Skip to content
2000
image of Design, Synthesis and Biological Evaluation of New 4-(4-(Methylsulfonyl)Phenyl)-6-Phenylpyrimidin-2-Amine Derivatives as Selective Cyclooxygenase (COX-2) Inhibitors

Abstract

Introduction

Cyclooxygenase, an enzyme that occurs in at least two distinct variants ( and ), is the target of classical inhibitors, which lack selectivity and inhibit both types of . However, a recent approach focuses explicitly on inhibiting , commonly found in inflamed tissue, resulting in fewer adverse effects than inhibitors.

Methods

A series of 4-(4-(methylsulfonyl)phenyl)-6-phenylpyrimidin-2-amine derivatives were synthesized through a two-step process. First, 4-substituted acetophenones underwent base-catalyzed Claisen-Schmidt condensation with 4-(methylsulfonyl)benzaldehyde to yield chalcones, which were then cyclized with guanidine hydrochloride under basic reflux conditions. Molecular docking was performed using AutoDock Vina software. The inhibitory activities of and were evaluated using enzymatic assays. Antiplatelet aggregation was measured a turbidimetric method, and antiproliferative activity was assessed using the MTT assay.

Results

The experiments on inhibition revealed that a substantial number of the synthesized compounds presented a strong suppressive effect against . The assessment of antiplatelet aggregation activity indicated that most of the derivatives effectively inhibited ADP-induced platelet aggregation. Compound exhibited the most potent antiproliferative activity, comparable to cisplatin. The docking studies and molecular modeling results demonstrated that the designed compounds, except for , exhibited a binding behavior comparable to that of celecoxib. In addition, the insertion of the SOMe moiety within the secondary binding site of was observed.

Discussion

These findings suggest that the structural modifications introduced in the synthesized derivatives contribute significantly to their selective inhibition and antiplatelet properties. The correlation between docking results and biological assays supports the rationale behind the design of the compound.

Conclusion

The 4-(4-(methylsulfonyl)phenyl)-6-phenylpyrimidin-2-amine exhibits unique properties as a inhibitor, displaying effective inhibition of while showing minimal interaction with the enzyme. Furthermore, our study revealed that most of these compounds exhibited inhibitory effects on ADP-induced platelet aggregation.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206380378250709112246
2025-07-16
2025-09-26
Loading full text...

Full text loading...

References

  1. Bhala N. Emberson J. Merhi A. Abramson S. Arber N. Baron J.A. Bombardier C. Cannon C. Farkouh M.E. FitzGerald G.A. Goss P. Halls H. Hawk E. Hawkey C. Hennekens C. Hochberg M. Holland L.E. Kearney P.M. Laine L. Lanas A. Lance P. Laupacis A. Oates J. Patrono C. Schnitzer T.J. Solomon S. Tugwell P. Wilson K. Wittes J. Baigent C. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: Meta-analyses of individual participant data from randomised trials. Lancet 2013 382 9894 769 779 10.1016/S0140‑6736(13)60900‑9 23726390
    [Google Scholar]
  2. Khalil N.A. Ahmed E.M. Tharwat T. Mahmoud Z. NSAIDs between past and present; a long journey towards an ideal COX-2 inhibitor lead. RSC Advances 2024 14 42 30647 30661 10.1039/D4RA04686B 39324041
    [Google Scholar]
  3. Wallace J.L. McCafferty D.M. Carter L. McKnight W. Argentieri D. Tissue-selective inhibition of prostaglandin synthesis in rat by tepoxalin: Anti-inflammatory without gastropathy? Gastroenterology 1993 105 6 1630 1636 10.1016/0016‑5085(93)91057‑O 8253339
    [Google Scholar]
  4. Williams D. Lemke T. Parasitic infection-Helminthes. Foye’s Principal of Medicinal Chemistry. New York Lippincott William and Wilkins 2002
    [Google Scholar]
  5. Amadio P. Cummings D.M. Amadio P. Nonsteroidal anti-inflammatory drugs. Postgrad. Med. 1993 93 4 73 97 10.1080/00325481.1993.11701639 8446544
    [Google Scholar]
  6. Tai F.W.D. McAlindon M.E. Non-steroidal anti-inflammatory drugs and the gastrointestinal tract. Clin. Med. 2021 21 2 131 134 10.7861/clinmed.2021‑0039 33762373
    [Google Scholar]
  7. Sohail R. Mathew M. Patel K.K. Reddy S.A. Haider Z. Naria M. Habib A. Abdin Z.U. Razzaq C.W. Akbar A. Effects of non-steroidal anti-inflammatory drugs (nsaids) and gastroprotective nsaids on the gastrointestinal tract: A narrative review. Cureus 2023 15 4 37080 10.7759/cureus.37080 37153279
    [Google Scholar]
  8. Drina M. Peptic ulcer disease and non-steroidal anti-inflammatory drugs. Aust. Prescr. 2017 40 3 91 93 10.18773/austprescr.2017.037 28798512
    [Google Scholar]
  9. Monteiro B. Steagall P.V. Antiinflammatory drugs. Vet. Clin. North Am. Small Anim. Pract. 2019 49 6 993 1011 10.1016/j.cvsm.2019.07.009 31519356
    [Google Scholar]
  10. Al-Turki D.A. Abou-Zeid L.A. Shehata I.A. Al-Omar M.A. Therapeutic and toxic effects of new NSAIDs and related compounds: A review and prospective study. Int. J. Pharmacol. 2010 6 813 825 10.3923/ijp.2010.813.825
    [Google Scholar]
  11. Zhang X. Donnan P.T. Bell S. Guthrie B. Non-steroidal anti-inflammatory drug induced acute kidney injury in the community dwelling general population and people with chronic kidney disease: Systematic review and meta-analysis. BMC Nephrol. 2017 18 1 256 10.1186/s12882‑017‑0673‑8 28764659
    [Google Scholar]
  12. Silverstein F.E. Faich G. Goldstein J.L. Simon L.S. Pincus T. Whelton A. Makuch R. Eisen G. Agrawal N.M. Stenson W.F. Burr A.M. Zhao W.W. Kent J.D. Lefkowith J.B. Verburg K.M. Geis G.S. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: The CLASS study: A randomized controlled trial. Celecoxib Long-term Arthritis Safety Study. JAMA 2000 284 10 1247 1255 10.1001/jama.284.10.1247 10979111
    [Google Scholar]
  13. Abdelgawad M.A. Bakr R.B. Azouz A.A. Novel pyrimidine-pyridine hybrids: Synthesis, cyclooxygenase inhibition, anti-inflammatory activity and ulcerogenic liability. Bioorg. Chem. 2018 77 339 348 10.1016/j.bioorg.2018.01.028 29421710
    [Google Scholar]
  14. Ghlichloo I. Gerriets V. Nonsteroidal anti-inflammatory drugs (NSAIDs). StatPearls. Treasure Island, FL StatPearls Publishing 2020
    [Google Scholar]
  15. Abdel-Aziz A.A.M. Abou-Zeid L.A. ElTahir K.E.H. Ayyad R.R. El-Sayed M.A.A. El-Azab A.S. Synthesis, anti-inflammatory, analgesic, COX-1/2 inhibitory activities and molecular docking studies of substituted 2-mercapto-4(3H)-quinazolinones. Eur. J. Med. Chem. 2016 121 410 421 10.1016/j.ejmech.2016.05.066 27318118
    [Google Scholar]
  16. Wang D. DuBois R.N. Pro-inflammatory prostaglandins and progression of colorectal cancer. Cancer Lett. 2008 267 2 197 203 10.1016/j.canlet.2008.03.004 18406516
    [Google Scholar]
  17. Ricciotti E. FitzGerald G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011 31 5 986 1000 10.1161/ATVBAHA.110.207449 21508345
    [Google Scholar]
  18. Bindu S. Mazumder S. Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020 180 114147 10.1016/j.bcp.2020.114147 32653589
    [Google Scholar]
  19. Fitz G.A. Patrono C. The coxibs, selective inhibitors of cyclooxygenase-2. N. Engl. J. Med. 2001 345 6 433 442 10.1056/NEJM200108093450607 11496855
    [Google Scholar]
  20. Vane J.R. The fight against rheumatism: From willow bark to COX-1 sparing drugs. J. Physiol. Pharmacol. 2000 51 4 Pt 1 573 586 11192932
    [Google Scholar]
  21. Botting J.H. Nonsteroidal antiinflammatory agents. Drugs Today 1999 35 4-5 225 235 10.1358/dot.1999.35.4‑5.552199
    [Google Scholar]
  22. Pannunzio A. Coluccia M. Cyclooxygenase-1 (COX-1) and COX-1 inhibitors in cancer: A review of oncology and medicinal chemistry literature. Pharmaceuticals 2018 11 4 101 10.3390/ph11040101 30314310
    [Google Scholar]
  23. Braun J. Baraliakos X. Westhoff T. Nonsteroidal anti-inflammatory drugs and cardiovascular risk – a matter of indication. Semin. Arthritis Rheum. 2020 50 2 285 288 10.1016/j.semarthrit.2019.07.012 31439354
    [Google Scholar]
  24. Uddin M.J. Rao P.N.P. Knaus E.E. Design and synthesis of novel celecoxib analogues as selective cyclooxygenase-2 (COX-2) inhibitors: Replacement of the sulfonamide pharmacophore by a sulfonylazide bioisostere. Bioorg. Med. Chem. 2003 11 23 5273 5280 10.1016/j.bmc.2003.07.005 14604691
    [Google Scholar]
  25. Zarghi A. Arfaei S. Selective COX-2 inhibitors: A review of their structure-activity relationships. Iran. J. Pharm. Res. 2011 10 4 655 683 24250402
    [Google Scholar]
  26. Hawkey C.J. COX-1 and COX-2 inhibitors. Best Pract. Res. Clin. Gastroenterol. 2001 15 5 801 820 10.1053/bega.2001.0236 11566042
    [Google Scholar]
  27. Clark J.F. Guanidino compounds in Biology and Medicine. Cham 2003 10.1007/978‑1‑4615‑0247‑0
    [Google Scholar]
  28. Saczewski F. Balewski Ł. Biological activities of guanidine compounds. Expert Opin. Ther. Pat. 2009 19 10 1417 1448 10.1517/13543770903216675 19780701
    [Google Scholar]
  29. Murtaza G. Badshah A. Said M. Khan H. Khan A. Khan S. Siddiq S. Choudhary M.I. Boudreau J. Fontaine F.G. Urease inhibition and anti-leishmanial assay of substituted benzoylguanidines and their copper(ii) complexes. Dalton Trans. 2011 40 36 9202 9211 10.1039/c1dt10464k 21829831
    [Google Scholar]
  30. Rauf M.K. Imtiaz-ud-Din; Badshah, A. Novel approaches to screening guanidine derivatives. Expert Opin. Drug Discov. 2014 9 1 39 53 10.1517/17460441.2013.857308 24261559
    [Google Scholar]
  31. Heys L. Moore C.G. Murphy P.J. The guanidine metabolites of Ptilocaulis spiculifer and related compounds; isolation and synthesis. Chem. Soc. Rev. 2000 29 1 57 67 10.1039/a903712h
    [Google Scholar]
  32. Gul R. Synthesis and biological evaluation of some new ferrocenyl phenyl guanidines as antibacterial, antifungal agents. J. Drug Design Med. Chem. 2016 2 4 35 10.11648/j.jddmc.20160204.11
    [Google Scholar]
  33. Drozdov F. Kotov V. Guanidine: A simple molecule with great potential: From catalysts to biocides and molecular glues. J. Nesmey Instit. Organoel. Comp. Russ. Acad. Sci. 2021 3 6 200 213 10.32931/io2030r
    [Google Scholar]
  34. Yamamoto Y. Kojima S. Synthesis and chemistry of guanidine derivatives. Amid Imidat 1991 485 526 10.1002/9780470772478.ch10
    [Google Scholar]
  35. Hannon C.L. Anslyn E.V. The guanidinium group: Its biological role and synthetic analogs. Bioorg. Chem. Front. 1993 3 193 255 10.1007/978‑3‑642‑78110‑0_6
    [Google Scholar]
  36. Piller L.B. Davis B.R. Cutler J.A. Cushman W.C. Wright J.T. Williamson J.D. Leenen F.H.H. Einhorn P.T. Randall O.S. Golden J.S. Haywood L.J. Validation of heart failure events in the antihypertensive and lipid lowering treatment to prevent heart attack trial (ALLHAT) participants assigned to doxazosin and chlorthalidone. Curr. Control. Trials Cardiovasc. Med. 2002 3 1 10 10.1186/1468‑6708‑3‑10 12459039
    [Google Scholar]
  37. Fresneda P.M. Delgado S. Francesch A. Manzanares I. Cuevas C. Molina P. Synthesis and cytotoxic evaluation of new derivatives of the marine alkaloid variolin B. J. Med. Chem. 2006 49 3 1217 1221 10.1021/jm051090r 16451088
    [Google Scholar]
  38. Gomes A.R. Varela C.L. Pires A.S. Tavares-da-Silva E.J. Roleira F.M.F. Synthetic and natural guanidine derivatives as antitumor and antimicrobial agents: A review. Bioorg. Chem. 2023 138 106600 10.1016/j.bioorg.2023.106600 37209561
    [Google Scholar]
  39. Meurling L. Márquez M. Nilsson S. Holmberg A.R. Polymer-conjugated guanidine is a potentially useful anti-tumor agent. Int. J. Oncol. 2009 35 2 281 285 19578741
    [Google Scholar]
  40. Li S.L. Huang C.H. Lin C.C. Huang Z.N. Chern J.H. Lien H.Y. Wu Y.Y. Cheng C.H. Chang C.Y. Chuu J.J. Antitumor effect of BPR-DC-2, a novel synthetic cyclic cyanoguanidine derivative, involving the inhibition of MDR-1 expression and down-regulation of p-AKT and PARP-1 in lung cancer. Invest. New Drugs 2011 29 2 195 206 10.1007/s10637‑009‑9337‑2 19960226
    [Google Scholar]
  41. Brzozowski Z. Sączewski F. Gdaniec M. Synthesis, molecular structure and anticancer activity of 1-allyl-3-amino-2-(4-chloro-2-mercaptobenzenesulphonyl)guanidine derivatives. Eur. J. Med. Chem. 2002 37 4 285 293 10.1016/S0223‑5234(02)01341‑7 11960663
    [Google Scholar]
  42. Uddin M.J. Rao P.N.P. Knaus E.E. Design and synthesis of (Z)-1,2-diphenyl-1-(4-methanesulfonamidophenyl)alk-1-enes and (Z)-1-(4-azidophenyl)-1,2-diphenylalk-1-enes: Novel inhibitors of cyclooxygenase-2 (COX-2) with anti-inflammatory and analgesic activity. Bioorg. Med. Chem. 2005 13 2 417 424 10.1016/j.bmc.2004.10.017 15598562
    [Google Scholar]
  43. Uddin M.J. Praveen R.P.N. McDonald R. Knaus E.E. A new class of acyclic 2-alkyl-1,1,2-triaryl (Z)-olefins as selective cyclooxygenase-2 inhibitors. J. Med. Chem. 2004 47 24 6108 6111 10.1021/jm049523y 15537365
    [Google Scholar]
  44. Uddin M.J. Rao P.N.P. Knaus E.E. Design and synthesis of acyclic triaryl (Z)-olefins: A novel class of cyclooxygenase-2 (COX-2) inhibitors. Bioorg. Med. Chem. 2004 12 22 5929 5940 10.1016/j.bmc.2004.08.021 15498669
    [Google Scholar]
  45. Uddin M.J. Rao P.N.P. Rahim M.A. McDonald R. Knaus E.E. A new class of acyclic 2-alkyl-1,2-diaryl (E)-olefins as selective cyclooxygenase-2 (COX-2) inhibitors. Bioorg. Med. Chem. Lett. 2004 14 19 4911 4914 10.1016/j.bmcl.2004.07.027 15341950
    [Google Scholar]
  46. Zarghi A. Zebardast T. Hakimion F. Shirazi F.H. Praveen R.P.N. Knaus E.E. Synthesis and biological evaluation of 1,3-diphenylprop-2-en-1-ones possessing a methanesulfonamido or an azido pharmacophore as cyclooxygenase-1/-2 inhibitors. Bioorg. Med. Chem. 2006 14 20 7044 7050 10.1016/j.bmc.2006.06.022 16798002
    [Google Scholar]
  47. Arfaie S. Zarghi A. Design, synthesis and biological evaluation of new (E)- and (Z)-1,2,3-triaryl-2-propen-1-ones as selective COX-2 inhibitors. Eur. J. Med. Chem. 2010 45 9 4013 4017 10.1016/j.ejmech.2010.05.058 20691338
    [Google Scholar]
  48. Farzaneh S. Shahhosseini S. Arefi H. Daraei B. Esfahanizadeh M. Zarghi A. Design, synthesis and biological evaluation of new 1,3-diphenyl-3- (phenylamino)propan-1-ones as selective cyclooxygenase (COX-2) inhibitors. Med. Chem. 2018 14 7 652 659 10.2174/1573406414666180525133221 29804536
    [Google Scholar]
  49. Azami M.M. Daraei B. Zarghi A. Synthesis and biological evaluation of new imidazo[1,2-a]pyridine derivatives as selective COX-2 inhibitors. Lett. Drug Des. Discov. 2016 13 8 793 799 10.2174/1570180813666160613090944
    [Google Scholar]
  50. Zarghi A. Najafnia L. Daraee B. Dadrass O.G. Hedayati M. Synthesis of 2,3-diaryl-1,3-thiazolidine-4-one derivatives as selective cyclooxygenase (COX-2) inhibitors. Bioorg. Med. Chem. Lett. 2007 17 20 5634 5637 10.1016/j.bmcl.2007.07.084 17822894
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206380378250709112246
Loading
/content/journals/acamc/10.2174/0118715206380378250709112246
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test