Skip to content
2000
image of HSP Inhibitor Sensitize Resistant MCF-7 Cells to Doxorubicin through Suppressing HSP90AB4P Pseudogene and HSPB1 Expression

Abstract

Introduction

Doxorubicin, a first-line chemotherapeutic agent, often faces resistance in breast cancer subtypes, leading to treatment failure. HSPs (Heat shock proteins), especially HSP90, and their pseudogenes like HSP90AB4P have been implicated in fostering resistance mechanisms by regulating apoptotic and survival pathways in cancer cells. The aim of this study is to investigate how inhibiting HSPs using a novel pyro-salicylic acid derivative (7A) can sensitize doxorubicin-resistant breast cancer cells (MCF-7/ADR) to chemotherapy.

Methods

The potential role of HSP inhibitor with doxorubicin at different concentrations was tested to reveal synergetic and additive effects by combination index (CI) analysis. Cell cycle analysis, apoptosis assays, and gene expression profiling PCR arrays supported the impact of 7A over MCF-7/ADR cells' molecular pathways.

Results

HSP inhibitor efficiently suppressed doxorubicin resistance over invasive breast ductal carcinoma and has a synergetic effect. The inhibitor decreases HSP90AB4P and small HSPB1 expression efficiently.

Conclusion

Our findings demonstrate that 7A suppresses doxorubicin resistance in MCF-7/ADR cells by reducing the expression of HSP90AB4P and small HSPB1, leading to an increase in apoptosis and cell cycle arrest. The combination of 7A and doxorubicin exhibits a synergistic effect (CI < 1), enhancing cytotoxicity and overcoming resistance mechanisms. The cells are driven to apoptosis and the inhibitor significantly decreases doxorubicin resistance.

Targeting HSPB1 and its pseudogene HSP90AB4P with 7A offers a promising therapeutic strategy to overcome doxorubicin resistance in breast cancer.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206374072250530103333
2025-06-11
2025-09-15
Loading full text...

Full text loading...

References

  1. Chen B. Piel W.H. Gui L. Bruford E. Monteiro A. The HSP90 family of genes in the human genome: Insights into their divergence and evolution. Genomics 2005 86 6 627 637 10.1016/j.ygeno.2005.08.012 16269234
    [Google Scholar]
  2. Garrido C. Paul C. Seigneuric R. Kampinga H.H. The small heat shock proteins family: The long forgotten chaperones. Int. J. Biochem. Cell Biol. 2012 44 10 1588 1592 10.1016/j.biocel.2012.02.022 22449631
    [Google Scholar]
  3. Finka A. Sharma S.K. Goloubinoff P. Multi-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/HSP110 chaperones. Front. Mol. Biosci. 2015 2 29 10.3389/fmolb.2015.00029 26097841
    [Google Scholar]
  4. Tutar L. Tutar Y. Heat shock proteins; An overview. Curr. Pharm. Biotechnol. 2010 11 2 216 222 10.2174/138920110790909632 20170474
    [Google Scholar]
  5. Morán Luengo T. Mayer M.P. Rüdiger S.G.D. The Hsp70–Hsp90 chaperone cascade in protein folding. Trends Cell Biol. 2019 29 2 164 177 10.1016/j.tcb.2018.10.004 30502916
    [Google Scholar]
  6. Albakova Z. Siam M.K.S. Sacitharan P.K. Ziganshin R.H. Ryazantsev D.Y. Sapozhnikov A.M. Extracellular heat shock proteins and cancer: New perspectives. Transl. Oncol. 2021 14 2 100995 10.1016/j.tranon.2020.100995 33338880
    [Google Scholar]
  7. Acunzo J. Katsogiannou M. Rocchi P. Small heat shock proteins HSP27 (HspB1), αB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int. J. Biochem. Cell Biol. 2012 44 10 1622 1631 10.1016/j.biocel.2012.04.002 22521623
    [Google Scholar]
  8. Vidyasagar A. Wilson N.A. Djamali A. Heat shock protein 27 (HSP27): Biomarker of disease and therapeutic target. Fibrogenesis Tissue Repair 2012 5 1 7 10.1186/1755‑1536‑5‑7 22564335
    [Google Scholar]
  9. Zhang Z. Jing J. Ye Y. Chen Z. Jing Y. Li S. Hong W. Ruan H. Liu Y. Hu Q. Wang J. Li W. Lin C. Diao L. Zhou Y. Han L. Characterization of the dual functional effects of heat shock proteins (HSPs) in cancer hallmarks to aid development of HSP inhibitors. Genome Med. 2020 12 1 101 10.1186/s13073‑020‑00795‑6 33225964
    [Google Scholar]
  10. Wang H. Tan M.S. Lu R.C. Yu J.T. Tan L. Heat shock proteins at the crossroads between cancer and Alzheimer’s disease. BioMed Res. Int. 2014 2014 1 9 10.1155/2014/239164 25147790
    [Google Scholar]
  11. Zhang H. Burrows F. Targeting multiple signal transduction pathways through inhibition of Hsp90. J. Mol. Med. (Berl.) 2004 82 8 488 499 10.1007/s00109‑004‑0549‑9 15168026
    [Google Scholar]
  12. Mohammadian M. Feizollahzadeh S. Mahmoudi R. Toofani Milani A. Rezapour-Firouzi S. Karimi Douna B. Hsp90 inhibitor; NVP-AUY922 in combination with doxorubicin induces apoptosis and downregulates VEGF in MCF-7 breast cancer cell line. Asian Pac. J. Cancer Prev. 2020 21 6 1773 1778 10.31557/APJCP.2020.21.6.1773 32592377
    [Google Scholar]
  13. Park S-J. Wu C-H. Safa A.R. A P-glycoprotein- and MRP1-independent doxorubicin-resistant variant of the MCF-7 breast cancer cell line with defects in caspase-6, -7, -8, -9 and -10 activation pathways. Anticancer Res. 2004 24 1 123 131 15015586
    [Google Scholar]
  14. Chen Y. Feng X. Yuan Y. Jiang J. Zhang P. Zhang B. Identification of a novel mechanism for reversal of doxorubicin-induced chemotherapy resistance by TXNIP in triple-negative breast cancer via promoting reactive oxygen-mediated DNA damage. Cell Death Dis. 2022 13 4 338 10.1038/s41419‑022‑04783‑z 35414060
    [Google Scholar]
  15. Tormo E. Ballester S. Adam-Artigues A. Burgués O. Alonso E. Bermejo B. Menéndez S. Zazo S. Madoz-Gúrpide J. Rovira A. Albanell J. Rojo F. Lluch A. Eroles P. The miRNA-449 family mediates doxorubicin resistance in triple-negative breast cancer by regulating cell cycle factors. Sci. Rep. 2019 9 1 5316 10.1038/s41598‑019‑41472‑y 30926829
    [Google Scholar]
  16. Neophytou C.M. Trougakos I.P. Erin N. Papageorgis P. Apoptosis deregulation and the development of cancer multi-drug resistance. Cancers 2021 13 17 4363 10.3390/cancers13174363 34503172
    [Google Scholar]
  17. Gümüş M. Can S. Eroğlu H.E. Koca I. Synthesis of novel salicylic acid-pyrrolone conjugates and investigation of their cytotoxic and genotoxic effects in Allium cepa root tip cells. Org Commun 2021 14 280 293 10.25135/acg.oc.111.21.06.2118
    [Google Scholar]
  18. Lovitt C.J. Shelper T.B. Avery V.M. Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins. BMC Cancer 2018 18 1 41 10.1186/s12885‑017‑3953‑6 29304770
    [Google Scholar]
  19. Ali A. Banerjee S. Kamaal S. Usman M. Das N. Afzal M. Alarifi A. Sepay N. Roy P. Ahmad M. Ligand substituent effect on the cytotoxicity activity of two new copper(ii) complexes bearing 8-hydroxyquinoline derivatives: Validated by MTT assay and apoptosis in MCF-7 cancer cell line (human breast cancer). RSC Advances 2021 11 24 14362 14373 10.1039/D1RA00172H 35423979
    [Google Scholar]
  20. Miri A. Gharechahi J. Samiei Mosleh I. Sharifi K. Jajarmi V. Identification of co-regulated genes associated with doxorubicin resistance in the MCF-7/ADR cancer cell line. Front. Oncol. 2023 13 1135836 10.3389/fonc.2023.1135836 37397367
    [Google Scholar]
  21. Kuleshov M.V. Jones M.R. Rouillard A.D. Fernandez N.F. Duan Q. Wang Z. Koplev S. Jenkins S.L. Jagodnik K.M. Lachmann A. McDermott M.G. Monteiro C.D. Gundersen G.W. Ma’ayan A. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016 44 W1 W90 W97 10.1093/nar/gkw377 27141961
    [Google Scholar]
  22. Shao W. Wang X. Liu Z. Song X. Wang F. Liu X. Yu Z. Cyperotundone combined with adriamycin induces apoptosis in MCF-7 and MCF-7/ADR cancer cells by ROS generation and NRF2/ARE signaling pathway. Sci. Rep. 2023 13 1 1384 10.1038/s41598‑022‑26767‑x 36697441
    [Google Scholar]
  23. Tunoğlu S. Tutar L. Gümüş M. Tunoğlu E.N.Y. Koca İ. Tutar Y. Hsp inhibitor is affective against adenocarcinomic human alveolar basal epithelial cells through modulating ERK/MAPK signaling pathway. Chem. Biodivers. 2024 21 2 e202301422 10.1002/cbdv.202301422 38156745
    [Google Scholar]
  24. Çapan İ. Hawash M. Qaoud M.T. Gülüm L. Tunoglu E.N.Y. Çifci K.U. Çevrimli B.S. Sert Y. Servi S. Koca İ. Tutar Y. Synthesis of novel carbazole hydrazine-carbothioamide scaffold as potent antioxidant, anticancer and antimicrobial agents. BMC Chem. 2024 18 1 102 10.1186/s13065‑024‑01207‑1 38773663
    [Google Scholar]
  25. Wang X. Teng Z. Wang H. Wang C. Liu Y. Tang Y. Wu J. Sun J. Wang H. Wang J. Lu G. Increasing the cytotoxicity of doxorubicin in breast cancer MCF-7 cells with multidrug resistance using a mesoporous silica nanoparticle drug delivery system. Int. J. Clin. Exp. Pathol. 2014 7 4 1337 1347 24817930
    [Google Scholar]
  26. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983 65 1-2 55 63 10.1016/0022‑1759(83)90303‑4 6606682
    [Google Scholar]
  27. Mayer I.A. Arteaga C.L. The PI3K/AKT pathway as a target for cancer treatment. Annu. Rev. Med. 2016 67 1 11 28 10.1146/annurev‑med‑062913‑051343 26473415
    [Google Scholar]
  28. Dhillon A.S. Hagan S. Rath O. Kolch W. MAP kinase signalling pathways in cancer. Oncogene 2007 26 22 3279 3290 10.1038/sj.onc.1210421 17496922
    [Google Scholar]
  29. Wong R.S.Y. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res. 2011 30 1 87 10.1186/1756‑9966‑30‑87 21943236
    [Google Scholar]
  30. Semenza G.L. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 2010 29 5 625 634 10.1038/onc.2009.441 19946328
    [Google Scholar]
  31. Vousden K.H. Prives C. Blinded by the light: The growing complexity of p53. Cell 2009 137 3 413 431 10.1016/j.cell.2009.04.037 19410540
    [Google Scholar]
  32. Elmore S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007 35 4 495 516 10.1080/01926230701320337 17562483
    [Google Scholar]
  33. Trepel J. Mollapour M. Giaccone G. Neckers L. Targeting the dynamic HSP90 complex in cancer. Nat. Rev. Cancer 2010 10 8 537 549 10.1038/nrc2887 20651736
    [Google Scholar]
  34. Hong D.S. Banerji U. Tavana B. George G.C. Aaron J. Kurzrock R. Targeting the molecular chaperone heat shock protein 90 (HSP90): Lessons learned and future directions. Cancer Treat. Rev. 2013 39 4 375 387 10.1016/j.ctrv.2012.10.001 23199899
    [Google Scholar]
  35. Mahalingam D. Swords R. Carew J.S. Nawrocki S.T. Bhalla K. Giles F.J. Targeting HSP90 for cancer therapy. Br. J. Cancer 2009 100 10 1523 1529 10.1038/sj.bjc.6605066 19401686
    [Google Scholar]
  36. Neckers L. Workman P. Hsp90 molecular chaperone inhibitors: Are we there yet? Clin. Cancer Res. 2012 18 1 64 76 10.1158/1078‑0432.CCR‑11‑1000 22215907
    [Google Scholar]
  37. Workman P. Burrows F. Neckers L. Rosen N. Drugging the cancer chaperone HSP90: Combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann. N. Y. Acad. Sci. 2007 1113 1 202 216 10.1196/annals.1391.012 17513464
    [Google Scholar]
  38. Prodromou C. Mechanisms of Hsp90 regulation. Biochem. J. 2016 473 16 2439 2452 10.1042/BCJ20160005 27515256
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206374072250530103333
Loading
/content/journals/acamc/10.2174/0118715206374072250530103333
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: HSP90 ; Pseudogene ; chemotherapy ; HSP inhibitor ; doxorubicin resistance ; cell cycle
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test