Skip to content
2000
image of dHG-5 Exhibits Dual Efficacy of Anti-Metastatic and Anti-hypercoagulability in Mice by Inhibiting Heparanase and Intrinsic Coagulation Pathway

Abstract

Introduction

Cancer metastasis and associated thrombosis are significant contributors to cancer-related mortality, necessitating therapeutic strategies that simultaneously address both issues. This study aimed to evaluate the dual anti-metastatic and anti-hypercoagulability properties of dHG-5, a low-molecular-weight fucosylated glycosaminoglycan derived from the sea cucumber .

Methods

The heparanase-inhibitory and anticoagulant effects of dHG-5 were assessed using biochemical assays. The impact of dHG-5 on 4T1 cell migration and invasion was evaluated using Transwell assays. The anti-metastatic and anti-hypercoagulability efficacy of dHG-5 was further tested in a 4T1 mammary carcinoma mouse model, with enoxaparin (LMWH) used as a control.

Results

dHG-5 exhibited potent heparanase inhibition (IC = 91.0 nM) and significantly reduced 4T1 cell migration and invasion at 4.0 µmol/L. , dHG-5 reduced lung metastasis without affecting tumor growth or proliferation. At a dose of 20 mg/kg, dHG-5 prolonged activated partial thromboplastin time (APTT) from 23.5 ± 1.85 s to 30.4 ± 3.36 s, effectively reversing hypercoagulability in tumor-bearing mice. Compared to low-molecular-weight heparin, dHG-5 selectively prolonged APTT with negligible effects on prothrombin time and thrombin time.

Discussion

The findings highlighted the dual-action mechanism of dHG-5, namely inhibiting heparanase and selectively targeting the intrinsic coagulation pathway. This selective action minimized bleeding risk, a common issue with traditional anticoagulants. However, this study focused on a single cancer type and the use of a mouse model, which may not fully represent human pathophysiology. We would explore dHG-5's effects across different cancer types and investigate its potential synergistic effects with existing cancer therapies in the future.

Conclusion

dHG-5 suppressed metastasis and hypercoagulability through heparanase inhibition and selective action on the intrinsic coagulation pathway. These findings highlight dHG-5 as a promising dual-action therapeutic candidate for managing metastasis and cancer-associated thrombosis, offering a safer alternative to traditional anticoagulants.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206413123250612185241
2025-08-06
2025-09-27
Loading full text...

Full text loading...

References

  1. Siegel R.L. Miller K.D. Fuchs H.E. Jemal A. Cancer statistics, 2022. CA Cancer J. Clin. 2022 72 1 7 33 10.3322/caac.21708 35020204
    [Google Scholar]
  2. Steeg P.S. Targeting metastasis. Nat. Rev. Cancer 2016 16 4 201 218 10.1038/nrc.2016.25 27009393
    [Google Scholar]
  3. Robinson D.R. Wu Y.M. Lonigro R.J. Vats P. Cobain E. Everett J. Cao X. Rabban E. Kumar-Sinha C. Raymond V. Schuetze S. Alva A. Siddiqui J. Chugh R. Worden F. Zalupski M.M. Innis J. Mody R.J. Tomlins S.A. Lucas D. Baker L.H. Ramnath N. Schott A.F. Hayes D.F. Vijai J. Offit K. Stoffel E.M. Roberts J.S. Smith D.C. Kunju L.P. Talpaz M. Cieślik M. Chinnaiyan A.M. Integrative clinical genomics of metastatic cancer. Nature 2017 548 7667 297 303 10.1038/nature23306 28783718
    [Google Scholar]
  4. Hisada Y. Mackman N. Cancer-associated pathways and biomarkers of venous thrombosis. Blood 2017 130 13 1499 1506 10.1182/blood‑2017‑03‑743211 28807983
    [Google Scholar]
  5. Ay C. Pabinger I. Cohen A.T. Cancer-associated venous thromboembolism: Burden, mechanisms, and management. Thromb. Haemost. 2017 117 2 219 230 10.1160/TH16‑08‑0615 27882374
    [Google Scholar]
  6. Mulder F.I. Horváth-Puhó E. van Es N. van Laarhoven H.W.M. Pedersen L. Moik F. Ay C. Büller H.R. Sørensen H.T. Venous thromboembolism in cancer patients: A population-based cohort study. Blood 2021 137 14 1959 1969 10.1182/blood.2020007338 33171494
    [Google Scholar]
  7. Campello E. Ilich A. Simioni P. Key N.S. The relationship between pancreatic cancer and hypercoagulability: A comprehensive review on epidemiological and biological issues. Br. J. Cancer 2019 121 5 359 371 10.1038/s41416‑019‑0510‑x 31327867
    [Google Scholar]
  8. Kobayashi M. Wada H. Fukui S. Mizutani H. Ichikawa Y. Shiraki K. Moritani I. Inoue H. Shimaoka M. Shimpo H. A clot waveform analysis showing a hypercoagulable state in patients with malignant neoplasms. J. Clin. Med. 2021 10 22 5352 10.3390/jcm10225352 34830633
    [Google Scholar]
  9. Lei Z. Guo D. Significant difference between coagulation parameters and clinicopathological characteristics in breast cancer. Blood Coagul. Fibrinolysis 2021 32 8 572 577 10.1097/MBC.0000000000001084 34545042
    [Google Scholar]
  10. Lavallée V.P. Chagraoui J. MacRae T. Marquis M. Bonnefoy A. Krosl J. Lemieux S. Marinier A. Pabst C. Rivard G.É. Hébert J. Sauvageau G. Transcriptomic landscape of acute promyelocytic leukemia reveals aberrant surface expression of the platelet aggregation agonist Podoplanin. Leukemia 2018 32 6 1349 1357 10.1038/s41375‑018‑0069‑1 29550835
    [Google Scholar]
  11. Geddings J.E. Mackman N. Tumor-derived tissue factor–positive microparticles and venous thrombosis in cancer patients. Blood 2013 122 11 1873 1880 10.1182/blood‑2013‑04‑460139 23798713
    [Google Scholar]
  12. Gyldenholm T. Larsen J.B. Cancer-associated thrombosis and beyond: biomarkers, treatments, and cancer-hemostasis interactions. Semin. Thromb. Hemost. 2024 50 3 325 327 10.1055/s‑0043‑1778104 38224698
    [Google Scholar]
  13. Casu B. Vlodavsky I. Sanderson R.D. Non-anticoagulant heparins and inhibition of cancer. Pathophysiol. Haemost. Thromb. 2007 36 3-4 195 203 10.1159/000175157 19176992
    [Google Scholar]
  14. Cassinelli G. Naggi A. Old and new applications of non-anticoagulant heparin. Int. J. Cardiol. 2016 212 Suppl. 1 S14 S21 10.1016/S0167‑5273(16)12004‑2 27264866
    [Google Scholar]
  15. Baykal C. Al A. Demirtaş E. Ayhan A. Comparison of enoxaparin and standard heparin in gynaecologic oncologic surgery: A randomised prospective double-blind clinical study. Eur. J. Gynaecol. Oncol. 2001 22 2 127 130 11446476
    [Google Scholar]
  16. Mousa S.A. Petersen L.J. Anti-cancer properties of low-molecular-weight heparin: preclinical evidence. Thromb. Haemost. 2009 102 2 258 267 19652876
    [Google Scholar]
  17. Kearon C. Akl E.A. Comerota A.J. Prandoni P. Bounameaux H. Goldhaber S.Z. Nelson M.E. Wells P.S. Gould M.K. Dentali F. Crowther M. Kahn S.R. Antithrombotic therapy for VTE disease: Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest physicians Evidence-Based Clinical Practice Guidelines. Chest 2012 141 2 e419S e496S 10.1378/chest.11‑2301
    [Google Scholar]
  18. Farge D. Debourdeau P. Beckers M. Baglin C. Bauersachs R.M. Brenner B. Brilhante D. Falanga A. Gerotzafias G.T. Haim N. Kakkar A.K. Khorana A.A. Lecumberri R. Mandala M. Marty M. Monreal M. Mousa S.A. Noble S. Pabinger I. Prandoni P. Prins M.H. Qari M.H. Streiff M.B. Syrigos K. Bounameaux H. Büller H.R. International clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer. J. Thromb. Haemost. 2013 11 1 56 70 10.1111/jth.12070 23217107
    [Google Scholar]
  19. Krasiński Z. Krasińska B. Dzieciuchowicz Ł. Urbanek T. Gabriel M. Heparins in cancer-associated venous thrombosis. Pol. Arch. Med. Wewn. 2016 126 6 419 429 10.20452/pamw.3449 27362395
    [Google Scholar]
  20. Sheehan J.P. Walke E.N. Depolymerized holothurian glycosaminoglycan and heparin inhibit the intrinsic tenase complex by a common antithrombin-independent mechanism. Blood 2006 107 10 3876 3882 10.1182/blood‑2005‑07‑3043 16672689
    [Google Scholar]
  21. Wu M. Wen D. Gao N. Xiao C. Yang L. Xu L. Lian W. Peng W. Jiang J. Zhao J. Anticoagulant and antithrombotic evaluation of native fucosylated chondroitin sulfates and their derivatives as selective inhibitors of intrinsic factor Xase. Eur. J. Med. Chem. 2015 92 257 269 10.1016/j.ejmech.2014.12.054 25559206
    [Google Scholar]
  22. Dwivedi R. Pomin V.H. Marine antithrombotics. Mar. Drugs 2020 18 10 514 10.3390/md18100514 33066214
    [Google Scholar]
  23. Zhou L. Gao N. Sun H. Xiao C. Yang L. Lin L. Yin R. Li Z. Zhang H. Ji X. Zhao J. Effects of native fucosylated glycosaminoglycan, its depolymerized derivatives on intrinsic factor Xase, coagulation, thrombosis, and hemorrhagic risk. Thromb. Haemost. 2020 120 4 607 619 10.1055/s‑0040‑1708480 32289860
    [Google Scholar]
  24. Sun H. Gao N. Ren L. Liu S. Lin L. Zheng W. Zhou L. Yin R. Zhao J. The components and activities analysis of a novel anticoagulant candidate dHG-5. Eur. J. Med. Chem. 2020 207 112796 10.1016/j.ejmech.2020.112796 32942073
    [Google Scholar]
  25. Zhou L. Yin R. Gao N. Sun H. Chen D. Cai Y. Ren L. Yang L. Zuo Z. Zhang H. Zhao J. Oligosaccharides from fucosylated glycosaminoglycan prevent breast cancer metastasis in mice by inhibiting heparanase activity and angiogenesis. Pharmacol. Res. 2021 166 105527 10.1016/j.phrs.2021.105527 33667689
    [Google Scholar]
  26. Zhu L. Chen Y. Wei C. Yang X. Cheng J. Yang Z. Chen C. Ji Z. Anti-proliferative and pro-apoptotic effects of cinobufagin on human breast cancer MCF-7 cells and its molecular mechanism. Nat. Prod. Res. 2018 32 4 493 497 10.1080/14786419.2017.1315575 28412840
    [Google Scholar]
  27. Buijs J.T. Ünlü B. Laghmani E.H. Heestermans M. van Vlijmen B.J.M. Versteeg H.H. Assessment of breast cancer progression and metastasis during a hypercoagulable state induced by silencing of antithrombin in a xenograft mouse model. Thromb. Res. 2023 221 51 57 10.1016/j.thromres.2022.11.018 36470070
    [Google Scholar]
  28. Huang R. Sun Y. Gao Q. Wang Q. Sun B. Trastuzumab-mediated selective delivery for platinum drug to HER2-positive breast cancer cells. Anticancer Drugs 2015 26 9 957 963 10.1097/CAD.0000000000000272 26186063
    [Google Scholar]
  29. He Z. Zhou L. Lin L. Yin R. Zhao J. Structure and heparanase inhibitory activity of a new glycosaminoglycan from the slug Limacus flavus. Carbohydr. Polym. 2019 220 176 184 10.1016/j.carbpol.2019.05.066 31196538
    [Google Scholar]
  30. Ikezoe T. Cancer-associated thrombosis and bleeding. Int. J. Hematol. 2024 119 5 493 494 10.1007/s12185‑024‑03716‑0 38311665
    [Google Scholar]
  31. Gil-Bernabé A.M. Lucotti S. Muschel R.J. Coagulation and metastasis: What does the experimental literature tell us? Br. J. Haematol. 2013 162 4 433 441 10.1111/bjh.12381 23691951
    [Google Scholar]
  32. Jack H. Martin, O’Donnell, Jeffrey, Weitz. New anticoagulants. Blood 2005 105 2 453 463 15191946
    [Google Scholar]
  33. Blombäck M. Bark N. Johnsson H. Wallen N.H. He S. The direct thrombin inhibitors (argatroban, bivalirudin and lepirudin) and the indirect Xa-inhibitor (danaparoid) increase fibrin network porosity and thus facilitate fibrinolysis. Thromb. Haemost. 2010 103 5 1076 1084 10.1160/TH09‑05‑0306 20216982
    [Google Scholar]
  34. Fonseca R.J. Oliveira S. Pomin V.H. Mecawi A.S. Mouro P.A. Effects of oversulfated and fucosylated chondroitin sulfates on coagulation. Thromb. Haemost. 2008 99 5 807 818 18449410
    [Google Scholar]
  35. Vlodavsky I. Singh P. Boyango I. Gutter-Kapon L. Elkin M. Sanderson R.D. Ilan N. Heparanase: From basic research to therapeutic applications in cancer and inflammation. Drug Resist. Updat. 2016 29 54 75 10.1016/j.drup.2016.10.001 27912844
    [Google Scholar]
  36. Elhanani O. Ben-Uri R. Keren L. Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell 2023 41 3 404 420 10.1016/j.ccell.2023.01.010 36800999
    [Google Scholar]
  37. Falanga A. Marchetti M. Cancer-associated thrombosis: Enhanced awareness and pathophysiologic complexity. J. Thromb. Haemost. 2023 21 6 1397 1408 10.1016/j.jtha.2023.02.029 36931602
    [Google Scholar]
  38. Tabasi M. Maghami P. Amiri-Tehranizadeh Z. Reza Saberi M. Chamani J. New perspective of the ternary complex of nano-curcumin with β-lactoglobulin in the presence of α-lactalbumin: Spectroscopic and molecular dynamic investigations. J. Mol. Liq. 2023 392 123472 10.1016/j.molliq.2023.123472
    [Google Scholar]
  39. Taheri R. Hamzkanlu N. Rezvani Y. Niroumand S. Samandar F. Amiri-Tehranizadeh Z. Saberi M.R. Chamani J. Exploring the HSA/DNA/lung cancer cells binding behavior of p-Synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: Multi spectroscopic, molecular dynamic and cellular approaches. J. Mol. Liq. 2022 368 120826 10.1016/j.molliq.2022.120826
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206413123250612185241
Loading
/content/journals/acamc/10.2174/0118715206413123250612185241
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: heparanase ; metastasis ; fucosylated glycosaminoglycan ; dHG-5 ; hypercoagulability ; anticoagulant
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test