Skip to content
2000
image of CD98 Light Chain LAT1 Tracers in PET-CT Diagnosis of Cancer Patients

Abstract

Amino acid-based PET tracers have become vital tools for non-invasive tumor imaging, offering greater specificity and sensitivity than conventional 18F-FDG. These tracers target amino acid transporters, particularly L-type Amino Acid Transporter 1 (LAT1), which is overexpressed in rapidly proliferating tumor cells. Various

18F-labeled amino acid tracers have been explored for imaging different malignancies, including gliomas, neuroendocrine tumors, and lung cancers. This review summarizes the performance of LAT1-specific radiotracers, comparing their uptake ratios, sensitivity, and specificity in cancer diagnosis. These tracers have led to significant advancements in tumor imaging, providing better diagnostic accuracy, enhanced tumor delineation, and reduced interference from inflammatory tissue. Although promising, the clinical utility of these tracers requires further research and clinical trials to refine their applications and optimize their role in routine clinical practice. Continued development will be crucial in making these tracers more effective and widely applicable for cancer diagnosis and treatment planning.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206381956250622145301
2025-07-02
2025-09-24
Loading full text...

Full text loading...

References

  1. Vander Heiden M.G. Cantley L.C. Thompson C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009 324 5930 1029 1033 10.1126/science.1160809 19460998
    [Google Scholar]
  2. Kelloff G.J. Hoffman J.M. Johnson B. Scher H.I. Siegel B.A. Cheng E.Y. Cheson B.D. O’Shaughnessy J. Guyton K.Z. Mankoff D.A. Shankar L. Larson S.M. Sigman C.C. Schilsky R.L. Sullivan D.C. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin. Cancer Res. 2005 11 8 2785 2808 10.1158/1078‑0432.CCR‑04‑2626 15837727
    [Google Scholar]
  3. Kosaka N. Tsuchida T. Uematsu H. Kimura H. Okazawa H. Itoh H. 18F-FDG PET of common enhancing malignant brain tumors. AJR Am. J. Roentgenol. 2008 190 6 W365 W369 10.2214/AJR.07.2660 18492879
    [Google Scholar]
  4. Langleben D.D. Segall G.M. PET in differentiation of recurrent brain tumor from radiation injury. J. Nucl. Med. 2000 41 11 1861 1867 11079496
    [Google Scholar]
  5. Chen W. Clinical applications of PET in brain tumors. J. Nucl. Med. 2007 48 9 1468 1481 10.2967/jnumed.106.037689 17704239
    [Google Scholar]
  6. Huang C. McConathy J. Radiolabeled amino acids for oncologic imaging. J. Nucl. Med. 2013 54 7 1007 1010 10.2967/jnumed.112.113100 23708197
    [Google Scholar]
  7. Kong F.L. Yang D.J. Amino Acid transporter-targeted radiotracers for molecular imaging in oncology. Curr. Med. Chem. 2012 19 20 3271 3281 10.2174/092986712801215946 22664245
    [Google Scholar]
  8. Kanai Y. Amino acid transporter LAT1 (SLC7A5) as a molecular target for cancer diagnosis and therapeutics. Pharmacol. Ther. 2022 230 107964 10.1016/j.pharmthera.2021.107964 34390745
    [Google Scholar]
  9. Xia P. Dubrovska A. CD98 heavy chain as a prognostic biomarker and target for cancer treatment. Front. Oncol. 2023 13 1251100 10.3389/fonc.2023.1251100 37823053
    [Google Scholar]
  10. Yanagida O. Kanai Y. Chairoungdua A. Kim D.K. Segawa H. Nii T. Cha S.H. Matsuo H. Fukushima J. Fukasawa Y. Tani Y. Taketani Y. Uchino H. Kim J.Y. Inatomi J. Okayasu I. Miyamoto K. Takeda E. Goya T. Endou H. Human L-type amino acid transporter 1 (LAT1): Characterization of function and expression in tumor cell lines. Biochim. Biophys. Acta Biomembr. 2001 1514 2 291 302 10.1016/S0005‑2736(01)00384‑4 11557028
    [Google Scholar]
  11. Papin-Michault C. Bonnetaud C. Dufour M. Almairac F. Coutts M. Patouraux S. Virolle T. Darcourt J. Burel-Vandenbos F. Study of LAT1 expression in brain metastases: Towards a better understanding of the results of positron emission tomography using amino acid tracers. PLoS One 2016 11 6 e0157139 10.1371/journal.pone.0157139 27276226
    [Google Scholar]
  12. Lappin G. A historical perspective on radioisotopic tracers in metabolism and biochemistry. Bioanalysis 2015 7 5 531 540 10.4155/bio.14.286 25826135
    [Google Scholar]
  13. Berends A.M.A. Kerstens M.N. Bolt J.W. Links T.P. Korpershoek E. de Krijger R.R. Walenkamp A.M.E. Noordzij W. van Etten B. Kats-Ugurlu G. Brouwers A.H. van der Horst-Schrivers A.N.A. False-positive findings on 6-[18F]fluor-l-3,4-dihydroxyphenylalanine PET (18F-FDOPA-PET) performed for imaging of neuroendocrine tumors. Eur. J. Endocrinol. 2018 179 2 125 133 10.1530/EJE‑18‑0321 29875288
    [Google Scholar]
  14. Thie J.A. Understanding the standardized uptake value, its methods, and implications for usage. J. Nucl. Med. 2004 45 9 1431 1434 15347707
    [Google Scholar]
  15. Jager P.L. Vaalburg W. Pruim J. de Vries E.G. Langen K.J. Piers D.A. Radiolabeled amino acids: Basic aspects and clinical applications in oncology. J. Nucl. Med. 2001 42 3 432 445 11337520
    [Google Scholar]
  16. Hoffman R.M. l-[Methyl-11C] methionine-positron-emission tomography (MET-PET). Methods Mol. Biol. 2019 1866 267 271 10.1007/978‑1‑4939‑8796‑2_20 30725422
    [Google Scholar]
  17. Pirotte B. Goldman S. Massager N. David P. Wikler D. Vandesteene A. Salmon I. Brotchi J. Levivier M. Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J. Nucl. Med. 2004 45 8 1293 1298 15299051
    [Google Scholar]
  18. Glaudemans A.W.J.M. Enting R.H. Heesters M.A.A.M. Dierckx R.A.J.O. van Rheenen R.W.J. Walenkamp A.M.E. Slart R.H.J.A. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur. J. Nucl. Med. Mol. Imaging 2013 40 4 615 635 10.1007/s00259‑012‑2295‑5 23232505
    [Google Scholar]
  19. Stöber B. Tanase U. Herz M. Seidl C. Schwaiger M. Senekowitsch-Schmidtke R. Differentiation of tumour and inflammation: Characterisation of [methyl-3H]methionine (MET) and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) uptake in human tumour and inflammatory cells. Eur. J. Nucl. Med. Mol. Imaging 2006 33 8 932 939 10.1007/s00259‑005‑0047‑5 16604346
    [Google Scholar]
  20. Minchin P.E.H. Thorpe M.R. Using the short-lived isotope 11C in mechanistic studies of photosynthate transport. Funct. Plant Biol. 2003 30 8 831 841 10.1071/FP03008 32689068
    [Google Scholar]
  21. Stegmayr C. Stoffels G. Filß C. Heinzel A. Lohmann P. Willuweit A. Ermert J. Coenen H.H. Mottaghy F.M. Galldiks N. Langen K.J. Current trends in the use of O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) in neurooncology. Nucl. Med. Biol. 2021 92 78 84 10.1016/j.nucmedbio.2020.02.006 32113820
    [Google Scholar]
  22. Malkowski B. Harat M. Zyromska A. Wisniewski T. Harat A. Lopatto R. Furtak J. The sum of tumour-to-brain ratios improves the accuracy of diagnosing gliomas using 18F-FET PET. PLoS One 2015 10 10 e0140917 10.1371/journal.pone.0140917 26468649
    [Google Scholar]
  23. Pöpperl G. Kreth F.W. Herms J. Koch W. Mehrkens J.H. Gildehaus F.J. Kretzschmar H.A. Tonn J.C. Tatsch K. Analysis of 18F-FET PET for grading of recurrent gliomas: Is evaluation of uptake kinetics superior to standard methods? J. Nucl. Med. 2006 47 3 393 403 16513607
    [Google Scholar]
  24. Rapp M. Heinzel A. Galldiks N. Stoffels G. Felsberg J. Ewelt C. Sabel M. Steiger H.J. Reifenberger G. Beez T. Coenen H.H. Floeth F.W. Langen K.J. Diagnostic performance of 18F-FET PET in newly diagnosed cerebral lesions suggestive of glioma. J. Nucl. Med. 2013 54 2 229 235 10.2967/jnumed.112.109603 23232275
    [Google Scholar]
  25. Filss C.P. Galldiks N. Stoffels G. Sabel M. Wittsack H.J. Turowski B. Antoch G. Zhang K. Fink G.R. Coenen H.H. Shah N.J. Herzog H. Langen K.J. Comparison of 18F-FET PET and perfusion-weighted MR imaging: A PET/MR imaging hybrid study in patients with brain tumors. J. Nucl. Med. 2014 55 4 540 545 10.2967/jnumed.113.129007 24578243
    [Google Scholar]
  26. Badakhshi H. Graf R. Prasad V. Budach V. The impact of 18 F-FET PET-CT on target definition in image-guided stereotactic radiotherapy in patients with skull base lesions. Cancer Imaging 2014 14 1 25 10.1186/1470‑7330‑14‑25 25608761
    [Google Scholar]
  27. Tang C. Ruan R. Xiong Z. Comparison between [18F]FET PET/MRI and [18F]FET PET/CT in the diagnosis of glioma recurrence: A systematic review and meta-analysis. Clin. Transl. Imaging 2023 11 5 479 491 10.1007/s40336‑023‑00585‑1
    [Google Scholar]
  28. Heiss P. Mayer S. Herz M. Wester H.J. Schwaiger M. Senekowitsch-Schmidtke R. Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo. J. Nucl. Med. 1999 40 8 1367 1373 10450690
    [Google Scholar]
  29. Mossine A.V. Tanzey S.S. Brooks A.F. Makaravage K.J. Ichiishi N. Miller J.M. Henderson B.D. Erhard T. Bruetting C. Skaddan M.B. Sanford M.S. Scott P.J.H. Synthesis of high-molar-activity [18F]6-fluoro-l-DOPA suitable for human use via Cu-mediated fluorination of a BPin precursor. Nat. Protoc. 2020 15 5 1742 1759 10.1038/s41596‑020‑0305‑9 32269382
    [Google Scholar]
  30. Deep P. Gjedde A. Cumming P. On the accuracy of an [18F]FDOPA compartmental model: Evidence for vesicular storage of [18F]fluorodopamine in vivo. J. Neurosci. Methods 1997 76 2 157 165 10.1016/S0165‑0270(97)00094‑0 9350967
    [Google Scholar]
  31. Di Stasio G.D. Cuccurullo V. Cascini G.L. Grana C.M. Tailored molecular imaging of pheochromocytoma and paraganglioma: Which tracer and when. Neuroendocrinology 2022 112 10 927 940 10.1159/000522089 35051937
    [Google Scholar]
  32. Imani F. Agopian V.G. Auerbach M.S. Walter M.A. Imani F. Benz M.R. Dumont R.A. Lai C.K. Czernin J.G. Yeh M.W. 18F-FDOPA PET and PET/CT accurately localize pheochromocytomas. J. Nucl. Med. 2009 50 4 513 519 10.2967/jnumed.108.058396 19289420
    [Google Scholar]
  33. Noordzij W. Glaudemans A.W.J.M. Schaafsma M. van der Horst-Schrivers A.N.A. Slart R.H.J.A. van Beek A.P. Kerstens M.N. Adrenal tracer uptake by 18F-FDOPA PET/CT in patients with pheochromocytoma and controls. Eur. J. Nucl. Med. Mol. Imaging 2019 46 7 1560 1566 10.1007/s00259‑019‑04332‑5 31011769
    [Google Scholar]
  34. King K.S. Chen C.C. Alexopoulos D.K. Functional imaging of SDHx-related head and neck paragangliomas: Comparison of 18F-fluorodihydroxyphenylalanine, 18F-fluorodeoxyglucose, and 68Ga-labeled somatostatin analogs. Head Neck 2016 38 6 929 936
    [Google Scholar]
  35. Hara T. Nagayama K. Yamada Y. 18F-fluoro-L-dopa (18F-FDOPA) PET for the evaluation of patients with gliomas: Correlation with histopathological findings. Neuroimage Clin. 2015 7 17 24
    [Google Scholar]
  36. Chiaravalloti A. Floris R. Schillaci O. 18 F FDOPA uptake in brain metastasis of breast cancer. Rev. Esp. Med. Nucl. Imagen Mol. 2016 35 1 46 47 10.1016/j.remnie.2015.12.005 26117270
    [Google Scholar]
  37. Soussan M. Nataf V. Kerrou K. Grahek D. Pascal O. Talbot J.N. Montravers F. Added value of early 18F-FDOPA PET/CT acquisition time in medullary thyroid cancer. Nucl. Med. Commun. 2012 33 7 775 779 10.1097/MNM.0b013e3283543304 22546877
    [Google Scholar]
  38. Jacob T. Grahek D. Younsi N. Kerrou K. Aide N. Montravers F. Balogova S. Colombet C. de Beco V. Talbot J.N. Positron emission tomography with [18F]FDOPA and [18F]FDG in the imaging of small cell lung carcinoma: Preliminary results. Eur. J. Nucl. Med. Mol. Imaging 2003 30 9 1266 1269 10.1007/s00259‑003‑1249‑3 12856157
    [Google Scholar]
  39. Krys D. Mattingly S. Glubrecht D. Wuest M. Wuest F. PET Imaging of l-type amino acid transporter (LAT1) and cystine-glutamate antiporter (xc−) with [18F]FDOPA and [18F]FSPG in breast cancer models. Mol. Imaging Biol. 2020 22 6 1562 1571 10.1007/s11307‑020‑01529‑1 32789819
    [Google Scholar]
  40. Nanni C. Zanoni L. Pultrone C. Schiavina R. Brunocilla E. Lodi F. Malizia C. Ferrari M. Rigatti P. Fonti C. Martorana G. Fanti S. 18F-FACBC (anti1-amino-3-18F-fluorocyclobutane-1-carboxylic acid) versus 11C-choline PET/CT in prostate cancer relapse: Results of a prospective trial. Eur. J. Nucl. Med. Mol. Imaging 2016 43 9 1601 1610 10.1007/s00259‑016‑3329‑1 26960562
    [Google Scholar]
  41. McConathy J. 18 F-Fluciclovine (FACBC) and its potential use for breast cancer imaging. J. Nucl. Med. 2016 57 9 1329 1330 10.2967/jnumed.116.175489 27199361
    [Google Scholar]
  42. Tulipan A.J. Salberg U.B. Hole K.H. Vlatkovic L. Aarnes E.K. Revheim M.E. Lyng H. Seierstad T. Amino acid transporter expression and 18F-FACBC uptake at PET in primary prostate cancer. Am. J. Nucl. Med. Mol. Imaging 2021 11 4 250 259 34513278
    [Google Scholar]
  43. Tade F.I. Cohen M.A. Styblo T.M. Odewole O.A. Holbrook A.I. Newell M.S. Savir-Baruch B. Li X. Goodman M.M. Nye J.A. Schuster D.M. Anti -3- 18 F-FACBC (18 F-Fluciclovine) PET/CT of breast cancer: An exploratory study. J. Nucl. Med. 2016 57 9 1357 1363 10.2967/jnumed.115.171389 27056619
    [Google Scholar]
  44. Albert N.L. Weller M. Suchorska B. Galldiks N. Soffietti R. Kim M.M. la Fougère C. Pope W. Law I. Arbizu J. Chamberlain M.C. Vogelbaum M. Ellingson B.M. Tonn J.C. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro-oncol. 2016 18 9 1199 1208 10.1093/neuonc/now058 27106405
    [Google Scholar]
  45. Parent E.E. Benayoun M. Ibeanu I. Olson J.J. Hadjipanayis C.G. Brat D.J. Adhikarla V. Nye J. Schuster D.M. Goodman M.M. [18F]Fluciclovine PET discrimination between high- and low-grade gliomas. EJNMMI Res. 2018 8 1 67 10.1186/s13550‑018‑0415‑3 30046944
    [Google Scholar]
  46. Tsuyuguchi N. Terakawa Y. Uda T. Nakajo K. Kanemura Y. Diagnosis of brain tumors using amino acid transport PET imaging with 18F-fluciclovine: A comparative study with L-methyl-11C-methionine PET Imaging. Asia Ocean. J. Nucl. Med. Biol. 2017 5 2 85 94 28660218
    [Google Scholar]
  47. Parent E.E. Patel D. Nye J.A. Li Z. Olson J.J. Schuster D.M. Goodman M.M. [18F]-Fluciclovine PET discrimination of recurrent intracranial metastatic disease from radiation necrosis. EJNMMI Res. 2020 10 1 148 10.1186/s13550‑020‑00739‑6 33284388
    [Google Scholar]
  48. Miller J.A. Bennett E.E. Xiao R. Kotecha R. Chao S.T. Vogelbaum M.A. Barnett G.H. Angelov L. Murphy E.S. Yu J.S. Ahluwalia M.S. Suh J.H. Mohammadi A.M. Association between radiation necrosis and tumor biology after stereotactic radiosurgery for brain metastasis. Int. J. Radiat. Oncol. Biol. Phys. 2016 96 5 1060 1069 10.1016/j.ijrobp.2016.08.039 27742540
    [Google Scholar]
  49. Karlberg A. Berntsen E.M. Johansen H. Skjulsvik A.J. Reinertsen I. Dai H.Y. Xiao Y. Rivaz H. Borghammer P. Solheim O. Eikenes L. 18F-FACBC PET/MRI in diagnostic assessment and neurosurgery of gliomas. Clin. Nucl. Med. 2019 44 7 550 559 10.1097/RLU.0000000000002610 31107743
    [Google Scholar]
  50. Morath V. Heider M. Mittelhäuser M. Rolbieski H. Stroh J. Calais J. Eiber M. Bassermann F. Weber W.A. Initial evaluation of [18F]-FACBC for PET imaging of multiple myeloma. EJNMMI Res. 2022 12 1 4 10.1186/s13550‑022‑00876‑0 35099620
    [Google Scholar]
  51. Shimizu K. Kaira K. Higuchi T. Hisada T. Yokobori T. Oyama T. Asao T. Tsushima Y. Shirabe K. Relationship between tumor immune markers and fluorine-18-α-Methyltyrosine ([18F]FAMT) uptake in patients with lung cancer. Mol. Imaging Biol. 2020 22 4 1078 1086 10.1007/s11307‑019‑01456‑w 31792836
    [Google Scholar]
  52. Isoda A. Higuchi T. Nakano S. Arisaka Y. Kaira K. Kamio T. Mawatari M. Matsumoto M. Sawamura M. Tsushima Y. 18F-FAMT in patients with multiple myeloma: Clinical utility compared to 18F-FDG. Ann. Nucl. Med. 2012 26 10 811 816 10.1007/s12149‑012‑0645‑9 22903817
    [Google Scholar]
  53. Suzuki S. Kaira K. Ohshima Y. Ishioka N.S. Sohda M. Yokobori T. Miyazaki T. Oriuchi N. Tominaga H. Kanai Y. Tsukamoto N. Asao T. Tsushima Y. Higuchi T. Oyama T. Kuwano H. Biological significance of fluorine-18-α-methyltyrosine (FAMT) uptake on PET in patients with oesophageal cancer. Br. J. Cancer 2014 110 8 1985 1991 10.1038/bjc.2014.142 24667647
    [Google Scholar]
  54. Nobusawa A. Kim M. Kaira K. Miyashita G. Negishi A. Oriuchi N. Higuchi T. Tsushima Y. Kanai Y. Yokoo S. Oyama T. Diagnostic usefulness of 18F-FAMT PET and L-type amino acid transporter 1 (LAT1) expression in oral squamous cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2013 40 11 1692 1700 10.1007/s00259‑013‑2477‑9 23801167
    [Google Scholar]
  55. Kim M. Achmad A. Higuchi T. Arisaka Y. Yokoo H. Yokoo S. Tsushima Y. Effects of intratumoral inflammatory process on 18F-FDG uptake: Pathologic and comparative study with 18F-fluoro-α-methyltyrosine PET/CT in oral squamous cell carcinoma. J. Nucl. Med. 2015 56 1 16 21 10.2967/jnumed.114.144014 25476535
    [Google Scholar]
  56. Kumasaka S. Nakajima T. Arisaka Y. Tokue A. Achmad A. Fukushima Y. Shimizu K. Kaira K. Higuchi T. Tsushima Y. Prognostic value of metabolic tumor volume of pretreatment 18F-FAMT PET/CT in non-small cell lung Cancer. BMC Med. Imaging 2018 18 1 46 10.1186/s12880‑018‑0292‑2 30477476
    [Google Scholar]
  57. Wei L. Tominaga H. Ohgaki R. Wiriyasermkul P. Hagiwara K. Okuda S. Kaira K. Kato Y. Oriuchi N. Nagamori S. Kanai Y. Transport of 3-fluoro-l-α-methyl-tyrosine (FAMT) by organic ion transporters explains renal background in [18F]FAMT positron emission tomography. J. Pharmacol. Sci. 2016 130 2 101 109 10.1016/j.jphs.2016.01.001 26887331
    [Google Scholar]
  58. Sampunta T. Watabe T. Naka S. Comparison of uptake between [18F] fluoro-α-methyltyrosine methoxy (18F-FAMT-OMe) and [18F] fluoro-α-methyltyrosine (18F-FAMT) in glioma xenograft mice. J. Nucl. Med. 2023 64 Suppl. 1 527
    [Google Scholar]
  59. Watabe T. Shimamoto H. Naka S. Kamiya T. Murakami S. 18F-FBPA PET in Sarcoidosis. Clin. Nucl. Med. 2020 45 11 863 864 10.1097/RLU.0000000000003274 32969900
    [Google Scholar]
  60. Isohashi K. Kanai Y. Aihara T. Hu N. Fukushima K. Baba I. Hirokawa F. Kakino R. Komori T. Nihei K. Hatazawa J. Ono K. Exploration of the threshold SUV for diagnosis of malignancy using 18F-FBPA PET/CT. Eur. J. Hybrid Imaging 2022 6 1 35 10.1186/s41824‑022‑00156‑z 36464732
    [Google Scholar]
  61. Kelkar S.S. Reineke T.M. Theranostics: Combining imaging and therapy. Bioconjug. Chem. 2011 22 10 1879 1903 10.1021/bc200151q 21830812
    [Google Scholar]
  62. Skwierawska D. López-Valverde J.A. Balcerzyk M. Leal A. Clinical viability of boron neutron capture therapy for personalized radiation treatment. Cancers 2022 14 12 2865 10.3390/cancers14122865 35740531
    [Google Scholar]
  63. Monti Hughes A. Hu N. Optimizing boron neutron capture therapy (BNCT) to treat cancer: An updated review on the latest developments on boron compounds and strategies. Cancers 2023 15 16 4091 10.3390/cancers15164091 37627119
    [Google Scholar]
  64. Mishima Y. Kondoh H. Dual control of melanogenesis and melanoma growth: Overview molecular to clinical level and the reverse. Pigment Cell Res. 2000 13 Suppl. 8 10 22 10.1034/j.1600‑0749.13.s8.6.x 11041353
    [Google Scholar]
  65. Carpano M. Perona M. Rodriguez C. Nievas S. Olivera M. Santa Cruz G.A. Brandizzi D. Cabrini R. Pisarev M. Juvenal G.J. Dagrosa M.A. Experimental studies of boronophenylalanine (10BPA) Biodistribution for the Individual Application of Boron Neutron Capture Therapy (BNCT) for malignant melanoma treatment. Int. J. Radiat. Oncol. Biol. Phys. 2015 93 2 344 352 10.1016/j.ijrobp.2015.05.039 26232853
    [Google Scholar]
  66. Wada Y. Hirose K. Harada T. Sato M. Watanabe T. Anbai A. Hashimoto M. Takai Y. Impact of oxygen status on 10B-BPA uptake into human glioblastoma cells, referring to significance in boron neutron capture therapy. J. Radiat. Res. 2018 59 2 122 128 10.1093/jrr/rrx080 29315429
    [Google Scholar]
  67. Hanaoka K. Watabe T. Naka S. Kanai Y. Ikeda H. Horitsugi G. Kato H. Isohashi K. Shimosegawa E. Hatazawa J. FBPA PET in boron neutron capture therapy for cancer: Prediction of 10B concentration in the tumor and normal tissue in a rat xenograft model. EJNMMI Res. 2014 4 1 70 10.1186/s13550‑014‑0070‑2 25621196
    [Google Scholar]
  68. Li Z. Kong Z. Chen J. Li J. Li N. Yang Z. Wang Y. Liu Z. 18F-Boramino acid PET/CT in healthy volunteers and glioma patients. Eur. J. Nucl. Med. Mol. Imaging 2021 48 10 3113 3121 10.1007/s00259‑021‑05212‑7 33590273
    [Google Scholar]
  69. Kong Z. Li Z. Chen J. Ma W. Wang Y. Yang Z. Liu Z. Larger 18F-fluoroboronotyrosine (FBY) active volume beyond MRI contrast enhancement in diffuse gliomas than in circumscribed brain tumors. EJNMMI Res. 2022 12 1 22 10.1186/s13550‑022‑00896‑w 35435593
    [Google Scholar]
  70. Kong Z. Li Z. Chen J. Liu S. Liu D. Li J. Li N. Ma W. Feng F. Wang Y. Yang Z. Liu Z. Metabolic characteristics of [18F]fluoroboronotyrosine (FBY) PET in malignant brain tumors. Nucl. Med. Biol. 2022 106-107 80 87 10.1016/j.nucmedbio.2022.01.002 35091195
    [Google Scholar]
  71. Menon S.S. Guruvayoorappan C. Sakthivel K.M. Rasmi R.R. Ki-67 protein as a tumour proliferation marker. Clin. Chim. Acta 2019 491 39 45 10.1016/j.cca.2019.01.011 30653951
    [Google Scholar]
  72. Chen J. Xu M. Li Z. Kong Z. Cai J. Wang C. Mu B.S. Cui X.Y. Zhang Z. Liu T. Liu Z. A bis‐boron amino acid for positron emission tomography and boron neutron capture therapy. Angew. Chem. Int. Ed. 2025 64 1 e202413249 10.1002/anie.202413249 39349362
    [Google Scholar]
  73. Li Z. Chen J. Kong Z. Shi Y. Xu M. Mu B.S. Li N. Ma W. Yang Z. Wang Y. Liu Z. A bis-boron boramino acid PET tracer for brain tumor diagnosis. Eur. J. Nucl. Med. Mol. Imaging 2024 51 6 1703 1712 10.1007/s00259‑024‑06600‑5 38191817
    [Google Scholar]
  74. Assayag O. Grieve K. Devaux B. Harms F. Pallud J. Chretien F. Boccara C. Varlet P. Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography. Neuroimage Clin. 2013 2 549 557 10.1016/j.nicl.2013.04.005 24179806
    [Google Scholar]
  75. Kong Z. Li Z. Chen J. Shi Y. Li N. Ma W. Wang Y. Yang Z. Liu Z. A histogram of [18F]BBPA PET imaging differentiates non-neoplastic lesions from malignant brain tumors. EJNMMI Res. 2024 14 1 12 10.1186/s13550‑024‑01069‑7 38305994
    [Google Scholar]
  76. Verhoeven J. Hulpia F. Kersemans K. Bolcaen J. De Lombaerde S. Goeman J. Descamps B. Hallaert G. Van den Broecke C. Deblaere K. Vanhove C. Van der Eycken J. Van Calenbergh S. Goethals I. De Vos F. New fluoroethyl phenylalanine analogues as potential LAT1-targeting PET tracers for glioblastoma. Sci. Rep. 2019 9 1 2878 10.1038/s41598‑019‑40013‑x 30814660
    [Google Scholar]
  77. Verhoeven J. Baguet T. Piron S. Pauwelyn G. Bouckaert C. Descamps B. Raedt R. Vanhove C. De Vos F. Goethals I. 2-[18F]FELP, a novel LAT1-specific PET tracer, for the discrimination between glioblastoma, radiation necrosis and inflammation. Nucl. Med. Biol. 2020 82-83 9 16 10.1016/j.nucmedbio.2019.12.002 31841816
    [Google Scholar]
  78. Kim J.M. Miller J.A. Kotecha R. Xiao R. Juloori A. Ward M.C. Ahluwalia M.S. Mohammadi A.M. Peereboom D.M. Murphy E.S. Suh J.H. Barnett G.H. Vogelbaum M.A. Angelov L. Stevens G.H. Chao S.T. The risk of radiation necrosis following stereotactic radiosurgery with concurrent systemic therapies. J. Neurooncol. 2017 133 2 357 368 10.1007/s11060‑017‑2442‑8 28434110
    [Google Scholar]
  79. Li R. Wu S.C. Wang S.C. Fu Z. Dang Y. Huo L. Synthesis and evaluation of l-5-(2-[(18)F]fluoroethoxy)tryptophan as a new PET tracer. Appl. Radiat. Isot. 2010 68 2 303 308 10.1016/j.apradiso.2009.10.007 19906535
    [Google Scholar]
  80. He S. Tang G. Hu K. Wang H. Wang S. Huang T. Liang X. Tang X. Radiosynthesis and biological evaluation of 5-(3-[18F]Fluoropropyloxy)-L-tryptophan for tumor PET imaging. Nucl. Med. Biol. 2013 40 6 801 807 10.1016/j.nucmedbio.2013.04.013 23791401
    [Google Scholar]
  81. Krämer S.D. Mu L. Müller A. Keller C. Kuznetsova O.F. Schweinsberg C. Franck D. Müller C. Ross T.L. Schibli R. Ametamey S.M. 5-(2-18F-fluoroethoxy)-L-tryptophan as a substrate of system L transport for tumor imaging by PET. J. Nucl. Med. 2012 53 3 434 442 10.2967/jnumed.111.096289 22331220
    [Google Scholar]
  82. Nozaki S. Nakatani Y. Mawatari A. Shibata N. Hume W.E. Hayashinaka E. Wada Y. Doi H. Watanabe Y. 18F-FIMP: A LAT1-specific PET probe for discrimination between tumor tissue and inflammation. Sci. Rep. 2019 9 1 15718 10.1038/s41598‑019‑52270‑x 31673030
    [Google Scholar]
  83. Nozaki S. Nakatani Y. Mawatari A. Shibata N. Hume W.E. Hayashinaka E. Wada Y. Doi H. Watanabe Y. Comparison of [18F]FIMP, [11C]MET, and [18F]FDG PET for early-phase assessment of radiotherapy response. Sci. Rep. 2023 13 1 1961 10.1038/s41598‑023‑29166‑y 36737550
    [Google Scholar]
  84. Nozaki S. Nakatani Y. Mawatari A. Hume W.E. Doi H. Watanabe Y. In vitro evaluation of (S)-2-amino-3-[3-(2-18F-fluoroethoxy)-4-iodophenyl]-2-methylpropanoic acid (18F-FIMP) as a positron emission tomography probe for imaging amino acid transporters. EJNMMI Res. 2023 13 1 36 10.1186/s13550‑023‑00988‑1 37115356
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206381956250622145301
Loading
/content/journals/acamc/10.2174/0118715206381956250622145301
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: malignant tumor cells ; PET-CT ; radiotracer ; diagnose ; cancer ; LAT1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test