Skip to content
2000
image of Innovative Nanocarriers: Magnetosomes in the Fight against Cancer

Abstract

Recent advancements in medication formulations and drug delivery systems over the past two decades have improved patient adherence and pharmacological responses. Efficient, target-specific medication delivery remains challenging, with many current systems designed to minimize drug loss and degradation. Magnetosomes, as nanocarriers, show promise for delivering antibodies, vaccine DNA, and siRNA, enhancing the stability of chemotherapeutics, and enabling targeted delivery to malignant tumors. Targeted drug delivery is crucial in cancer treatment, as anticancer drugs often cannot differentiate between healthy and malignant cells, causing side effects and systemic toxicity. Magnetosome-based drug delivery offers a potential solution, minimizing adverse effects and promoting drug accumulation at the target site. This review covers the design, development, and advancements in magnetosome-based drug delivery for cancer therapy.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206377167250709062942
2025-07-17
2025-09-08
Loading full text...

Full text loading...

References

  1. Patra J.K. Das G. Fraceto L.F. Campos E.V.R. Rodriguez-Torres M.P. Acosta-Torres L.S. Diaz-Torres L.A. Grillo R. Swamy M.K. Sharma S. Habtemariam S. Shin H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018 16 1 71 10.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  2. Kaparissides C. Alexandridou S. Kotti K. Chaitidou S. Recent advances in novel drug delivery systems. J. Nanotechnol. Online 2006 2 1 11
    [Google Scholar]
  3. Edgar J.Y.C. Wang H. Introduction for design of nanoparticle based drug delivery systems. Curr. Pharm. Des. 2017 23 14 2108 2112 [PMID: 27784242
    [Google Scholar]
  4. Pérez-Herrero E. Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015 93 52 79 10.1016/j.ejpb.2015.03.018 25813885
    [Google Scholar]
  5. Iqbal J. Anwar F. Afridi S. Targeted drug delivery systems and their therapeutic applications in cancer and immune pathological conditions. Infect. Disord. Drug Targets 2017 17 3 149 159 10.2174/1871526517666170606102623 28595539
    [Google Scholar]
  6. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  7. Piñeros M. Mery L. Soerjomataram I. Bray F. Steliarova-Foucher E. Scaling up the surveillance of childhood cancer: A global roadmap. J. Natl. Cancer Inst. 2021 113 1 9 15 10.1093/jnci/djaa069 32433739
    [Google Scholar]
  8. Khan M.G. Topic–the novel drug delivery system. World J. Pharm. Pharm. Sci. 2017 6 477 487 10.20959/wjpps20177‑9607
    [Google Scholar]
  9. Kim S.J. Baker C.H. Kitadai Y. Nakamura T. Kuwai T. Sasaki T. Langley R. Fidler I.J. The pathogenesis of cancer metastasis: Relevance to therapy. Principles of Cancer Biotherapy. Dordrecht Springer 2009 17 40
    [Google Scholar]
  10. Bazylinski D.A. Frankel R.B. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2004 2 3 217 230 10.1038/nrmicro842 15083157
    [Google Scholar]
  11. Xie W. Guo Z. Gao F. Gao Q. Wang D. Liaw B. Cai Q. Sun X. Wang X. Zhao L. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics 2018 8 12 3284 3307 10.7150/thno.25220 29930730
    [Google Scholar]
  12. Jacob J.J. Suthindhiran K. Magnetotactic bacteria and magnetosomes – Scope and challenges. Mater. Sci. Eng. C 2016 68 919 928 10.1016/j.msec.2016.07.049 27524094
    [Google Scholar]
  13. Gareev K.G. Grouzdev D.S. Kharitonskii P.V. Kosterov A. Koziaeva V.V. Sergienko E.S. Shevtsov M.A. Magnetotactic bacteria and magnetosomes: Basic properties and applications. Magnetochemistry 2021 7 6 86 10.3390/magnetochemistry7060086
    [Google Scholar]
  14. Devouard B. Posfai M. Hua X. Bazylinski D.A. Frankel R.B. Buseck P.R. Magnetite from magnetotactic bacteria; size distributions and twinning. Am. Mineral. 1998 83 11-12 Pt 2 1387 1398 10.2138/am‑1998‑1101
    [Google Scholar]
  15. Bazylinski D.A. Garratt-Reed A.J. Frankel R.B. Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microsc. Res. Tech. 1994 27 5 389 401 10.1002/jemt.1070270505 8018991
    [Google Scholar]
  16. Aggarwal A. Chhajer P. Maheshwari S. Magnetic drug delivery in therapeutics. Int. J. Pharm. Sci. Res. 2012 3 12 4670
    [Google Scholar]
  17. Li J. Zhang H. Liu P. Menguy N. Roberts A.P. Chen H. Wang Y. Pan Y. Phylogenetic and structural identification of a novel magnetotactic Deltaproteobacteria strain, WYHR-1, from a freshwater lake. Appl. Environ. Microbiol. 2019 85 14 e00731 e19 10.1128/AEM.00731‑19 31053584
    [Google Scholar]
  18. Monteil C.L. Benzerara K. Menguy N. Bidaud C.C. Michot-Achdjian E. Bolzoni R. Mathon F.P. Coutaud M. Alonso B. Garau C. Jézéquel D. Viollier E. Ginet N. Floriani M. Swaraj S. Sachse M. Busigny V. Duprat E. Guyot F. Lefevre C.T. Intracellular amorphous Ca-carbonate and magnetite biomineralization by a magnetotactic bacterium affiliated to the Alphaproteobacteria. ISME J. 2021 15 1 1 18 10.1038/s41396‑020‑00747‑3 32839547
    [Google Scholar]
  19. Basit A. Wang J. Guo F. Niu W. Jiang W. Improved methods for mass production of magnetosomes and applications: A review. Microb. Cell Fact. 2020 19 1 197 10.1186/s12934‑020‑01455‑5 33081818
    [Google Scholar]
  20. Frankel R.B. The discovery of magnetotactic/magnetosensitive bacteria. Chin. J. Oceanology Limnol. 2009 27 1 1 2 10.1007/s00343‑009‑0001‑7
    [Google Scholar]
  21. Lefèvre C.T. Bazylinski D.A. Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol. Mol. Biol. Rev. 2013 77 3 497 526 10.1128/MMBR.00021‑13 24006473
    [Google Scholar]
  22. Lin W. Bazylinski D.A. Xiao T. Wu L.F. Pan Y. Life with compass: Diversity and biogeography of magnetotactic bacteria. Environ. Microbiol. 2014 16 9 2646 2658 10.1111/1462‑2920.12313 24148107
    [Google Scholar]
  23. Nedylakova M. Medinger J. Mirabello G. Lattuada M. Iron oxide magnetic aggregates: Aspects of synthesis, computational approaches and applications. Adv. Colloid Interface Sci. 2024 323 103056 10.1016/j.cis.2023.103056 38056225
    [Google Scholar]
  24. Faramarzi M.A. Sadighi A. Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv. Colloid Interface Sci. 2013 189-190 1 20 10.1016/j.cis.2012.12.001 23332127
    [Google Scholar]
  25. Goswami P. He K. Li J. Pan Y. Roberts A.P. Lin W. Magnetotactic bacteria and magnetofossils: Ecology, evolution and environmental implications. npj Biofilms Microbiomes, 2022 8 (43) 10.1038/s41522‑022‑00304‑0 35650214
    [Google Scholar]
  26. Murat D. Quinlan A. Vali H. Komeili A. Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc. Natl. Acad. Sci. USA 2010 107 12 5593 5598 10.1073/pnas.0914439107 20212111
    [Google Scholar]
  27. Nudelman H. Zarivach R. Structure prediction of magnetosome-associated proteins. Front. Microbiol. 2014 5 9 10.3389/fmicb.2014.00009 24523717
    [Google Scholar]
  28. Dieudonné A. Pignol D. Prévéral S. Magnetosomes: biogenic iron nanoparticles produced by environmental bacteria. Appl. Microbiol. Biotechnol. 2019 103 9 3637 3649 10.1007/s00253‑019‑09728‑9 30903215
    [Google Scholar]
  29. Kuzajewska D. Wszołek A. Żwierełło W. Kirczuk L. Maruszewska A. Magnetotactic bacteria and magnetosomes as smart drug delivery systems: A new weapon on the battlefield with cancer? Biology (Basel) 2020 9 5 102 10.3390/biology9050102 32438567
    [Google Scholar]
  30. Su Q. Andersen H.R. Bazylinski D.A. Jensen M.M. Effect of oxic and anoxic conditions on intracellular storage of polyhydroxyalkanoate and polyphosphate in Magnetospirillum magneticum strain AMB-1. Front. Microbiol. 2023 14 1203805 10.3389/fmicb.2023.1203805 37396362
    [Google Scholar]
  31. Ji R. Wan J. Liu J. Zheng J. Xiao T. Pan Y. Lin W. Linking morphology, genome, and metabolic activity of uncultured magnetotactic Nitrospirota at the single-cell level. Microbiome 2024 12 1 158 10.1186/s40168‑024‑01837‑6 39182147
    [Google Scholar]
  32. Wilson B.R. Bogdan A.R. Miyazawa M. Hashimoto K. Tsuji Y. Siderophores in iron metabolism: From mechanism to therapy potential. Trends Mol. Med. 2016 22 12 1077 1090 10.1016/j.molmed.2016.10.005 27825668
    [Google Scholar]
  33. Rosenblum D. Joshi N. Tao W. Karp J.M. Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018 9 1 1410 10.1038/s41467‑018‑03705‑y 29650952
    [Google Scholar]
  34. Revathy T. Jayasri M.A. Suthindhiran K. Toxicity assessment of magnetosomes in different models. 3 Biotech 2017 7 (2) 126 10.1007/s13205‑017‑0780‑z 28573396
    [Google Scholar]
  35. Qi L. Lv X. Zhang T. Jia P. Yan R. Li S. Zou R. Xue Y. Dai L. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells. Sci. Rep. 2016 6 1 26961 10.1038/srep26961 27246808
    [Google Scholar]
  36. Arai K. Murata S. Wang T. Yoshimura W. Oda-Tokuhisa M. Matsunaga T. Kisailus D. Arakaki A. Adsorption of biomineralization protein mms6 on magnetite (Fe3O4) nanoparticles. Int. J. Mol. Sci. 2022 23 10 5554 10.3390/ijms23105554 35628364
    [Google Scholar]
  37. Ben-Shimon S. Stein D. Zarivach R. Current view of iron biomineralization in magnetotactic bacteria. J. Struct. Biol. X 2021 5 100052 10.1016/j.yjsbx.2021.100052 34723168
    [Google Scholar]
  38. Cypriano J. Werckmann J. Vargas G. Lopes dos Santos A. Silva K.T. Leão P. Almeida F.P. Bazylinski D.A. Farina M. Lins U. Abreu F. Uptake and persistence of bacterial magnetite magnetosomes in a mammalian cell line: Implications for medical and biotechnological applications. PLoS One 2019 14 4 0215657 10.1371/journal.pone.0215657 31013301
    [Google Scholar]
  39. Sun J.B. Wang Z.L. Duan J.H. Ren J. Yang X.D. Dai S.L. Li Y. Targeted distribution of bacterial magnetosomes isolated from Magnetospirillum gryphiswaldense MSR-1 in healthy Sprague-Dawley rats. J. Nanosci. Nanotechnol. 2009 9 3 1881 1885 10.1166/jnn.2009.410 19435053
    [Google Scholar]
  40. Menghini S. Ho P.S. Gwisai T. Schuerle S. Magnetospirillum magneticum as a living iron chelator induces tfr1 upregulation and decreases cell viability in cancer cells. Int. J. Mol. Sci. 2021 22 2 498 10.3390/ijms22020498 33419059
    [Google Scholar]
  41. Puri R. Arora V. Kabra A. Dureja H. Hamaal S. Magnetosomes: A tool for targeted drug delivery in the management of cancer. J. Nanomater. 2022 2022 1 6414585 10.1155/2022/6414585
    [Google Scholar]
  42. Hatami-Giklou Jajan L. Hosseini S.N. Ghorbani M. Mousavi S.F. Ghareyazie B. Abolhassani M. Effects of environmental conditions on high-yield magnetosome production by magnetospirillum gryphiswaldense MSR-1. Iran. Biomed. J. 2019 23 3 209 219 10.29252/ibj.23.3.209 30797225
    [Google Scholar]
  43. Alphandéry E. Idbaih A. Adam C. Delattre J.Y. Schmitt C. Guyot F. Chebbi I. Development of non-pyrogenic magnetosome minerals coated with poly-l-lysine leading to full disappearance of intracranial U87-Luc glioblastoma in 100% of treated mice using magnetic hyperthermia. Biomaterials 2017 141 210 222 10.1016/j.biomaterials.2017.06.026 28689117
    [Google Scholar]
  44. Gupta K.H. Nowicki C. Giurini E.F. Marzo A.L. Zloza A. Bacterial-based cancer therapy (BBCT): Recent advances, current challenges, and future prospects for cancer immunotherapy. Vaccines (Basel) 2021 9 12 1497 10.3390/vaccines9121497 34960243
    [Google Scholar]
  45. Bukowski K. Kciuk M. Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci. 2020 21 9 3233 10.3390/ijms21093233 32370233
    [Google Scholar]
  46. Lai Y. Chu X. Di L. Gao W. Guo Y. Liu X. Lu C. Mao J. Shen H. Tang H. Xia C.Q. Zhang L. Ding X. Recent advances in the translation of drug metabolism and pharmacokinetics science for drug discovery and development. Acta Pharm. Sin. B 2022 12 6 2751 2777 10.1016/j.apsb.2022.03.009 35755285
    [Google Scholar]
  47. Kotakadi S.M. Borelli D.P.R. Nannepaga J.S. Therapeutic applications of magnetotactic bacteria and magnetosomes: A review emphasizing on the cancer treatment. Front. Bioeng. Biotechnol. 2022 10 789016 10.3389/fbioe.2022.789016 35547173
    [Google Scholar]
  48. Xu W. Yang T. Liu S. Du L. Chen Q. Li X. Dong J. Zhang Z. Lu S. Gong Y. Zhou L. Liu Y. Tan X. Insights into the Synthesis, types and application of iron Nanoparticles: The overlooked significance of environmental effects. Environ. Int. 2022 158 106980 10.1016/j.envint.2021.106980
    [Google Scholar]
  49. Pande V. Pandey S.C. Sati D. Bhatt P. Samant M. Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. Front. Microbiol. 2022 13 824084 10.3389/fmicb.2022.824084 35602036
    [Google Scholar]
  50. Lefèvre C.T. Viloria N. Schmidt M.L. Pósfai M. Frankel R.B. Bazylinski D.A. Novel magnetite-producing magnetotactic bacteria belonging to the Gammaproteobacteria. ISME J. 2012 6 2 440 450 10.1038/ismej.2011.97 21776027
    [Google Scholar]
  51. Wang Y.X. Xuan S. Port M. Idee J.M. Recent advances in superparamagnetic iron oxide nanoparticles for cellular imaging and targeted therapy research. Curr. Pharm. Des. 2013 19 37 6575 6593 10.2174/1381612811319370003 23621536
    [Google Scholar]
  52. Kudr J. Haddad Y. Richtera L. Heger Z. Cernak M. Adam V. Zitka O. Magnetic nanoparticles: From design and synthesis to real world applications. Nanomaterials (Basel) 2017 7 9 243 10.3390/nano7090243 28850089
    [Google Scholar]
  53. Herrmann I.K. Schlegel A.A. Graf R. Stark W.J. Beck-Schimmer B. Magnetic separation-based blood purification: A promising new approach for the removal of disease-causing compounds? J. Nanobiotechnology 2015 13 1 49 10.1186/s12951‑015‑0110‑8 26253109
    [Google Scholar]
  54. Faivre D. Böttger L.H. Matzanke B.F. Schüler D. Intracellular magnetite biomineralization in bacteria proceeds by a distinct pathway involving membrane-bound ferritin and an iron(II) species. Angew. Chem. Int. Ed. 2007 46 44 8495 8499 10.1002/anie.200700927 17902080
    [Google Scholar]
  55. Chen Y. Hou S. Recent progress in the effect of magnetic iron oxide nanoparticles on cells and extracellular vesicles. Cell Death Discov. 2023 9 1 195 10.1038/s41420‑023‑01490‑2 37380637
    [Google Scholar]
  56. Driscoll J. Yan I.K. Angom R.S. Moirangthem A. Patel T. Evaluation of in vivo toxicity of biological nanoparticles. Curr. Protoc. 2021 1 9 249 10.1002/cpz1.249 34542934
    [Google Scholar]
  57. Them K. On magnetic dipole–dipole interactions of nanoparticles in magnetic particle imaging. Phys. Med. Biol. 2017 62 14 5623 5639 10.1088/1361‑6560/aa70ca 28467324
    [Google Scholar]
  58. Jeong U. Teng X. Wang Y. Yang H. Xia Y. Superparamagnetic colloids: Controlled synthesis and niche applications. Adv. Mater. 2007 19 1 33 60 10.1002/adma.200600674
    [Google Scholar]
  59. Agostinelli E. Vianello F. Magliulo G. Thomas T. Thomas T.J. Nanoparticle strategies for cancer therapeutics: Nucleic acids, polyamines, bovine serum amine oxidase and iron oxide nanoparticles. Int. J. Oncol. 2015 46 1 5 16 10.3892/ijo.2014.2706 25333509
    [Google Scholar]
  60. Ge J. Neofytou E. Cahill T.J. Beygui R.E. Zare R.N. Drug release from electric-field-responsive nanoparticles. ACS Nano 2012 6 1 227 233 10.1021/nn203430m 22111891
    [Google Scholar]
  61. Usselman R.J. Hill I. Singel D.J. Martino C.F. Spin biochemistry modulates reactive oxygen species (ROS) production by radio frequency magnetic fields. PLoS One 2014 9 3 93065 10.1371/journal.pone.0093065 24681944
    [Google Scholar]
  62. Jacob J.J. Suthindhiran K. Immobilisation of lipase enzyme onto bacterial magnetosomes for stain removal. Biotechnol. Rep. 2020 25 00422 10.1016/j.btre.2020.e00422 31993344
    [Google Scholar]
  63. Ginet N. Pardoux R. Adryanczyk G. Garcia D. Brutesco C. Pignol D. Single-step production of a recyclable nanobiocatalyst for organophosphate pesticides biodegradation using functionalized bacterial magnetosomes. PLoS One 2011 6 6 21442 10.1371/journal.pone.0021442 21738665
    [Google Scholar]
  64. Schleifer K.H. Schüler D. Spring S. Weizenegger M. Amann R. Ludwig W. Köhler M. The genus magnetospirillum gen. nov. description of magnetospirillum gryphiswaldense sp. nov. and transfer of aquaspirillum magnetotacticum to magnetospirillum magnetotacticum comb. nov. Syst. Appl. Microbiol. 1991 14 4 379 385 10.1016/S0723‑2020(11)80313‑9
    [Google Scholar]
  65. Dym O. Aggarwal N. Ashani Y. Leader H. Albeck S. Unger T. Hamer-Rogotner S. Silman I. Tawfik D.S. Sussman J.L. The impact of molecular variants, crystallization conditions and the space group on ligand–protein complexes: A case study on bacterial phosphotriesterase. Acta Crystallogr. D Struct. Biol. 2023 79 11 992 1009 10.1107/S2059798323007672 37860961
    [Google Scholar]
  66. Matsunaga T. Okamura Y. Fukuda Y. Wahyudi A.T. Murase Y. Takeyama H. Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. DNA Res. 2005 12 3 157 166 10.1093/dnares/dsi002 16303747
    [Google Scholar]
  67. Mollaei M. Hassan Z.M. Khorshidi F. Langroudi L. Chemotherapeutic drugs: Cell death- and resistance-related signaling pathways. Are they really as smart as the tumor cells? Transl. Oncol. 2021 14 5 101056 10.1016/j.tranon.2021.101056 33684837
    [Google Scholar]
  68. Sharma A. Shambhwani D. Pandey S. Singh J. Lalhlenmawia H. Kumarasamy M. Singh S.K. Chellappan D.K. Gupta G. Prasher P. Dua K. Kumar D. Advances in lung cancer treatment using nanomedicines. ACS Omega 2023 8 1 10 41 10.1021/acsomega.2c04078 36643475
    [Google Scholar]
  69. Rarokar N. Yadav S. Saoji S. Bramhe P. Agade R. Gurav S. Khedekar P. Subramaniyan V. Wong L.S. Kumarasamy V. Magnetic nanosystem a tool for targeted delivery and diagnostic application: Current challenges and recent advancement. Int. J. Pharm. X 2024 7 100231 10.1016/j.ijpx.2024.100231 38322276
    [Google Scholar]
  70. Liu J.F. Jang B. Issadore D. Tsourkas A. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019 11 6 1571 10.1002/wnan.1571 31241251
    [Google Scholar]
  71. Yan S. Comment on “Tunable thermal quenching properties of Na3Sc2(PO4)3:Eu2+ phosphors tailored by phase transformation details” by Z. Liu et al., Dalton Trans., 2020, 49, 3615. Dalton Trans. 2020 49 33 11772 11774 10.1039/D0DT01308K 32776033
    [Google Scholar]
  72. Ren G. Zhou X. Long R. Xie M. Kankala R.K. Wang S. Zhang Y.S. Liu Y. Biomedical applications of magnetosomes: State of the art and perspectives. Bioact. Mater. 2023 28 27 49 10.1016/j.bioactmat.2023.04.025 37223277
    [Google Scholar]
  73. Faivre D. Schüler D. Magnetotactic bacteria and magnetosomes. Chem. Rev. 2008 108 11 4875 4898 10.1021/cr078258w 18855486
    [Google Scholar]
  74. Trubitsyn D. Abreu F. Ward F.B. Taylor T. Hattori M. Kondo S. Trivedi U. Staniland S. Lins U. Bazylinski D.A. Draft genome sequence of Magnetovibrio blakemorei strain MV-1, a marine vibrioid magnetotactic bacterium. Genome Announc. 2016 4 6 e01330 e16 10.1128/genomeA.01330‑16 27881550
    [Google Scholar]
  75. Wang X. Wang Q. Zhang W. Wang Y. Li L. Wen T. Zhang T. Zhang Y. Xu J. Hu J. Li S. Liu L. Liu J. Jiang W. Tian J. Li Y. Schüler D. Wang L. Li J. Complete genome sequence of Magnetospirillum gryphiswaldense MSR-1. Genome Announc. 2014 2 2 e00171 e14 10.1128/genomeA.00171‑14 24625872
    [Google Scholar]
  76. Lefèvre C.T. Bernadac A. Yu-Zhang K. Pradel N. Wu L.F. Isolation and characterization of a magnetotactic bacterial culture from the Mediterranean Sea. Environ. Microbiol. 2009 11 7 1646 1657 10.1111/j.1462‑2920.2009.01887.x 19220399
    [Google Scholar]
  77. Nakazawa H. Arakaki A. Narita-Yamada S. Yashiro I. Jinno K. Aoki N. Tsuruyama A. Okamura Y. Tanikawa S. Fujita N. Takeyama H. Matsunaga T. Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria. Genome Res. 2009 19 10 1801 1808 10.1101/gr.088906.108 19675025
    [Google Scholar]
  78. Verges P.M.F. Cosmetic compositions comprising magnetosomes and uses thereof. European Patent 2666456A1 2013
    [Google Scholar]
  79. Alphandery E. Faure S. Chebbi I. Treatment of cancer or tumors induced by the release of heat generated by various chains of magnetosomes extracted from magnetotactic bacteria and submitted to an alternating magnetic field. U. S. Patent 10238886B2 2019
    [Google Scholar]
  80. Alphandery E. Non-pyrogenic preparation comprising nanoparticles synthesized by magnetotactic bacteria for medical or cosmetic applications. U. S. Patent 10391122B2 2019
    [Google Scholar]
  81. Prato F.S. Goldhawk D.E. McCreary C.R. McGirr R. Dhanvantari S. Thompson T.R. Thomas A.W. Hill D. Dhanvantari, S.; Thompson, T.R.; Thomas, A.W.; Hill, D. Magnetosome gene expression in eukaryotic cells. U.S. Patent 20100297022A1 2017
    [Google Scholar]
  82. Brigger I. Dubernet C. Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 2002 54 5 631 651 10.1016/S0169‑409X(02)00044‑3 12204596
    [Google Scholar]
  83. Dahiya M. Dureja H. Central composite designed imatinib-loaded magnetic nanoparticles. Curr. Nanomed. 2016 6 2 146 155 10.2174/2468187306666160802125718
    [Google Scholar]
  84. Dutz S. Hergt R. Mürbe J. Müller R. Zeisberger M. Andrä W. Töpfer J. Bellemann M.E. Hysteresis losses of magnetic nanoparticle powders in the single domain size range. J. Magn. Magn. Mater. 2007 308 2 305 312 10.1016/j.jmmm.2006.06.005
    [Google Scholar]
  85. Alphandéry E. Applications of magnetosomes synthesized by magnetotactic bacteria in medicine. Front. Bioeng. Biotechnol. 2014 2 5 10.3389/fbioe.2014.00005 25152880
    [Google Scholar]
  86. Radloff K. Gutbier B. Dunne C.M. Moradian H. Schwestka M. Gossen M. Ahrens K. Kneller L. Wang Y. Moga A. Gkionis L. Keil O. Fehring V. Tondera D. Giese K. Santel A. Kaufmann J. Witzenrath M. Cationic LNP-formulated mRNA expressing Tie2-agonist in the lung endothelium prevents pulmonary vascular leakage. Mol. Ther. Nucleic Acids 2023 34 102068 10.1016/j.omtn.2023.102068 38034031
    [Google Scholar]
  87. Sun J. Li Y. Liang X.J. Wang P.C. Bacterial magnetosome: A novel biogenetic magnetic targeted drug carrier with potential multifunctions. J. Nanomater 2011 2011 (2011) 1 13 10.1155/2011/469031 22448162
    [Google Scholar]
  88. Wang X. Wang J. Geng Y. Wang J. Zhang X. Yang S. Jiang W. Liu W. An enhanced anti-tumor effect of apoptin-cecropin B on human hepatoma cells by using bacterial magnetic particle gene delivery system. Biochem. Biophys. Res. Commun. 2018 496 2 719 725 10.1016/j.bbrc.2018.01.108 29355529
    [Google Scholar]
  89. Panagiotopoulos N. Vogt F. Barkhausen J. Buzug T.M. Duschka R.L. Lüdtke-Buzug K. Ahlborg M. Bringout G. Debbeler C. Gräser M. Kaethner C. Stelzner J. Medimagh H. Haegele J. Magnetic particle imaging: Current developments and future directions. Int. J. Nanomedicine 2015 10 3097 3114 10.2147/IJN.S70488 25960650
    [Google Scholar]
  90. Xu J. Ma S. Zhang W. Jia L. Zheng H. Bo P. Bai X. Sun H. Qi L. Zhang T. Chen C. Li F. Arai F. Tian J. Feng L. In vitro magnetosome remineralization for silver-magnetite hybrid magnetosome biosynthesis and used for healing of the infected wound. J. Nanobiotechnology 2022 20 1 364 10.1186/s12951‑022‑01532‑4 35933359
    [Google Scholar]
  91. An H.W. Hou D. Zheng R. Wang M.D. Zeng X.Z. Xiao W.Y. Yan T.D. Wang J.Q. Zhao C.H. Cheng L.M. Zhang J.M. Wang L. Wang Z.Q. Wang H. Xu W. A near-infrared peptide probe with tumor-specific excretion-retarded effect for image-guided surgery of renal cell carcinoma. ACS Nano 2020 14 1 927 936 10.1021/acsnano.9b08209 31927974
    [Google Scholar]
  92. Li H. Yao Q. Sun W. Shao K. Lu Y. Chung J. Kim D. Fan J. Long S. Du J. Li Y. Wang J. Yoon J. Peng X. Aminopeptidase N activatable fluorescent probe for tracking metastatic cancer and image-guided surgery via in situ spraying. J. Am. Chem. Soc. 2020 142 13 6381 6389 10.1021/jacs.0c01365 32167306
    [Google Scholar]
  93. Fdez-Gubieda M.L. Alonso J. García-Prieto A. García-Arribas A. Fernández Barquín L. Muela A. Magnetotactic bacteria for cancer therapy. J. Appl. Phys. 2020 128 7 070902 10.1063/5.0018036
    [Google Scholar]
  94. Alphandéry E. Faure S. Seksek O. Guyot F. Chebbi I. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano 2011 5 8 6279 6296 10.1021/nn201290k 21732678
    [Google Scholar]
  95. Tanasa E. Zaharia C. Hudita A. Radu I.C. Costache M. Galateanu B. Impact of the magnetic field on 3T3-E1 preosteoblasts inside SMART silk fibroin-based scaffolds decorated with magnetic nanoparticles. Mater. Sci. Eng. C 2020 110 110714 10.1016/j.msec.2020.110714 32204026
    [Google Scholar]
  96. Boucher M. Geffroy F. Prévéral S. Bellanger L. Selingue E. Adryanczyk-Perrier G. Péan M. Lefèvre C.T. Pignol D. Ginet N. Mériaux S. Genetically tailored magnetosomes used as MRI probe for molecular imaging of brain tumor. Biomaterials 2017 121 167 178 10.1016/j.biomaterials.2016.12.013 28088078
    [Google Scholar]
  97. Honda T. Tanaka T. Yoshino T. Stoichiometrically controlled immobilization of multiple enzymes on magnetic nanoparticles by the magnetosome display system for efficient cellulose hydrolysis. Biomacromolecules 2015 16 12 3863 3868 10.1021/acs.biomac.5b01174 26571204
    [Google Scholar]
  98. Naresh M. Hasija V. Sharma M. Mittal A. Synthesis of cellular organelles containing nano-magnets stunts growth of magnetotactic bacteria. J. Nanosci. Nanotechnol. 2010 10 7 4135 4144 10.1166/jnn.2010.2622 21128392
    [Google Scholar]
  99. Hou H. Mitbander R. Tang Y. Azimuddin A. Carns J. Schwarz R.A. Richards-Kortum R.R. Optical imaging technologies for in vivo cancer detection in low-resource settings. Curr. Opin. Biomed. Eng. 2023 28 100495 10.1016/j.cobme.2023.100495 38406798
    [Google Scholar]
  100. Sun T. Zhao H. Hu L. Shao X. Lu Z. Wang Y. Ling P. Li Y. Zeng K. Chen Q. Enhanced optical imaging and fluorescent labeling for visualizing drug molecules within living organisms. Acta Pharm. Sin. B 2024 14 6 2428 2446 10.1016/j.apsb.2024.01.018 38828150
    [Google Scholar]
  101. Chopra H. Shin D.K. Munjal K. Dhama K. Emran T.B. Revolutionizing clinical trials: The role of AI in accelerating medical breakthroughs. Int. J. Surg. 2023 109 12 4211 4220 10.1097/JS9.0000000000000705 38259001
    [Google Scholar]
  102. Taher Z. Legge C. Winder N. Lysyganicz P. Rawlings A. Bryant H. Muthana M. Staniland S. Magnetosomes and magnetosome mimics: Preparation, cancer cell uptake and functionalization for future cancer therapies. Pharmaceutics 2021 13 3 367 10.3390/pharmaceutics13030367 33802121
    [Google Scholar]
  103. Yadav V.K. Pramanik S. Alghamdi S. Atwah B. Qusty N. Babalghith A. Solanki V.S. Agarwal N. Gupta N. Niazi P. Patel A. Choudhary N. Zairov R. Therapeutic innovations in nanomedicine: Exploring the potential of magnetotactic bacteria and bacterial magnetosomes. Int. J. Nanomedicine 2025 20 403 444 10.2147/IJN.S462031 39816378
    [Google Scholar]
  104. Baki A. Wiekhorst F. Bleul R. Advances in magnetic nanoparticles engineering for biomedical applications—A review. Bioengineering (Basel) 2021 8 10 134 10.3390/bioengineering8100134 34677207
    [Google Scholar]
  105. Stiufiuc G.F. Stiufiuc R.I. Magnetic nanoparticles: Synthesis, characterization, and their use in biomedical field. Appl. Sci. (Basel) 2024 14 4 1623 10.3390/app14041623
    [Google Scholar]
  106. Liberati A. Altman D.G. Tetzlaff J. Mulrow C. Gøtzsche P.C. Ioannidis J.P. Clarke M. Devereaux P.J. Kleijnen J. Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009 ••• 339 10.1136/bmj.b2700 19622552
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206377167250709062942
Loading
/content/journals/acamc/10.2174/0118715206377167250709062942
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test