Skip to content
2000
image of The Hematological Variations and Effect of Cadmium Induced Toxicity on Mammary Tumors Development in Albino Mice. A Comparative Model Study on the Effect of Heavy Metals in Human Breast Cancer

Abstract

Introduction

Breast cancer develops in breast tissues, in ducts and lobules. It affects both genders, though it is uncommon in men. Hematological variations are important considerations and deficiencies in metals can negatively impact human health. Cadmium is highly toxic and plays role in breast cancer progression. This study was designed for hematological variations and cadmium induced toxicity in mice and humans causing breast cancer.

Methods

Mice, obtained from local supplier, housed at university laboratory for 11 weeks, exposed to cadmium. Following dissection, blood and organs were harvested for examination. Histological analysis of liver and mammary gland tissues was conducted.

Results

Affected mice had higher Hb, RBC, HCT, MCV, and MCH, while humans showed lower Hb, HCT, and MCV but similar RBC and MCH. Other blood values also show changes. Histopathology revealed changes in mammary glands (higher cadmium led to increased fat deposition, degeneration of alveolar epithelial cells, and a reduction in alveolar milk lumen size, indicating compromised glandular function) and Liver damage (vacuolation, lipid accumulation, fibrosis, and collagen deposition, was noticeable with prolonged cadmium). These changes causes liver fibrosis and impaired mammary gland function.

Discussion

The cadmium exposure induces distinct hematological alterations and severe tissues damage, reflecting species-specific responses. The observed liver fibrosis and mammary gland dysfunction emphasize cadmium’s potential to compromise critical organ functions over time.

Conclusion

Significant effects of cadmium exposure in mice were observed. Histological damage was seen in mammary glands and liver. Further research on protective measures and dose-response relationships for cadmium exposure is needed.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206382637250731031214
2025-08-08
2025-09-26
Loading full text...

Full text loading...

References

  1. Lodish H.F. Molecular cell biology. Macmillan 2008
    [Google Scholar]
  2. Kufe D. Weichselbaum R. Radiation therapy: Activation for gene transcription and the development of genetic radiotherapy-therapeutic strategies in oncology. Cancer Biol. Ther. 2003 2 4 326 329 10.4161/cbt.2.4.495 14508100
    [Google Scholar]
  3. Chen L. Kong X. Yan C. Fang Y. Wang J. The research progress on the prognostic value of the common hematological parameters in peripheral venous blood in breast cancer. OncoTargets Ther. 2020 13 1397 1412 10.2147/OTT.S227171 32104003
    [Google Scholar]
  4. Rimsha K.K. Navida M.F. Muhammad Gulzada M. Afzal Y.I. Saleem A. Tanvir F. Nawaz Y. Munir S. Rafee K. Clinical characteristics, hematological variations and bioaccumulation of heavy metals in blood, hair and urine of breast cancer patients. Chelonian Conserv. Biol. 2024 19 1 1396 1411 10.2744/CCB‑1627.1
    [Google Scholar]
  5. Wang M.C. Huang C.E. Lin M.H. Yang Y.H. Lu C.H. Chen P.T. Wu Y.Y. Tsou H.Y. Hsu C.C. Chen C.C. Impacts of demographic and laboratory parameters on key hematological indices in an adult population of southern Taiwan: A cohort study. PLoS One 2018 13 8 e0201708 10.1371/journal.pone.0201708 30071080
    [Google Scholar]
  6. Ali L.O. Study effect of breast cancer on some hematological and biochemical parameters in Babylon Province, Iraq. IOSR J. Pharm. Biol. Sci. 2014 9 3 20 24 10.9790/3008‑09352024
    [Google Scholar]
  7. Koochakzadeh L. Establishing normal ranges of hematological parameters from an Iranian healthy population: A population-based cross-sectional study of hospital data. Acta Med. Iran. 2018 571 576
    [Google Scholar]
  8. Skalnaya M.G. Skalny A.V. Essential trace nlms in human health: A physician’s view. Tomsk Publishing House of Tomsk State University 2018
    [Google Scholar]
  9. Pant H. Lobo V. Singh R. Lead toxicity in plants and phytoremediation potential of aromatic plants for lead contaminated soils. Curr. Res. Med. Aromat. Plants 2020 42 3 205 219 10.62029/jmaps.v42i3.Pant
    [Google Scholar]
  10. Humans I.W.G.E.C.R.t. Exposures in the Glass Manufacturing Industry In:Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry International Agency for Research on Cancer 1993
    [Google Scholar]
  11. Eriksen K.T. Halkjær J. Meliker J.R. McElroy J.A. Sørensen M. Tjønneland A. Raaschou-Nielsen O. Dietary cadmium intake and risk of prostate cancer: A Danish prospective cohort study. BMC Cancer 2015 15 1 177 10.1186/s12885‑015‑1153‑9 25884961
    [Google Scholar]
  12. Pirincci N. Gecit I. Gunes M. Kaba M. Tanik S. Yuksel M.B. Arslan H. Demir H. Levels of serum trace nlms in renal cell carcinoma cases. Asian Pac. J. Cancer Prev. 2013 14 1 499 502 10.7314/APJCP.2013.14.1.499 23534781
    [Google Scholar]
  13. Nagata C. Nagao Y. Nakamura K. Wada K. Tamai Y. Tsuji M. Yamamoto S. Kashiki Y. Cadmium exposure and the risk of breast cancer in Japanese women. Breast Cancer Res. Treat. 2013 138 1 235 239 10.1007/s10549‑013‑2414‑4 23358902
    [Google Scholar]
  14. Benbrahim-Tallaa L. Tokar E.J. Diwan B.A. Dill A.L. Coppin J.F. Waalkes M.P. Cadmium malignantly transforms normal human breast epithelial cells into a basal-like phenotype. Environ. Health Perspect. 2009 117 12 1847 1852 10.1289/ehp.0900999 20049202
    [Google Scholar]
  15. Öhrvik H. Yoshioka M. Oskarsson A. Tallkvist J. Cadmium-induced disturbances in lactating mammary glands of mice. Toxicol. Lett. 2006 164 3 207 213 10.1016/j.toxlet.2005.12.008 16436318
    [Google Scholar]
  16. Stohs S. Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 1995 18 2 321 336 10.1016/0891‑5849(94)00159‑H 7744317
    [Google Scholar]
  17. Martin M.B. Reiter R. Pham T. Avellanet Y.R. Camara J. Lahm M. Pentecost E. Pratap K. Gilmore B.A. Divekar S. Dagata R.S. Bull J.L. Stoica A. Estrogen-like activity of metals in MCF-7 breast cancer cells. Endocrinology 2003 144 6 2425 2436 10.1210/en.2002‑221054 12746304
    [Google Scholar]
  18. Johnson M.D. Kenney N. Stoica A. Hilakivi-Clarke L. Singh B. Chepko G. Clarke R. Sholler P.F. Lirio A.A. Foss C. Reiter R. Trock B. Paik S. Martin M.B. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nat. Med. 2003 9 8 1081 1084 10.1038/nm902 12858169
    [Google Scholar]
  19. Martínez-Campa C. Alonso-González C. Mediavilla M.D. Cos S. González A. Ramos S. Sánchez-Barceló E.J. Melatonin inhibits both ERα activation and breast cancer cell proliferation induced by a metalloestrogen, cadmium. J. Pineal Res. 2006 40 4 291 296 10.1111/j.1600‑079X.2006.00315.x 16635015
    [Google Scholar]
  20. Darbre P.D. Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast. J. Appl. Toxicol. 2006 26 3 191 197 10.1002/jat.1135 16489580
    [Google Scholar]
  21. Johnson I.T. Phytochemicals and cancer. Proc. Nutr. Soc. 2007 66 2 207 215 10.1017/S0029665107005459 17466103
    [Google Scholar]
  22. Cantor K.P. Stewart P.A. Brinton L.A. Dosemeci M. Occupational exposures and female breast cancer mortality in the United States. J. Occup. Environ. Med. 1995 37 3 336 348 10.1097/00043764‑199503000‑00011 7796202
    [Google Scholar]
  23. Schrauzer G.N. Interactive effects of selenium and cadmium on mammary tumor development and growth in MMTV-infected female mice. A model study on the roles of cadmium and selenium in human breast cancer. Biol. Trace Elem. Res. 2008 123 1-3 27 34 10.1007/s12011‑008‑8091‑1 18264682
    [Google Scholar]
  24. Strumylaite L. Bogusevicius A. Abdrachmanovas O. Baranauskiene D. Kregzdyte R. Pranys D. Poskiene L. Cadmium concentration in biological media of breast cancer patients. Breast Cancer Res. Treat. 2011 125 2 511 517 10.1007/s10549‑010‑1007‑8 20607602
    [Google Scholar]
  25. Wang C. Zhang J. Wang Y. Ouyang T. Li J. Wang T. Fan Z. Fan T. Lin B. Xie Y. Prevalence of BRCA1 mutations and responses to neoadjuvant chemotherapy among BRCA1 carriers and non-carriers with triple-negative breast cancer. Ann. Oncol. 2015 26 3 523 528 10.1093/annonc/mdu559 25480878
    [Google Scholar]
  26. Engstrøm M.J. Opdahl S. Hagen A.I. Romundstad P.R. Akslen L.A. Haugen O.A. Vatten L.J. Bofin A.M. Molecular subtypes, histopathological grade and survival in a historic cohort of breast cancer patients. Breast Cancer Res. Treat. 2013 140 3 463 473 10.1007/s10549‑013‑2647‑2 23901018
    [Google Scholar]
  27. Hjelkrem M. Validation of the non‐alcoholic fatty liver disease activity score. Alimentary Pharmacol. 2011 24 214 218 10.1111/j.1365‑2036.2011.04695.x
    [Google Scholar]
  28. Xu Y. Mu W. Li J. Ba Q. Wang H. Chronic cadmium exposure at environmental-relevant level accelerates the development of hepatotoxicity to hepatocarcinogenesis. Sci. Total Environ. 2021 783 146958 10.1016/j.scitotenv.2021.146958 33866181
    [Google Scholar]
  29. Mercatali L. Serra P. Miserocchi G. Spadazzi C. Liverani C. De Vita A. Marisi G. Bongiovanni A. Recine F. Pangan A. Masalu N. Ibrahim T. Amadori D. Dried blood and serum spots as a useful tool for sample storage to evaluate cancer biomarkers. J. Vis. Exp. 2018 136 57113 [PMID: 29939179
    [Google Scholar]
  30. Han J.L. Pan X.D. Chen Q. Distribution and safety assessment of heavy metals in fresh meat from Zhejiang, China. Sci. Rep. 2022 12 1 3241 10.1038/s41598‑022‑07214‑3 35217705
    [Google Scholar]
  31. Mohammadi M. Bakhtiari A.R. Khodabandeh S. Concentration of Cd, Pb, Hg, and Se in different parts of human breast cancer tissues. J. Toxicol. 2014 2014 413870 10.1155/2014/413870
    [Google Scholar]
  32. Varo P. Koivistoinen P. Mineral nlm composition of Finnish foods: XII. General discussion and nutritional evaluation. Acta. Agric. Scand Suppl 1980 22 165 171
    [Google Scholar]
  33. Louekari K. Uusitalo U. Pietinen P. Variation and modifying factors of the exposure to lead and cadmium based on an epidemiological study. Sci. Total Environ. 1989 84 1 12 10.1016/0048‑9697(89)90365‑3 2672327
    [Google Scholar]
  34. Vuori E. Huunan-Seppälä A. Kilpiö J.O. Salmela S.S. Biologically active metals in human tissues II. The effect of age on the concentration of cadmium in aorta, heart, kidney, liver, lung, pancreas and skeletal muscle. Scand. J. Work Environ. Health 1979 5 1 16 22 10.5271/sjweh.2670
    [Google Scholar]
  35. Antila E. Mussalo-Rauhamaa H. Kantola M. Atroshi F. Westermarck T. Association of cadmium with human breast cancer. Sci. Total Environ. 1996 186 3 251 256 10.1016/0048‑9697(96)05119‑4 8677430
    [Google Scholar]
  36. Hallén I. Jorhem L. Lagerkvist B. Oskarsson A. Lead and cadmium levels in human milk and blood. Sci. Total Environ. 1995 166 1-3 149 155 10.1016/0048‑9697(95)04523‑4 7754354
    [Google Scholar]
  37. Johansson E. Lindh U. Johansson H. Sundström C. Micro-PIXE analysis of macro- and trace nlms in blood cells and tumors of patients with breast cancer. Nucl. Instrum. Methods Phys. Res. B 1987 22 1-3 179 183 10.1016/0168‑583X(87)90321‑1
    [Google Scholar]
  38. Romanowicz-Makowska H. Forma E. Bryś M. Krajewska W.M. Smolarz B. Concentration of cadmium, nickel and aluminium in female breast cancer. Pol. J. Pathol. 2011 62 4 257 261 [PMID: 22246912
    [Google Scholar]
  39. Kubala-Kukuś A. Banaś D. Braziewicz J. Góźdź S. Majewska U. Pajek M. Analysis of nlmal concentration censored distributions in breast malignant and breast benign neoplasm tissues. Spectrochim. Acta B At. Spectrosc. 2007 62 6-7 695 701 10.1016/j.sab.2007.03.004
    [Google Scholar]
  40. Majewska U. Braziewicz J. Bana Ś. D.; Kubala-KukuŚ, A.; Góźdź, S.; Pajek, M.; Smok, J.; CJrbaniak, A. An nlmal correlation study in cancerous breast tissue by total reflection x-ray fluorescence. Biol. Trace Elem. Res. 1997 60 1-2 91 100 10.1007/BF02783312 9404678
    [Google Scholar]
  41. Alatise O.I. Schrauzer G.N. Lead exposure: A contributing cause of the current breast cancer epidemic in Nigerian women. Biol. Trace Elem. Res. 2010 136 2 127 139 10.1007/s12011‑010‑8608‑2 20195925
    [Google Scholar]
  42. Petersson Grawé K. Oskarsson A. Cadmium in milk and mammary gland in rats and mice. Arch. Toxicol. 2000 73 10-11 519 527 10.1007/s002040050003 10663382
    [Google Scholar]
  43. Athie F. Bachman K.C. Head H.H. Hayen M.J. Wilcox C.J. Estrogen administered at final milk removal accelerates involution of bovine mammary gland. J. Dairy Sci. 1996 79 2 220 226 10.3168/jds.S0022‑0302(96)76354‑3 8708083
    [Google Scholar]
  44. Ba Q. Li M. Chen P. Huang C. Duan X. Lu L. Li J. Chu R. Xie D. Song H. Wu Y. Ying H. Jia X. Wang H. Sex-dependent effects of cadmium exposure in early life on gut microbiota and fat accumulation in mice. Environ. Health Perspect. 2017 125 3 437 446 10.1289/EHP360 27634282
    [Google Scholar]
  45. Tamura S. Shimomura I. Contribution of adipose tissue and de novo lipogenesis to nonalcoholic fatty liver disease. J. Clin. Invest. 2005 115 5 1139 1142 10.1172/JCI24930 15864343
    [Google Scholar]
  46. Barcena-Varela M. Colyn L. Fernandez-Barrena M.G. Epigenetic mechanisms in hepatic stellate cell activation during liver fibrosis and carcinogenesis. Int. J. Mol. Sci. 2019 20 10 2507 10.3390/ijms20102507 31117267
    [Google Scholar]
  47. Abd allah, E.S.H.; Badary, D.M. Folic acid protects against lead acetate-induced hepatotoxicity by decreasing NF-κB, IL-1β production and lipid peroxidation mediataed cell injury. Pathophysiology 2017 24 1 39 44 10.1016/j.pathophys.2017.02.002 28214085
    [Google Scholar]
  48. Zou S. Tong Q. Liu B. Huang W. Tian Y. Fu X. Targeting STAT3 in cancer immunotherapy. Mol. Cancer 2020 19 1 145 10.1186/s12943‑020‑01258‑7 32972405
    [Google Scholar]
  49. Zhou J. Sun H. Wang Z. Cong W. Wang J. Zeng M. Zhou W. Bie P. Liu L. Wen T. Han G. Wang M. Liu R. Lu L. Ren Z. Chen M. Zeng Z. Liang P. Liang C. Chen M. Yan F. Wang W. Ji Y. Yun J. Cai D. Chen Y. Cheng W. Cheng S. Dai C. Guo W. Hua B. Huang X. Jia W. Li Y. Li Y. Liang J. Liu T. Lv G. Mao Y. Peng T. Ren W. Shi H. Shi G. Tao K. Wang W. Wang X. Wang Z. Xiang B. Xing B. Xu J. Yang J. Yang J. Yang Y. Yang Y. Ye S. Yin Z. Zhang B. Zhang B. Zhang L. Zhang S. Zhang T. Zhao Y. Zheng H. Zhu J. Zhu K. Liu R. Shi Y. Xiao Y. Dai Z. Teng G. Cai J. Wang W. Cai X. Li Q. Shen F. Qin S. Dong J. Fan J. Guidelines for the diagnosis and treatment of hepatocellular carcinoma (2019 edition). Liver Cancer 2020 9 6 682 720 10.1159/000509424 33442540
    [Google Scholar]
  50. Chen W. Xia C. Zheng R. Zhou M. Lin C. Zeng H. Zhang S. Wang L. Yang Z. Sun K. Li H. Brown M.D. Islami F. Bray F. Jemal A. He J. Disparities by province, age, and sex in site-specific cancer burden attributable to 23 potentially modifiable risk factors in China: A comparative risk assessment. Lancet Glob. Health 2019 7 2 e257 e269 10.1016/S2214‑109X(18)30488‑1 30683243
    [Google Scholar]
  51. Fang Y. Wang L. Wan C. Sun Y. Van der Jeught K. Zhou Z. Dong T. So K.M. Yu T. Li Y. Eyvani H. Colter A.B. Dong E. Cao S. Wang J. Schneider B.P. Sandusky G.E. Liu Y. Zhang C. Lu X. Zhang X. MAL2 drives immune evasion in breast cancer by suppressing tumor antigen presentation. J. Clin. Invest. 2021 131 1 e140837 10.1172/JCI140837 32990678
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206382637250731031214
Loading
/content/journals/acamc/10.2174/0118715206382637250731031214
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Breast cancer ; cadmium toxicity ; mice ; hematology ; mammary glands ; histology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test