Skip to content
2000
image of Bioinformatics And Experimental Insights Into Sotorasib Resistance Mechanisms in Non-small-cell Lung Cancer

Abstract

Introduction

This study aims to identify the key genes and pathways associated with sotorasib resistance in Non-Small Cell Lung Cancer (NSCLC) using bioinformatics analyses and experimental validation, with a focus on uncovering the potential mechanisms underlying resistance.

Methods

We compared gene expression profiles between sotorasib-resistant (SR) and non-resistant NSCLC cell lines using the GSE229070 dataset and between NSCLC tissues and adjacent normal tissues using the GSE18842 dataset. Differentially expressed genes (DEGs) were identified and intersected across datasets using the Venn diagram package. Functional enrichment analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The transcriptional activity and prognostic impact of key genes were evaluated using the UALCAN portal and Kaplan-Meier Plotter, respectively. The correlation between gene expression and immune cell infiltration was analyzed using the TIMER database, and co-expressed genes were explored using LinkedOmics. qRT-PCR and Western blot were used to validate the expression of AREG in parental and SR cell lines.

Results

We identified 33 overlapping DEGs, including TENM2, COL12A1, COL5A2, and LRRC15 (upregulated) and AREG (downregulated). AREG expression was significantly lower in NSCLC patients and associated with worse survival outcomes. AREG expression was also correlated with the levels of immune cell infiltration. Functional enrichment analysis revealed that AREG was associated with pathways including the NOD-like receptor signaling pathway, focal adhesion, DNA replication, and homologous recombination. Experimental validation confirmed that AREG mRNA and protein levels were significantly reduced in HCC78-SR cells compared to parental HCC78 cells.

Discussion

The downregulation of AREG is closely associated with sotorasib resistance in NSCLC, potentially contributing to resistance through alterations in signaling pathways and the tumor immune microenvironment. This finding aligns with previous studies on AREG's role in drug resistance, highlighting its potential as a therapeutic target. However, limitations include reliance on publicly available datasets and the need for further validation in clinical cohorts.

Conclusion

The study identifies AREG as a key gene associated with sotorasib resistance in NSCLC, suggesting its potential as a biomarker and therapeutic target. Further research is needed to elucidate the mechanisms underlying AREG's role in resistance and to explore its clinical significance.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206386488250728113358
2025-08-06
2025-09-25
Loading full text...

Full text loading...

References

  1. Lung Cancer - Non-Small Cell 2022 American Society of Cancer Oncology. Available from: https://www.cancer.org/cancer/types/lung-cancer/about/key-statistics.html
    [Google Scholar]
  2. Skoulidis F. Li B.T. Dy G.K. Price T.J. Falchook G.S. Wolf J. Italiano A. Schuler M. Borghaei H. Barlesi F. Kato T. Curioni-Fontecedro A. Sacher A. Spira A. Ramalingam S.S. Takahashi T. Besse B. Anderson A. Ang A. Tran Q. Mather O. Henary H. Ngarmchamnanrith G. Friberg G. Velcheti V. Govindan R. Sotorasib for lung cancers with kras P.G12C mutation. N. Engl. J. Med. 2021 384 25 2371 2381 10.1056/NEJMoa2103695 34096690
    [Google Scholar]
  3. Koga T. Suda K. Fujino T. Ohara S. Hamada A. Nishino M. Chiba M. Shimoji M. Takemoto T. Arita T. Gmachl M. Hofmann M.H. Soh J. Mitsudomi T. Kras secondary mutations that confer acquired resistance to KRASG12C inhibitors, sotorasib and adagrasib, and overcoming strategies: Insights from in vitro experiments. J. Thorac. Oncol. 2021 16 8 1321 1332 10.1016/j.jtho.2021.04.015
    [Google Scholar]
  4. Mohanty A. Nam A. Srivastava S. Jones J. Lomenick B. Singhal S.S. Guo L. Cho H. Li A. Behal A. Mirzapoiazova T. Massarelli E. Koczywas M. Arvanitis L.D. Walser T. Villaflor V. Hamilton S. Mambetsariev I. Sattler M. Nasser M.W. Jain M. Batra S.K. Soldi R. Sharma S. Fakih M. Mohanty S.K. Mainan A. Wu X. Chen Y. He Y. Chou T.F. Roy S. Orban J. Kulkarni P. Salgia R. Acquired resistance to KRASG12C small-molecule inhibitors via genetic/nongenetic mechanisms in lung cancer. Sci. Adv. 2023 9 41 eade3816 10.1126/sciadv.ade3816 37831779
    [Google Scholar]
  5. Ku B.M. Bae Y.H. Lee K.Y. Sun J.M. Lee S.H. Ahn J.S. Park K. Ahn M.J. Entrectinib resistance mechanisms in ROS1-rearranged non-small cell lung cancer. Invest. New Drugs 2020 38 2 360 368 10.1007/s10637‑019‑00795‑3 31124056
    [Google Scholar]
  6. Chiou L.W. Chan C.H. Jhuang Y.L. Yang C.Y. Jeng Y.M. DNA replication stress and mitotic catastrophe mediate sotorasib addiction in KRASG12C-mutant cancer. J. Biomed. Sci. 2023 30 1 50 10.1186/s12929‑023‑00940‑4 37386628
    [Google Scholar]
  7. Chan C.H. Chiou L.W. Lee T.Y. Liu Y.R. Hsieh T.H. Yang C.Y. Jeng Y.M. PAK and PI3K pathway activation confers resistance to KRASG12C inhibitor sotorasib. Br. J. Cancer 2023 128 1 148 159 10.1038/s41416‑022‑02032‑w 36319849
    [Google Scholar]
  8. Sanchez-Palencia A. Gomez-Morales M. Gomez-Capilla J.A. Pedraza V. Boyero L. Rosell R. Fárez-Vidal M.E. Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer. Int. J. Cancer 2011 129 2 355 364 10.1002/ijc.25704 20878980
    [Google Scholar]
  9. Chen X. Zhao X. Li D. Zha W. Identification of key genes and signaling pathways in entrectinibresistant non-small cell lung cancer using bioinformatic analysis and experimental verification. Curr. Med. Chem. 2024 31 32 e0929867332044 10.2174/0109298673320448240801061941 39108112
    [Google Scholar]
  10. Yao Y. Li X. Yang X. Mou H. Wei L. Indirubin, an active component of indigo naturalis, exhibits inhibitory effects on leukemia cells via targeting HSP90AA1 and PI3K/Akt pathway. Anticancer. Agents Med. Chem. 2024 24 9 718 727 10.2174/0118715206258293231017063340 38347773
    [Google Scholar]
  11. Chandrashekar D.S. Karthikeyan S.K. Korla P.K. Patel H. Shovon A.R. Athar M. Netto G.J. Qin Z.S. Kumar S. Manne U. Creighton C.J. Varambally S. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia 2022 25 18 27 10.1016/j.neo.2022.01.001 35078134
    [Google Scholar]
  12. Chandrashekar D.S. Bashel B. Balasubramanya S.A.H. Creighton C.J. Ponce-Rodriguez I. Chakravarthi B.V.S.K. Varambally S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017 19 8 649 658 10.1016/j.neo.2017.05.002 28732212
    [Google Scholar]
  13. Gyorffy B. Transcriptome-level discovery of survival-associated biomarkers and therapy targets in non-small-cell lung cancer. Br. J. Pharmacol. 2023 10.1111/bph.16257 37783508
    [Google Scholar]
  14. Li T. Fu J. Zeng Z. Cohen D. Li J. Chen Q. Li B. Liu X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020 48 W1 W509 W514 10.1093/nar/gkaa407 32442275
    [Google Scholar]
  15. Li T. Fan J. Wang B. Traugh N. Chen Q. Liu J.S. Li B. Liu X.S. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017 77 21 e108 e110 10.1158/0008‑5472.CAN‑17‑0307 29092952
    [Google Scholar]
  16. Li B. Severson E. Pignon J.C. Zhao H. Li T. Novak J. Jiang P. Shen H. Aster J.C. Rodig S. Signoretti S. Liu J.S. Liu X.S. Comprehensive analyses of tumor immunity: Implications for cancer immunotherapy. Genome Biol. 2016 17 1 174 10.1186/s13059‑016‑1028‑7 27549193
    [Google Scholar]
  17. Vasaikar S.V. Straub P. Wang J. Zhang B. LinkedOmics: Analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018 46 D1 D956 D963 10.1093/nar/gkx1090 29136207
    [Google Scholar]
  18. Hino Y. Nagaoka K. Oki S. Etoh K. Hino S. Nakao M. Mitochondrial stress induces AREG expression and epigenomic remodeling through c-JUN and YAP-mediated enhancer activation. Nucleic Acids Res. 2022 50 17 9765 9779 10.1093/nar/gkac735 36095121
    [Google Scholar]
  19. Liang K. Xie R. Xie Z. Wan W. Fu X. Lai X. Li D. Miao H. MEF2C is a potential prognostic biomarker and is correlated with immune infiltrates in lung adenocarcinoma. Curr. Med. Chem. 2024 32 10.2174/0109298673317910241003101925 39428936
    [Google Scholar]
  20. Lu M. Huang J. Deng C. Guo T. Chen X. Chen P. Du S. Cinobufotalin induces ferroptosis to suppress lung cancer cell growth by lncRNA LINC00597/hsa-miR-367-3p/TFRC Pathway via Resibufogenin. Anticancer. Agents Med. Chem. 2023 23 6 717 725 10.2174/1871520622666221010092922 36221890
    [Google Scholar]
  21. Lee A. Sotorasib: A review in KRASG12C mutation-positive non-small cell lung cancer. Target. Oncol. 2022 17 6 727 733 10.1007/s11523‑022‑00922‑w 36315377
    [Google Scholar]
  22. Li Z. Zhou B. Zhu X. Yang F. Jin K. Dai J. Zhu Y. Song X. Jiang G. Differentiation-related genes in tumor-associated macrophages as potential prognostic biomarkers in non-small cell lung cancer. Front. Immunol. 2023 14 1123840 10.3389/fimmu.2023.1123840 36969247
    [Google Scholar]
  23. Tokunaga S. Nagano T. Kobayashi K. Katsurada M. Nakata K. Yamamoto M. Tachihara M. Kamiryo H. Yokozaki H. Nishimura Y. Amphiregulin as a novel resistance factor for amrubicin in lung cancer cells. Anticancer Res. 2017 37 5 2225 2231 10.21873/anticanres.11558 28476786
    [Google Scholar]
  24. Busser B. Sancey L. Josserand V. Niang C. Favrot M.C. Coll J.L. Hurbin A. Amphiregulin promotes bax inhibition and resistance to gefitinib in non-small-cell lung cancers. Mol. Ther. 2010 18 3 528 535 10.1038/mt.2009.226
    [Google Scholar]
  25. Busser B. Sancey L. Josserand V. Niang C. Khochbin S. Favrot M.C. Coll J.L. Hurbin A. Amphiregulin promotes resistance to gefitinib in nonsmall cell lung cancer cells by regulating ku70 acetylation. Mol. Ther. 2010 18 3 536 543 10.1038/mt.2009.227
    [Google Scholar]
  26. Guerard M. Robin T. Perron P. Hatat A.S. David-Boudet L. Vanwonterghem L. Busser B. Coll J.L. Lantuejoul S. Eymin B. Hurbin A. Gazzeri S. Nuclear translocation of IGF1R by intracellular amphiregulin contributes to the resistance of lung tumour cells to EGFR-TKI. Cancer Lett. 2018 420 146 155 10.1016/j.canlet.2018.01.080 29421153
    [Google Scholar]
  27. Cortinovis D. Gemelli M. Cappuzzo F. Alectinib resistance through amphiregulin overexpression: Is osimertinib the best candidate? J. Thorac. Oncol. 2020 15 6 e92 e93 10.1016/j.jtho.2020.02.026
    [Google Scholar]
  28. Taniguchi H. Takeuchi S. Fukuda K. Nakagawa T. Arai S. Nanjo S. Yamada T. Yamaguchi H. Mukae H. Yano S. Amphiregulin triggered epidermal growth factor receptor activation confers in vivo crizotinib‐resistance of EML 4‐ ALK lung cancer and circumvention by epidermal growth factor receptor inhibitors. Cancer Sci. 2017 108 1 53 60 10.1111/cas.13111 27783866
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206386488250728113358
Loading
/content/journals/acamc/10.2174/0118715206386488250728113358
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: GEO ; focal adhesion ; AREG ; NSCLC ; Sotorasib ; resistance
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test