Skip to content
2000
image of Serotonin Metabolism Shapes the Tumor Immune Microenvironment and Serves as a Therapeutic Target in Lung Cancer

Abstract

Introduction

Lung cancer progression involves complex interactions between metabolic pathways and the immune microenvironment. The role of serotonin, a tryptophan-derived metabolite, in immune responses to lung tumors remains unclear.

Methods

An orthotopic lung cancer model was established by intravenously injecting KP () cells into C57BL/6 mice. Metabolomic and flux analyses were conducted on tumor normal lung tissues. Serotonin was administered to tumor-bearing mice, followed by immunofluorescence and flow cytometry to assess immune responses. Human lung cancer datasets were analyzed to validate clinical relevance.

Results

Tumor tissues exhibited a significant decrease in serotonin levels. Although tryptophan, serotonin, and kynurenine levels were decreased overall, flux analysis revealed a metabolic shift favoring kynurenine synthesis, with a ~10-fold increase in the kynurenine-to-serotonin ratio. Serotonin supplementation significantly prolonged survival and enhanced dendritic cell and CD8+ T cell infiltration and activation in tumors. Analysis of public datasets showed that serotonin expression positively correlated with CD8+ T cell activation signatures and patient prognosis.

Discussion

By revealing serotonin as a potential biomarker and therapeutic target, this study paves new avenues for improving lung cancer treatment strategies through modulation of the immune microenvironment. Moreover, the precise receptor-mediated mechanisms underlying serotonin's immunomodulatory effects remain to be clarified, and translational validation in human tissues is warranted to strengthen clinical relevance.

Conclusion

Serotonin deficiency in the tumor microenvironment of the lung suppresses antitumor immunity. Its restoration reverses immune dysfunction and limits tumor progression. These findings identify serotonin as a potential metabolic regulator and immunotherapeutic target in lung cancer.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206408134250801050919
2025-08-08
2025-12-18
Loading full text...

Full text loading...

References

  1. Schabath M.B. Cote M.L. Cancer progress and priorities: Lung cancer. Cancer Epidemiol. Biomarkers Prev. 2019 28 10 1563 1579 10.1158/1055‑9965.EPI‑19‑0221 31575553
    [Google Scholar]
  2. Lam S. Bai C. Baldwin D.R. Chen Y. Connolly C. de Koning H. Heuvelmans M.A. Hu P. Kazerooni E.A. Lancaster H.L. Langs G. McWilliams A. Osarogiagbon R.U. Oudkerk M. Peters M. Robbins H.A. Sahar L. Smith R.A. Triphuridet N. Field J. Current and future perspectives on computed tomography screening for lung cancer: A roadmap from 2023 to 2027 from the international association for the study of lung cancer. J. Thorac. Oncol. 2024 19 1 36 51 10.1016/j.jtho.2023.07.019 37487906
    [Google Scholar]
  3. Possenti I. Romelli M. Carreras G. Biffi A. Bagnardi V. Specchia C. Gallus S. Lugo A. Association between second-hand smoke exposure and lung cancer risk in never-smokers: A systematic review and meta-analysis. Eur. Respir. Rev. 2024 33 174 240077 10.1183/16000617.0077‑2024 39537242
    [Google Scholar]
  4. Liu Y. Zhao Y. Song H. Li Y. Liu Z. Ye Z. Zhao J. Wu Y. Tang J. Yao M. Metabolic reprogramming in tumor immune microenvironment: Impact on immune cell function and therapeutic implications. Cancer Lett. 2024 597 217076 10.1016/j.canlet.2024.217076 38906524
    [Google Scholar]
  5. Platten M. Nollen E.A.A. Röhrig U.F. Fallarino F. Opitz C.A. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat. Rev. Drug Discov. 2019 18 5 379 401 10.1038/s41573‑019‑0016‑5 30760888
    [Google Scholar]
  6. Arreola R. Becerril-Villanueva E. Cruz-Fuentes C. Velasco-Velázquez M.A. Garcés-Alvarez M.E. Hurtado-Alvarado G. Quintero-Fabian S. Pavón L. Immunomodulatory effects mediated by serotonin. J. Immunol. Res. 2015 2015 1 21 10.1155/2015/354957 25961058
    [Google Scholar]
  7. Herr N. Bode C. Duerschmied D. The effects of serotonin in immune cells. Front. Cardiovasc. Med. 2017 4 48 10.3389/fcvm.2017.00048 28775986
    [Google Scholar]
  8. Balakrishna P. George S. Hatoum H. Mukherjee S. Serotonin pathway in cancer. Int. J. Mol. Sci. 2021 22 3 1268 10.3390/ijms22031268 33525332
    [Google Scholar]
  9. Özkaya Gül S. Aydemir E. The use of selective serotonin reuptake inhibitor (SSRI) antidepressants in the treatment of lung cancer. Int. J. Mol. Sci. 2025 26 10 4546 10.3390/ijms26104546 40429689
    [Google Scholar]
  10. Okaty B.W. Commons K.G. Dymecki S.M. Embracing diversity in the 5-HT neuronal system. Nat. Rev. Neurosci. 2019 20 7 397 424 10.1038/s41583‑019‑0151‑3 30948838
    [Google Scholar]
  11. Karmakar S. Lal G. Role of serotonin receptor signaling in cancer cells and anti-tumor immunity. Theranostics 2021 11 11 5296 5312 10.7150/thno.55986 33859748
    [Google Scholar]
  12. Shajib M.S. Khan W.I. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol. 2015 213 3 561 574 10.1111/apha.12430 25439045
    [Google Scholar]
  13. Wu H. Denna T.H. Storkersen J.N. Gerriets V.A. Beyond a neurotransmitter: The role of serotonin in inflammation and immunity. Pharmacol. Res. 2019 140 100 114 10.1016/j.phrs.2018.06.015 29953943
    [Google Scholar]
  14. Gui H. Nie Y. Yuan H. Wang M. Li L. Zhu L. Chen S. Jing Q. Wan Q. Lv H. Nie Y. Zhang X. Ansofaxine suppressed NSCLC progression by increasing sensitization to combination immunotherapy. Int. Immunopharmacol. 2025 146 113918 10.1016/j.intimp.2024.113918 39718058
    [Google Scholar]
  15. Munn D.H. Mellor A.L. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J. Clin. Invest. 2007 117 5 1147 1154 10.1172/JCI31178 17476344
    [Google Scholar]
  16. Xue X. Ye G. Zhang L. Zhu X. Liu Q. Rui G. Geng G. Lin Y. Chen X. PI3Kα inhibitor GNE-493 triggers antitumor immunity in murine lung cancer by inducing immunogenic cell death and activating T cells. Int. Immunopharmacol. 2024 130 111747 10.1016/j.intimp.2024.111747 38442576
    [Google Scholar]
  17. Tang Y. Pu X. Yuan X. Pang Z. Li F. Wang X. Targeting KRASG12D mutation in non-small cell lung cancer: Molecular mechanisms and therapeutic potential. Cancer Gene Ther. 2024 31 7 961 969 10.1038/s41417‑024‑00778‑4 38734764
    [Google Scholar]
  18. Kao K.C. Vilbois S. Tsai C.H. Ho P.C. Metabolic communication in the tumour–immune microenvironment. Nat. Cell Biol. 2022 24 11 1574 1583 10.1038/s41556‑022‑01002‑x 36229606
    [Google Scholar]
  19. Hu T. Liu C.H. Lei M. Zeng Q. Li L. Tang H. Zhang N. Metabolic regulation of the immune system in health and diseases: Mechanisms and interventions. Signal Transduct. Target. Ther. 2024 9 1 268 10.1038/s41392‑024‑01954‑6 39379377
    [Google Scholar]
  20. Xia L. Oyang L. Lin J. Tan S. Han Y. Wu N. Yi P. Tang L. Pan Q. Rao S. Liang J. Tang Y. Su M. Luo X. Yang Y. Shi Y. Wang H. Zhou Y. Liao Q. The cancer metabolic reprogramming and immune response. Mol. Cancer 2021 20 1 28 10.1186/s12943‑021‑01316‑8 33546704
    [Google Scholar]
  21. Altea-Manzano P. Decker-Farrell A. Janowitz T. Erez A. Metabolic interplays between the tumour and the host shape the tumour macroenvironment. Nat. Rev. Cancer 2025 25 4 274 292 10.1038/s41568‑024‑00786‑4 39833533
    [Google Scholar]
  22. Roager H.M. Licht T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018 9 1 3294 10.1038/s41467‑018‑05470‑4 30120222
    [Google Scholar]
  23. Agus A. Planchais J. Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 2018 23 6 716 724 10.1016/j.chom.2018.05.003 29902437
    [Google Scholar]
  24. Xue C. Li G. Zheng Q. Gu X. Shi Q. Su Y. Chu Q. Yuan X. Bao Z. Lu J. Li L. Tryptophan metabolism in health and disease. Cell Metab. 2023 35 8 1304 1326 10.1016/j.cmet.2023.06.004 37352864
    [Google Scholar]
  25. Zhang Y. Wang Y. The dual roles of serotonin in antitumor immunity. Pharmacol. Res. 2024 205 107255 10.1016/j.phrs.2024.107255 38862071
    [Google Scholar]
  26. Zhu M. Hu Y. Gu Y. Lin X. Jiang X. Gong C. Fang Z. Role of amino acid metabolism in tumor immune microenvironment of colorectal cancer. Am. J. Cancer Res. 2025 15 1 233 247 10.62347/ZSOO2247 39949925
    [Google Scholar]
  27. Franco F. Jaccard A. Romero P. Yu Y.R. Ho P.C. Metabolic and epigenetic regulation of T-cell exhaustion. Nat. Metab. 2020 2 10 1001 1012 10.1038/s42255‑020‑00280‑9 32958939
    [Google Scholar]
  28. Wang X. Fu S.Q. Yuan X. Yu F. Ji Q. Tang H.W. Li R.K. Huang S. Huang P.Q. Qin W.T. Zuo H. Du C. Yao L.L. Li H. Li J. Li D.X. Yang Y. Xiao S.Y. Tulamaiti A. Wang X.F. Dai C.H. Zhang X. Jiang S.H. Hu L.P. Zhang X.L. Zhang Z.G. A GAPDH serotonylation system couples CD8+ T cell glycolytic metabolism to antitumor immunity. Mol. Cell 2024 84 4 760 775.e7 10.1016/j.molcel.2023.12.015 38215751
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206408134250801050919
Loading
/content/journals/acamc/10.2174/0118715206408134250801050919
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: metabolomic ; Serotonin ; immune microenvironment ; lung cancer ; flux analyses ; immunofluorescence
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test