539 10.3892/or.19.2.535 18202804
    [Google Scholar]
  4. Sarhan S. Seiler N. On the subcellular localization of the polyamines. Biol. Chem. Hoppe Seyler 1989 370 2 1279 1284 10.1515/bchm3.1989.370.2.1279 2482746
    [Google Scholar]
  5. Casero R.A. Murray Stewart T. Pegg A.E. Polyamine metabolism and cancer: Treatments, challenges and opportunities. Nat. Rev. Cancer 2018 18 11 681 695 10.1038/s41568‑018‑0050‑3 30181570
    [Google Scholar]
  6. Dai X. Zhu M. Warren M. Balakrishnan R. Patsalo V. Okano H. Williamson J.R. Fredrick K. Wang Y.P. Hwa T. Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth. Nat. Microbiol. 2016 2 2 16231 10.1038/nmicrobiol.2016.231 27941827
    [Google Scholar]
  7. Winther K.S. Sørensen M.A. Svenningsen S.L. Polyamines are required for trna anticodon modification in Escherichia coli. J. Mol. Biol. 2021 433 15 167073 10.1016/j.jmb.2021.167073 34058151
    [Google Scholar]
  8. Hafner E.W. Tabor C.W. Tabor H. Mutants of Escherichia coli that do not contain 1,4-diaminobutane (putrescine) or spermidine. J. Biol. Chem. 1979 254 24 12419 12426 10.1016/S0021‑9258(19)86331‑7 159306
    [Google Scholar]
  9. Igarashi K. Kashiwagi K. Effects of polyamines on protein synthesis and growth of Escherichia coli. J. Biol. Chem. 2018 293 48 18702 18709 10.1074/jbc.TM118.003465 30108177
    [Google Scholar]
  10. Tabor H. Hafner E.W. Tabor C.W. Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine: Characterization of two genes controlling lysine decarboxylase. J. Bacteriol. 1980 144 3 952 956 10.1128/jb.144.3.952‑956.1980 7002915
    [Google Scholar]
  11. Igarashi K. Hashimoto S. Miyake A. Kashiwagi K. Hirose S. Increase of fidelity of polypeptide synthesis by spermidine in eukaryotic cell-free systems. Eur. J. Biochem. 1982 128 2-3 597 604 10.1111/j.1432‑1033.1982.tb07006.x 6924895
    [Google Scholar]
  12. Poidevin L. Unal D. Belda-Palazón B. Ferrando A. Polyamines as quality control metabolites operating at the post-transcriptional level. Plants 2019 8 4 109 10.3390/plants8040109 31022874
    [Google Scholar]
  13. Casero R.A. Marton L.J. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat. Rev. Drug Discov. 2007 6 5 373 390 10.1038/nrd2243 17464296
    [Google Scholar]
  14. Sari N.I. Setiawan T. Kim S.K. Wijaya T.Y. Won Cho K. Kwon Y.H. Metabolism and function of polyamines in cancer progression. Cancer Lett. 2021 519 91 104 10.1016/j.canlet.2021.06.020 34186159
    [Google Scholar]
  15. Evageliou N.F. Hogarty M.D. Disrupting polyamine homeostasis as a therapeutic strategy for neuroblastoma. Clin. Cancer Res. 2009 15 19 5956 5961 10.1158/1078‑0432.CCR‑08‑3213 19789308
    [Google Scholar]
  16. Michael A.J. Biosynthesis of polyamines and polyamine-containing molecules. Biochem. J. 2016 473 15 2315 2329 10.1042/BCJ20160185 27470594
    [Google Scholar]
  17. Pegg A.E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988 48 4 759 774 [PMID: 3123052
    [Google Scholar]
  18. Yerlikaya A. Polyamines and S-adenosylmethionine decarboxylase. Turk J. Biochem. 2004 29 2 208 214
    [Google Scholar]
  19. Ryu K.W. Fung T.S. Baker D.C. Saoi M. Park J. Febres-Aldana C.A. Aly R.G. Cui R. Sharma A. Fu Y. Jones O.L. Cai X. Pasolli H.A. Cross J.R. Rudin C.M. Thompson C.B. Cellular ATP demand creates metabolically distinct subpopulations of mitochondria. Nature 2024 635 8039 746 754 10.1038/s41586‑024‑08146‑w 39506109
    [Google Scholar]
  20. Awad D. Lyssiotis C.A. An unexpected pathway to polyamines in pancreatic cancer. Mol. Cell 2023 83 11 1765 1766 10.1016/j.molcel.2023.05.014 37267902
    [Google Scholar]
  21. Lee M.S. Dennis C. Naqvi I. Dailey L. Lorzadeh A. Ye G. Zaytouni T. Adler A. Hitchcock D.S. Lin L. Hoffman M.T. Bhuiyan A.M. Barth J.L. Machacek M.E. Mino-Kenudson M. Dougan S.K. Jadhav U. Clish C.B. Kalaany N.Y. Ornithine aminotransferase supports polyamine synthesis in pancreatic cancer. Nature 2023 616 7956 339 347 10.1038/s41586‑023‑05891‑2 36991126
    [Google Scholar]
  22. Pegg A.E. Wiest L. Pajunen A. Detection of proenzyme form of S-adenosylmethionine decarboxylase in extracts from rat prostate. Biochem. Biophys. Res. Commun. 1988 150 2 788 793 10.1016/0006‑291X(88)90460‑3 3124839
    [Google Scholar]
  23. Yerlikaya A. Stanley B.A. S-adenosylmethionine decarboxylase degradation by the 26 S proteasome is accelerated by substrate-mediated transamination. J. Biol. Chem. 2004 279 13 12469 12478 10.1074/jbc.M312625200 14718534
    [Google Scholar]
  24. Shantz L.M. Pegg A.E. Translational regulation of ornithine decarboxylase and other enzymes of the polyamine pathway. Int. J. Biochem. Cell Biol. 1999 31 1 107 122 10.1016/S1357‑2725(98)00135‑6 10216947
    [Google Scholar]
  25. White M.W. Degnin C. Hill J. Morris D.R. Specific regulation by endogenous polyamines of translational initiation of S -adenosylmethionine decarboxylase mRNA in Swiss 3T3 fibroblasts. Biochem. J. 1990 268 3 657 660 10.1042/bj2680657 2114097
    [Google Scholar]
  26. Beenukumar R. Goedderz D. Palanimurugan R. Dohmen J. Polyamines directly promote antizyme-mediated degradation of ornithine decarboxylase by the proteasome. Microb. Cell 2015 2 6 197 207 10.15698/mic2015.06.206 28357293
    [Google Scholar]
  27. Coffino P. Antizyme, a mediator of ubiquitin-independent proteasomal degradation. Biochimie 2001 83 3-4 319 323 10.1016/S0300‑9084(01)01252‑4 11295492
    [Google Scholar]
  28. Bertino J.R. Waud W.R. Parker W.B. Lubin M. Targeting tumors that lack methylthioadenosine phosphorylase (MTAP) activity. Cancer Biol. Ther. 2011 11 7 627 632 10.4161/cbt.11.7.14948 21301207
    [Google Scholar]
  29. Zhang Y. Zhang T.T. Gao L. Tan Y.N. Li Y.T. Tan X.Y. Huang T.X. Li H.H. Bai F. Zou C. Pei X.H. Tan B.B. Fu L. Downregulation of MTAP promotes tumor growth and metastasis by regulating ODC activity in breast cancer. Int. J. Biol. Sci. 2022 18 7 3034 3047 10.7150/ijbs.67149 35541910
    [Google Scholar]
  30. Coleman C.S. Pegg A.E. Polyamine analogues inhibit the ubiquitination of spermidine/spermine N1-acetyltransferase and prevent its targeting to the proteasome for degradation. Biochem. J. 2001 358 1 137 145 10.1042/bj3580137 11485561
    [Google Scholar]
  31. Seiler N. Functions of polyamine acetylation. Can. J. Physiol. Pharmacol. 1987 65 10 2024 2035 10.1139/y87‑317 3322538
    [Google Scholar]
  32. McCann P.P. Pegg A.E. Polyamine metabolism. 1997
    [Google Scholar]
  33. Holbert C.E. Cullen M.T. Casero R.A. Stewart T.M. Polyamines in cancer: Integrating organismal metabolism and antitumour immunity. Nat. Rev. Cancer 2022 22 8 467 480 10.1038/s41568‑022‑00473‑2 35477776
    [Google Scholar]
  34. Li Q.Z. Zuo Z.W. Zhou Z.R. Ji Y. Polyamine homeostasis-based strategies for cancer: The role of combination regimens. Eur. J. Pharmacol. 2021 910 174456 10.1016/j.ejphar.2021.174456 34464603
    [Google Scholar]
  35. Soda K. The mechanisms by which polyamines accelerate tumor spread. J. Exp. Clin. Cancer Res. 2011 30 1 95 10.1186/1756‑9966‑30‑95 21988863
    [Google Scholar]
  36. Aziz S.M. Olson J.W. Gillespie M.N. Multiple polyamine transport pathways in cultured pulmonary artery smooth muscle cells: Regulation by hypoxia. Am. J. Respir. Cell Mol. Biol. 1994 10 2 160 166 10.1165/ajrcmb.10.2.8110472 8110472
    [Google Scholar]
  37. De Marzo A.M. Bradshaw C. Sauvageot J. Epstein J.I. Miller G.J. CD44 and CD44v6 downregulation in clinical prostatic carcinoma: Relation to Gleason grade and cytoarchitecture. Prostate 1998 34 3 162 168 10.1002/(SICI)1097‑0045(19980215)34:3<162:AID‑PROS2>3.0.CO;2‑K 9492843
    [Google Scholar]
  38. Kallakury B.V.S. Yang F. Figge J. Smith K.E. Kausik S.J. Tacy N.J. Fisher H.A.G. Kaufman R. Figge H. Ross J.S. Decreased levels of CD44 protein and mRNA in prostate carcinoma: Correlation with tumor grade and ploidy. Cancer 1996 78 7 1461 1469 10.1002/(SICI)1097‑0142(19961001)78:7<1461:AID‑CNCR13>3.0.CO;2‑Y 8839552
    [Google Scholar]
  39. Kingsnorth A.N. Lumsden A.B. Wallace H.M. Polyamines in colorectal cancer. Br. J. Surg. 1984 71 10 791 794 10.1002/bjs.1800711019 6487981
    [Google Scholar]
  40. Upp J.R. Saydjari R. Townsend C.M. Singh P. Barranco S.C. Thompson J.C. Polyamine levels and gastrin receptors in colon cancers. Ann. Surg. 1988 207 6 662 669 10.1097/00000658‑198806000‑00004 3389934
    [Google Scholar]
  41. Becciolini A. Porciani S. Lanini A. Balzi M. Cionini L. Bandettini L. Polyamine levels in healthy and tumor tissues of patients with colon adenocarcinoma. Dis. Colon Rectum 1991 34 2 167 173 10.1007/BF02049993 1993414
    [Google Scholar]
  42. Liu Y.C. Liu Y.L. Su J.Y. Liu G.Y. Hung H.C. Critical factors governing the difference in antizyme-binding affinities between human ornithine decarboxylase and antizyme inhibitor. PLoS One 2011 6 4 19253 10.1371/journal.pone.0019253 21552531
    [Google Scholar]
  43. Tobias K.E. Mamroud-Kidron E. Kahana C. Gly387 of murine ornithine decarboxylase is essential for the formation of stable homodimers. Eur. J. Biochem. 1993 218 1 245 250 10.1111/j.1432‑1033.1993.tb18371.x 8243470
    [Google Scholar]
  44. Almrud J.J. Oliveira M.A. Kern A.D. Grishin N.V. Phillips M.A. Hackert M.L. Crystal structure of human ornithine decarboxylase at 2.1 å resolution: Structural insights to antizyme binding. J. Mol. Biol. 2000 295 1 7 16 10.1006/jmbi.1999.3331 10623504
    [Google Scholar]
  45. Jackson L.K. Baldwin J. Akella R. Goldsmith E.J. Phillips M.A. Multiple active site conformations revealed by distant site mutation in ornithine decarboxylase. Biochemistry 2004 43 41 12990 12999 10.1021/bi048933l 15476392
    [Google Scholar]
  46. Pegg A.E. Regulation of ornithine decarboxylase. J. Biol. Chem. 2006 281 21 14529 14532 10.1074/jbc.R500031200 16459331
    [Google Scholar]
  47. Coleman C.S. Stanley B.A. Viswanath R. Pegg A.E. Rapid exchange of subunits of mammalian ornithine decarboxylase. J. Biol. Chem. 1994 269 5 3155 3158 10.1016/S0021‑9258(17)41842‑4 8106349
    [Google Scholar]
  48. Sahu P.N. Sen A. Preventing cancer by inhibiting ornithine decarboxylase. A comparative perspective on synthetic vs. natural drugs. Chem. Biodivers. 2024 21 4 202302067 10.1002/cbdv.202302067 38404009
    [Google Scholar]
  49. Kahana C. Antizyme and antizyme inhibitor, a regulatory tango. Cell. Mol. Life Sci. 2009 66 15 2479 2488 10.1007/s00018‑009‑0033‑3 19399584
    [Google Scholar]
  50. Kahana C. Ubiquitin dependent and independent protein degradation in the regulation of cellular polyamines. Amino Acids 2007 33 2 225 230 10.1007/s00726‑007‑0519‑y 17404802
    [Google Scholar]
  51. Auvinen M. Järvinen K. Hotti A. Okkeri J. Laitinen J. Jänne O.A. Coffino P. Bergman M. Andersson L.C. Alitalo K. Hölttä E. Transcriptional regulation of the ornithine decarboxylase gene by c-Myc/Max/Mad network and retinoblastoma protein interacting with c-Myc. Int. J. Biochem. Cell Biol. 2003 35 4 496 521 10.1016/S1357‑2725(02)00305‑9 12565711
    [Google Scholar]
  52. Bello-Fernandez C. Packham G. Cleveland J.L. The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc. Natl. Acad. Sci. USA 1993 90 16 7804 7808 10.1073/pnas.90.16.7804 8356088
    [Google Scholar]
  53. Nilsson J.A. Keller U.B. Baudino T.A. Yang C. Norton S. Old J.A. Nilsson L.M. Neale G. Kramer D.L. Porter C.W. Cleveland J.L. Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation. Cancer Cell 2005 7 5 433 444 10.1016/j.ccr.2005.03.036 15894264
    [Google Scholar]
  54. Kim H.I. Schultz C.R. Buras A.L. Friedman E. Fedorko A. Seamon L. Chandramouli G.V.R. Maxwell G.L. Bachmann A.S. Risinger J.I. Ornithine decarboxylase as a therapeutic target for endometrial cancer. PLoS One 2017 12 12 0189044 10.1371/journal.pone.0189044 29240775
    [Google Scholar]
  55. He W. Roh E. Yao K. Liu K. Meng X. Liu F. Wang P. Bode A.M. Dong Z. Targeting ornithine decarboxylase (ODC) inhibits esophageal squamous cell carcinoma progression. NPJ Precis. Oncol. 2017 1 1 13 10.1038/s41698‑017‑0014‑1 29872701
    [Google Scholar]
  56. Mahmoud A.A. Farouk A. Goneim A. Hafez M.F.A. Saleem T.H. Ornithine decarboxylase gene expression and activity in lung cancer. Gene Rep. 2016 5 126 129 10.1016/j.genrep.2016.09.012
    [Google Scholar]
  57. Grimminger P.P. Schneider P.M. Metzger R. Vallböhmer D. Danenberg K.D. Danenberg P.V. Hölscher A.H. Brabender J. Ornithine decarboxylase mRNA expression in curatively resected non-small-cell lung cancer. Clin. Lung Cancer 2010 11 2 114 119 10.3816/CLC.2010.n.015 20199977
    [Google Scholar]
  58. Ruiz-Barrios L. Pineda-Razo T. Hernández-Flores G. Ortiz-Lazareno P. Bravo-Cuéllar A. Macias-Lamas A. Parra-Saavedra K. Palafox-Mariscal L. Aguilar-Lemarroy A. Jave-Suárez L. Villaseñor-garcía M. Expression of ornithine decarboxylase in peripheral blood mononuclear cells from patients with pancreatic adenocarcinoma: A preliminary report. Biomed. Rep. 2024 20 3 38 10.3892/br.2024.1726 38343658
    [Google Scholar]
  59. Pegg A.E. McCann P.P. S-adenosylmenthionine decarboxylase as an enzyme target for therapy. Pharmacol. Ther. 1992 56 3 359 377 10.1016/0163‑7258(92)90025‑U 1301596
    [Google Scholar]
  60. van Poelje P.D. Snell E.E. Pyruvoyl-dependent enzymes. Annu. Rev. Biochem. 1990 59 1 29 59 10.1146/annurev.bi.59.070190.000333 2197977
    [Google Scholar]
  61. Xiong H. Pegg A.E. Mechanistic studies of the processing of human S-adenosylmethionine decarboxylase proenzyme. Isolation of an ester intermediate. J. Biol. Chem. 1999 274 49 35059 35066 10.1074/jbc.274.49.35059 10574985
    [Google Scholar]
  62. Stanley B.A. Pegg A.E. Holm I. Site of pyruvate formation and processing of mammalian S-adenosylmethionine decarboxylase proenzyme. J. Biol. Chem. 1989 264 35 21073 21079 10.1016/S0021‑9258(19)30047‑X 2687270
    [Google Scholar]
  63. Stanley B.A. Shantz L.M. Pegg A.E. Expression of mammalian S-adenosylmethionine decarboxylase in Escherichia coli. Determination of sites for putrescine activation of activity and processing. J. Biol. Chem. 1994 269 11 7901 7907 10.1016/S0021‑9258(17)37136‑3 8132508
    [Google Scholar]
  64. Law G.L. Raney A. Heusner C. Morris D.R. Polyamine regulation of ribosome pausing at the upstream open reading frame of S-adenosylmethionine decarboxylase. J. Biol. Chem. 2001 276 41 38036 38043 10.1074/jbc.M105944200 11489903
    [Google Scholar]
  65. Ruan H. Shantz L.M. Pegg A.E. Morris D.R. The upstream open reading frame of the mRNA encoding S-adenosylmethionine decarboxylase is a polyamine-responsive translational control element. J. Biol. Chem. 1996 271 47 29576 29582 10.1074/jbc.271.47.29576 8939886
    [Google Scholar]
  66. Yordanova M.M. Loughran G. Zhdanov A.V. Mariotti M. Kiniry S.J. O’Connor P.B.F. Andreev D.E. Tzani I. Saffert P. Michel A.M. Gladyshev V.N. Papkovsky D.B. Atkins J.F. Baranov P.V. AMD1 mRNA employs ribosome stalling as a mechanism for molecular memory formation. Nature 2018 553 7688 356 360 10.1038/nature25174 29310120
    [Google Scholar]
  67. Yerlikaya A. Stanley B. Structural basis for the inactivation of AdoMetDC K12R mutant. Protein Pept. Lett. 2006 13 3 313 317 10.2174/092986606775338489 16515461
    [Google Scholar]
  68. Kameji T. Pegg A.E. Inhibition of translation of mRNAs for ornithine decarboxylase and S-adenosylmethionine decarboxylase by polyamines. J. Biol. Chem. 1987 262 6 2427 2430 10.1016/S0021‑9258(18)61521‑2 3818602
    [Google Scholar]
  69. Kameji T. Pegg A.E. Effect of putrescine on the synthesis of S -adenosylmethionine decarboxylase. Biochem. J. 1987 243 1 285 288 10.1042/bj2430285 3606578
    [Google Scholar]
  70. Pegg A.E. Wechter R. Pajunen A. Increase in S -adenosylmethionine decarboxylase in SV-3T3 cells treated with S -methyl-5′-methylthioadenosine. Biochem. J. 1987 244 1 49 54 10.1042/bj2440049 3663117
    [Google Scholar]
  71. Stjernborg L. Heby O. Mamont P. Persson L. Polyamine‐mediated regulation of S ‐adenosylmethionine decarboxylase expression in mammalian cells. Eur. J. Biochem. 1993 214 3 671 676 10.1111/j.1432‑1033.1993.tb17967.x 8319678
    [Google Scholar]
  72. Shi C. Cooper T.K. McCloskey D.E. Glick A.B. Shantz L.M. Feith D.J. S -adenosylmethionine decarboxylase overexpression inhibits mouse skin tumor promotion. Carcinogenesis 2012 33 7 1310 1318 10.1093/carcin/bgs184 22610166
    [Google Scholar]
  73. Zhang B. Liu X. Zhang Y. Jiang C. Teng Q. Hu H. Wang W. Gong L. Adenovirus-mediated expression of both antisense ODC and AdoMetDC inhibited colorectal cancer cell growth in vitro1. Acta Pharmacol. Sin. 2006 27 3 353 359 10.1111/j.1745‑7254.2006.00268.x 16490173
    [Google Scholar]
  74. Chandrashekar D.S. Bashel B. Balasubramanya S.A.H. Creighton C.J. Ponce-Rodriguez I. Chakravarthi B.V.S.K. Varambally S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017 19 8 649 658 10.1016/j.neo.2017.05.002 28732212
    [Google Scholar]
  75. Chandrashekar D.S. Karthikeyan S.K. Korla P.K. Patel H. Shovon A.R. Athar M. Netto G.J. Qin Z.S. Kumar S. Manne U. Creighton C.J. Varambally S. Ualcan: An update to the integrated cancer data analysis platform. Neoplasia 2022 25 18 27 10.1016/j.neo.2022.01.001 35078134
    [Google Scholar]
  76. Guo Y. Ye Q. Deng P. Cao Y. He D. Zhou Z. Wang C. Zaytseva Y.Y. Schwartz C.E. Lee E.Y. Evers B.M. Morris A.J. Liu S. She Q.B. Spermine synthase and MYC cooperate to maintain colorectal cancer cell survival by repressing Bim expression. Nat. Commun. 2020 11 1 3243 10.1038/s41467‑020‑17067‑x 32591507
    [Google Scholar]
  77. Welsh P.A. Sass-Kuhn S. Prakashagowda C. McCloskey D. Feith D. Spermine synthase overexpression in vivo does not increase susceptibility to DMBA/TPA skin carcinogenesis or Min-Apc intestinal tumorigenesis. Cancer Biol. Ther. 2012 13 6 358 368 10.4161/cbt.19241 22258329
    [Google Scholar]
  78. Miao H. Ou J. Peng Y. Zhang X. Chen Y. Hao L. Xie G. Wang Z. Pang X. Ruan Z. Li J. Yu L. Xue B. Shi H. Shi C. Liang H. Macrophage ABHD5 promotes colorectal cancer growth by suppressing spermidine production by SRM. Nat. Commun. 2016 7 1 11716 10.1038/ncomms11716 27189574
    [Google Scholar]
  79. Chen Y. Zhuang H. Chen X. Shi Z. Wang X. Spermidine induced growth inhibition and apoptosis via autophagic activation in cervical cancer. Oncol. Rep. 2018 39 6 2845 2854 10.3892/or.2018.6377 29693131
    [Google Scholar]
  80. Bachmann A.S. The role of polyamines in human cancer: Prospects for drug combination therapies. Hawaii Med. J. 2004 63 12 371 374 [PMID: 15704548
    [Google Scholar]
  81. Mamont P.S. Böhlen P. McCann P.P. Bey P. Schuber F. Tardif C. Alpha-methyl ornithine, a potent competitive inhibitor of ornithine decarboxylase, blocks proliferation of rat hepatoma cells in culture. Proc. Natl. Acad. Sci. USA 1976 73 5 1626 1630 10.1073/pnas.73.5.1626 1064034
    [Google Scholar]
  82. Pegg A.E. Functions of polyamines in mammals. J. Biol. Chem. 2016 291 29 14904 14912 10.1074/jbc.R116.731661 27268251
    [Google Scholar]
  83. Sholler S.G.L. Gerner E.W. Bergendahl G. MacArthur R.B. VanderWerff A. Ashikaga T. Bond J.P. Ferguson W. Roberts W. Wada R.K. Eslin D. Kraveka J.M. Kaplan J. Mitchell D. Parikh N.S. Neville K. Sender L. Higgins T. Kawakita M. Hiramatsu K. Moriya S. Bachmann A.S. A Phase I Trial of DFMO targeting polyamine addiction in patients with relapsed/refractory neuroblastoma. PLoS One 2015 10 5 0127246 10.1371/journal.pone.0127246 26018967
    [Google Scholar]
  84. Oesterheld J. Ferguson W. Kraveka J.M. Bergendahl G. Clinch T. Lorenzi E. Berry D. Wada R.K. Isakoff M.S. Eslin D.E. Brown V.I. Roberts W. Zage P. Harrod V.L. Mitchell D.S. Hanson D. Sholler S.G.L. Eflornithine as postimmunotherapy maintenance in high-risk neuroblastoma: Externally controlled, propensity score-matched survival outcome comparisons. J. Clin. Oncol. 2024 42 1 90 102 10.1200/JCO.22.02875 37883734
    [Google Scholar]
  85. Eflornithine (DFMO) and etoposide for relapsed/refractory neuroblastoma 2024 Available from: https://www.archildrens.org/research/clinical-trials/dfmo-with-etoposide-for-neuroblastoma-study
  86. Evaluation of eflornithine plus temozolomide in patients with newly diagnosed glioblastoma. 2024. Available from: https://trials.braintumor.org/trials/NCT05879367
  87. Park M.G. Kim S.Y. Lee C.J. DMSO-tolerant ornithine decarboxylase (ODC) tandem assay optimised for high-throughput screening. J. Enzyme Inhib. Med. Chem. 2023 38 1 309 318 10.1080/14756366.2022.2150186 36451618
    [Google Scholar]
  88. Zabala-Letona A. Arruabarrena-Aristorena A. Martín-Martín N. Fernandez-Ruiz S. Sutherland J.D. Clasquin M. Tomas-Cortazar J. Jimenez J. Torres I. Quang P. Ximenez-Embun P. Bago R. Ugalde-Olano A. Loizaga-Iriarte A. Lacasa-Viscasillas I. Unda M. Torrano V. Cabrera D. van Liempd S.M. Cendon Y. Castro E. Murray S. Revandkar A. Alimonti A. Zhang Y. Barnett A. Lein G. Pirman D. Cortazar A.R. Arreal L. Prudkin L. Astobiza I. Valcarcel-Jimenez L. Zuñiga-García P. Fernandez-Dominguez I. Piva M. Caro-Maldonado A. Sánchez-Mosquera P. Castillo-Martín M. Serra V. Beraza N. Gentilella A. Thomas G. Azkargorta M. Elortza F. Farràs R. Olmos D. Efeyan A. Anguita J. Muñoz J. Falcón-Pérez J.M. Barrio R. Macarulla T. Mato J.M. Martinez-Chantar M.L. Cordon-Cardo C. Aransay A.M. Marks K. Baselga J. Tabernero J. Nuciforo P. Manning B.D. Marjon K. Carracedo A. mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer. Nature 2017 547 7661 109 113 10.1038/nature22964 28658205
    [Google Scholar]
  89. Millward M.J. Joshua A. Kefford R. Aamdal S. Thomson D. Hersey P. Toner G. Lynch K. Multi-centre Phase II trial of the polyamine synthesis inhibitor SAM486A (CGP48664) in patients with metastatic melanoma. Invest. New Drugs 2005 23 3 253 256 10.1007/s10637‑005‑6734‑z 15868382
    [Google Scholar]
  90. Liao C. Wang Y. Tan X. Sun L. Liu S. Discovery of novel inhibitors of human S-adenosylmethionine decarboxylase based on in silico high-throughput screening and a non-radioactive enzymatic assay. Sci. Rep. 2015 5 1 10754 10.1038/srep10754 26030749
    [Google Scholar]
  91. Bachmann A.S. Geerts D. Polyamine synthesis as a target of MYC oncogenes. J. Biol. Chem. 2018 293 48 18757 18769 10.1074/jbc.TM118.003336 30404920
    [Google Scholar]
  92. Nakanishi S. Cleveland J.L. Targeting the polyamine-hypusine circuit for the prevention and treatment of cancer. Amino Acids 2016 48 10 2353 2362 10.1007/s00726‑016‑2275‑3 27357307
    [Google Scholar]
  93. He H.L. Lee Y.E. Shiue Y.L. Lee S.W. Chen T.J. Li C.F. Characterization and prognostic significance of methylthioadenosine phosphorylase deficiency in nasopharyngeal carcinoma. Medicine 2015 94 49 2271 10.1097/MD.0000000000002271 26656376
    [Google Scholar]
  94. Li W. Su D. Mizobuchi H. Martin D.S. Gu B. Gorlick R. Cole P. Bertino J.R. Status of methylthioadenosine phosphorylase and its impact on cellular response to L-alanosine and methylmercaptopurine riboside in human soft tissue sarcoma cells. Oncol. Res. 2004 14 7 373 379 10.3727/0965040041292332 15301428
    [Google Scholar]
  95. Patro C.P.K. Biswas N. Pingle S.C. Lin F. Anekoji M. Jones L.D. Kesari S. Wang F. Ashili S. MTAP loss: A possible therapeutic approach for glioblastoma. J. Transl. Med. 2022 20 1 620 10.1186/s12967‑022‑03823‑8 36572880
    [Google Scholar]
  96. Arlt A. Bauer I. Schafmayer C. Tepel J. Müerköster S.S. Brosch M. Röder C. Kalthoff H. Hampe J. Moyer M.P. Fölsch U.R. Schäfer H. Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2). Oncogene 2009 28 45 3983 3996 10.1038/onc.2009.264 19734940
    [Google Scholar]
  97. Chen L. Madura K. Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Res. 2005 65 13 5599 5606 10.1158/0008‑5472.CAN‑05‑0201 15994932
    [Google Scholar]
  98. Yerlikaya A. Yöntem M. The significance of ubiquitin proteasome pathway in cancer development. Rec. Pat. Anticancer Drug Discov 2013 8 3 298 309 10.2174/1574891X113089990033 23061719
    [Google Scholar]
  99. Börklü E. Methionine restriction and cancer treatment: A systems biology study of yeast to investigate the possible key players. Turk. J. Biol. 2023 47 3 208 217 10.55730/1300‑0152.2656 37529420
    [Google Scholar]
  100. Wanders D. Hobson K. Ji X. Methionine restriction and cancer biology. Nutrients 2020 12 3 684 10.3390/nu12030684 32138282
    [Google Scholar]
  101. Sayas E. Pérez-Benavente B. Manzano C. Farràs R. Alejandro S. del Pozo J.C. Ferrando A. Serrano R. Polyamines interfere with protein ubiquitylation and cause depletion of intracellular amino acids: A possible mechanism for cell growth inhibition. FEBS Lett. 2019 593 2 209 218 10.1002/1873‑3468.13299 30447065
    [Google Scholar]
  102. Wu J.Y. Zeng Y. You Y.Y. Chen Q.Y. Polyamine metabolism and anti-tumor immunity. Front. Immunol. 2025 16 1529337 10.3389/fimmu.2025.1529337 40040695
    [Google Scholar]
  103. Bi G. Liang J. Bian Y. Shan G. Huang Y. Lu T. Zhang H. Jin X. Chen Z. Zhao M. Fan H. Wang Q. Gan B. Zhan C. Polyamine-mediated ferroptosis amplification acts as a targetable vulnerability in cancer. Nat. Commun. 2024 15 1 2461 10.1038/s41467‑024‑46776‑w 38504107
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206390332250711060007
Loading
/content/journals/acamc/10.2174/0118715206390332250711060007
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: ODC ; cancer ; Polyamines ; AdoMetDC ; proteasome ; MTAP
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test