Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Background

As one of the essential pieces of chemical equipment, a reactor provides the necessary reaction space and conditions for the materials involved in the reaction during the stirring process, there has been an increase in patents related to reactors. However, under typical operating conditions, issues such as uneven gas distribution, suboptimal gas-liquid mixing, and low product yield often arise in gas-liquid phase reactors.

Objective

To address the issues prevalent in current stirred reactors, a new design for a stirred reactor equipped with a double-suction turbine agitator was developed.

Methods

In this paper, a stirred reactor equipped with a double-suction turbine agitator was designed, and its three-dimensional modeling was conducted using SolidWorks. Computational Fluid Dynamics (CFD) simulations, based on the Euler-Euler two-phase approach with the RNG turbulence model, were performed to assess variables such as stirring speed, installation height, blade diameter and agitator inner diameter. The dispersion characteristics and flow field behaviors of the gas-liquid two-phase under varying conditions were comparatively analyzed. Optimizations were conducted across various parameters to enhance the gas mixing efficiency in the liquid phase.

Results

The results show that a diameter of 370 mm for the double-suction turbine agitator, an installation height of 640 mm, a blade diameter of 500 mm, and an inner hole diameter of 200 mm yield optimal gas-liquid two-phase mixing performance. This configuration results in a broad and uniform gas distribution within the reactor, maintaining a desired high level of gas holdup at specific positions.

Conclusion

The double suction turbine agitator is a type of radial agitator. During operation, it induces significant centrifugal forces in the liquid, exerts a robust shear effect, and enhances the mixing of the gas-liquid phases, thereby increasing the production efficiency of the product.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976338968241016045114
2024-11-07
2025-12-22
Loading full text...

Full text loading...

References

  1. CaillyW. Mc CarogherK. BolzeH. YinJ. KuhnS. Analysis of dynamic acoustic resonance effects in a sonicated gas–liquid flow microreactor.Ultrason. Sonochem.20239310630010.1016/j.ultsonch.2023.106300 36696780
    [Google Scholar]
  2. DoyleB.J. MorinF. HaelssigJ.B. RobergeD.M. MacchiA. Gas-liquid flow and interphase mass transfer in ll microreactors.Fluids (Basel)20205422310.3390/fluids5040223
    [Google Scholar]
  3. AkbariM. RahimiM. FaryadiM. Gas–liquid flow mass transfer in a T-shape microreactor stimulated with 1.7 MHz ultrasound waves.Chin. J. Chem. Eng.20172591143115210.1016/j.cjche.2017.03.010
    [Google Scholar]
  4. ZhaL. ShangM. QiuM. ZhangH. SuY. Process intensification of mixing and chemical modification for polymer solutions in microreactors based on gas-liquid two-phase flow.Chem. Eng. Sci.2019195627310.1016/j.ces.2018.11.043
    [Google Scholar]
  5. YueJ. Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis.Catal. Today201830831910.1016/j.cattod.2017.09.041
    [Google Scholar]
  6. QiaoN. YueS. ChengJ. A gas distributor capable of multiple injection directions to improve the gas–liquid dispersion performance in the airlift loop reactor.Biochem. Eng. J.202319010877010.1016/j.bej.2022.108770
    [Google Scholar]
  7. DanilovI.M. SonE.E. The simulation of a gas-liquid chemical reactor with dispersed medium.High Temp.201048457258210.1134/S0018151X10040152
    [Google Scholar]
  8. GuD. LiuZ. TaoC. LiJ. WangY. Numerical simulation of gas-liquid dispersion in a stirred tank agitated by punched rigid-flexible impeller.Int. J. Chem. React. Eng.20191742018019610.1515/ijcre‑2018‑0196
    [Google Scholar]
  9. BuffoA. MarchisioD.L. Modeling and simulation of turbulent polydisperse gas-liquid systems via the generalized population balance equation.Rev. Chem. Eng.20143017312610.1515/revce‑2013‑0015
    [Google Scholar]
  10. ReichmannF. TollkötterA. KörnerS. KockmannN. Gas-liquid dispersion in micronozzles and microreactor design for high interfacial area.Chem. Eng. Sci.201716915116310.1016/j.ces.2016.10.028
    [Google Scholar]
  11. TanJ. ZhangJ.S. LuY.C. XuJ.H. LuoG.S. Process intensification of catalytic hydrogenation of ethylanthraquinone with gas-liquid microdispersion.AIChE J.20125851326133510.1002/aic.12670
    [Google Scholar]
  12. LongS. YangJ. HuangX. Large-eddy simulation of gas–liquid two-phase flow in a bubble column reactor using a modified sub-grid scale model with the consideration of bubble-eddy interaction.Int. J. Heat Mass Transf.202016112024010.1016/j.ijheatmasstransfer.2020.120240
    [Google Scholar]
  13. ZhangQ. DongZ. ZhaoS. LiuZ. ChenG. Ultrasound-assisted gas–liquid mass transfer process in microreactors: The influence of surfactant, channel size and ultrasound frequency.Chem. Eng. J.202140512672010.1016/j.cej.2020.126720
    [Google Scholar]
  14. IssaH.M. Power consumption, mixing time, and oxygen mass transfer in a gas-liquid contactor stirred with a dual impeller for different spacing.J. Eng.2016201611710.1155/2016/3954305
    [Google Scholar]
  15. JamshedA. CookeM. RodgersT.L. Effect of zoning on mixing and mass transfer in dual agitated gassed vessels.Chem. Eng. Res. Des.201914223724410.1016/j.cherd.2018.12.011
    [Google Scholar]
  16. RasouliM. MousaviS.M. AzargoshasbH. JamialahmadiO. AjabshirchiY. CFD simulation of fluid flow in a novel prototype radial mixed plug-flow reactor.J. Ind. Eng. Chem.20186412413310.1016/j.jiec.2018.03.008
    [Google Scholar]
  17. FengD. FerrasseJ.H. SoricA. BoutinO. Bubble characterization and gas–liquid interfacial area in two phase gas–liquid system in bubble column at low Reynolds number and high temperature and pressure.Chem. Eng. Res. Des.20191449510610.1016/j.cherd.2019.02.001
    [Google Scholar]
  18. VarelaS. MartínezM. DelgadoJ.A. Numerical and experimental modelization of the two-phase mixing in a small scale stirred vessel.J. Ind. Eng. Chem.20186028629610.1016/j.jiec.2017.11.015
    [Google Scholar]
  19. KaradimouD.P. PapadopoulosP.A. MarkatosN.C. Mathematical modelling and numerical simulation of two-phase gas-liquid flows in stirred-tank reactors.J. King Saud Univ. Sci.2019311334110.1016/j.jksus.2017.05.015
    [Google Scholar]
  20. JaszczurM. MłynarczykowskaA. A general review of the current development of mechanically agitated vessels.Processes (Basel)20208898210.3390/pr8080982
    [Google Scholar]
  21. LiuT. ShengY. HanL. LiuQ. Simulation of the bubble behaviors for gas–liquid dispersion in agitated vessel.J. Chem. Eng. of Jpn201750141410.1252/jcej.16we023
    [Google Scholar]
  22. JadhavA.J. BarigouM. Eulerian-Lagrangian modelling of turbulent two-phase particle-liquid flow in a stirred vessel: CFD and experiments compared.Int. J. Multiph. Flow202215510419110.1016/j.ijmultiphaseflow.2022.104191
    [Google Scholar]
  23. Kiełbus-RąpałaA. RapisardaA. KarczJ. Experimental analysis of conditions of gas-liquid-floating particles system production in an agitated vessel equipped with two impellers.J Chem Eng Trans20197421974172
    [Google Scholar]
  24. StadlerE.L. Horizontal single use pressurizable modular multiagitator microbial fermentator.US Patent 96832082017
  25. JaquesC. M. Khan, M. W. Costa, R. D. P. de B. Beaney, A. Bioreactor with higher agitation rates.US20180010082 (2018).
    [Google Scholar]
  26. LiuB. ZhengY. ChengR. XuZ. WangM. JinZ. Experimental study on gas–liquid dispersion and mass transfer in shear-thinning system with coaxial mixer.Chin. J. Chem. Eng.20182691785179110.1016/j.cjche.2018.02.009
    [Google Scholar]
  27. RanganathanP. SivaramanS. Investigations on hydrodynamics and mass transfer in gas–liquid stirred reactor using computational fluid dynamics.Chem. Eng. Sci.201166143108312410.1016/j.ces.2011.03.007
    [Google Scholar]
  28. PetittiM. VanniM. MarchisioD.L. BuffoA. PodenzaniF. Simulation of coalescence, break-up and mass transfer in a gas–liquid stirred tank with CQMOM.Chem. Eng. J.20132281182119410.1016/j.cej.2013.05.047
    [Google Scholar]
  29. QiuF. LiuZ. LiuR. QuanX. TaoC. WangY. Experimental study of power consumption, local characteristics distributions and homogenization energy in gas–liquid stirred tank reactors.Chin. J. Chem. Eng.201927227828510.1016/j.cjche.2018.10.011
    [Google Scholar]
  30. OthmanN.T.A. NgalimanM.P. CFD simulation of gas-liquid in an agitated vessel.Indian J. Sci. Technol.201692110.17485/ijst/2016/v9i21/95246
    [Google Scholar]
  31. AmiraftabiM. KhiadaniM. MohammedH.A. Performance of a dual helical ribbon impeller in a two-phase (gas-liquid) stirred tank reactor.Chem. Eng. Process.202014810781110.1016/j.cep.2020.107811
    [Google Scholar]
  32. LiL.C. CFD simulation of gas residence time distribution in agitated tank.Adv. Mat. Res.2013732-73346747110.4028/www.scientific.net/AMR.732‑733.467
    [Google Scholar]
  33. HeidariA. CFD simulation of impeller shape effect on quality of mixing in two-phase gas–liquid agitated vessel.Chin. J. Chem. Eng.202028112733274510.1016/j.cjche.2020.06.036
    [Google Scholar]
  34. LiL. XuB. CFD simulation of gas-liquid floating particles mixing in an agitated vessel.Chem. Ind. Chem. Eng. Q.201723337738910.2298/CICEQ160129052L
    [Google Scholar]
  35. BombačA. PirnarJ. Numerical and experimental analyses of a stirred vessel for a large volumetric flow rate of sparged air.Chin. J. Chem. Eng.201927102304231210.1016/j.cjche.2019.03.009
    [Google Scholar]
  36. LiuX. LiuW. ZhaoY. Unsteady vibration aerodynamic modeling and evaluation of dynamic derivatives using computational fluid dynamics.Math. Probl. Eng.2015201511510.1155/2015/813462
    [Google Scholar]
  37. PourariaH. ParkK.H. SeoY. Numerical modelling of dispersed water in oil flows using eulerian-eulerian approach and population balance model.Processes (Basel)202198134510.3390/pr9081345
    [Google Scholar]
  38. LiaoS. Series solutions of unsteady boundary-layer flows over a stretching flat plate.Stud. Appl. Math.2006117323926310.1111/j.1467‑9590.2006.00354.x
    [Google Scholar]
  39. PerarasuV.T. ArivazhaganM. SivashanmugamP. CFD modelling study of heat transfer in a coiled agitated vessel.Prog Comput Fluid Dyn: Int J201414317718810.1504/PCFD.2014.062426
    [Google Scholar]
  40. MathurA. DovizioD. FrederixE.M.A. KomenE.M.J. A hybrid dispersed-large interface solver for multi-scale two-phase flow modelling.Nucl. Eng. Des.2019344698210.1016/j.nucengdes.2019.01.020
    [Google Scholar]
  41. OlejnikM. SzewcK. PozorskiJ. Modelling of the dispersed phase motion in free-surface flows with the two-fluid smoothed particle hydrodynamics approach.Proceedings of the V International Conference on Particle-Based Methods: fundamentals and applications, CIMNE20192132http://hdl.handle.net/2117/186965
    [Google Scholar]
  42. LiangchaoL. NingC. KefengX. BeipingX. A comparative CFD study on gas-liquid dispersion in a stirred tank with low and high gas loadings.Int. J. Chem. React. Eng.20181682017014710.1515/ijcre‑2017‑0147
    [Google Scholar]
  43. GaoX. KongB. RamezaniM. OlsenM.G. VigilR.D. An adaptive model for gas–liquid mass transfer in a Taylor vortex reactor.Int. J. Heat Mass Transf.20159143344510.1016/j.ijheatmasstransfer.2015.07.125
    [Google Scholar]
  44. LiL.C. XuB. CFD simulation of floating particles suspension in a stirred tank.Chem. Pap.20177181377138710.1007/s11696‑017‑0128‑5
    [Google Scholar]
  45. ChengD. WangS. YangC. MaoZ.S. Numerical simulation of turbulent flow and mixing in gas–liquid–liquid stirred tanks.Ind. Eng. Chem. Res.20175645130501306310.1021/acs.iecr.7b01327
    [Google Scholar]
  46. SuhJ.W. KimJ.W. ChoiY.S. KimJ.H. JooW.G. LeeK.Y. Development of numerical Eulerian-Eulerian models for simulating multiphase pumps.J. Petrol. Sci. Eng.201816258860110.1016/j.petrol.2017.10.073
    [Google Scholar]
  47. ElqotbiM. VlaevS.D. MontastrucL. NikovI. CFD modelling of two-phase stirred bioreaction systems by segregated solution of the Euler–Euler model.Comput. Chem. Eng.20134811312010.1016/j.compchemeng.2012.08.005
    [Google Scholar]
  48. DavyG. ReyssatE. VincentS. MimouniS. Euler–Euler simulations of condensing two-phase flows in mini-channel: Combination of a sub-grid approach and an interface capturing approach.Int. J. Multiph. Flow202214910396410.1016/j.ijmultiphaseflow.2021.103964
    [Google Scholar]
  49. ArgyropoulosC.D. MarkatosN.C. Recent advances on the numerical modelling of turbulent flows.Appl. Math. Model.201539269373210.1016/j.apm.2014.07.001
    [Google Scholar]
  50. LaneG.L. Improving the accuracy of CFD predictions of turbulence in a tank stirred by a hydrofoil impeller.Chem. Eng. Sci.201716918821110.1016/j.ces.2017.03.061
    [Google Scholar]
  51. Monte VerdeW. BiazussiJ.L. SassimN.A. BannwartA.C. Experimental study of gas-liquid two-phase flow patterns within centrifugal pumps impellers.Exp. Therm. Fluid Sci.201785375110.1016/j.expthermflusci.2017.02.019
    [Google Scholar]
  52. LouW. ZhuM. Numerical simulation of gas and liquid two-phase flow in gas-stirred systems based on Euler–Euler approach.Metall. Mater. Trans., B, Process Metall. Mater. Proc. Sci.20134451251126310.1007/s11663‑013‑9897‑6
    [Google Scholar]
  53. MowlaA. AgnaouM. TreeratanaphitakT. BudmanH.M. AbukhdeirN.M. IoannidisM.A. On the prediction of gas hold-up in two-phase flow systems using an Euler-Euler model.AIChE J.2020666e1695910.1002/aic.16959
    [Google Scholar]
  54. Tas-KoehlerS. LiaoY. HampelU. A critical analysis of drag force modelling for disperse gas-liquid flow in a pipe with an obstacle.Chem. Eng. Sci.202124611700710.1016/j.ces.2021.117007
    [Google Scholar]
  55. YangF. SunH. ZhangC. Gas-liquid mixing in a grid-disc impeller stirred tank.Chem. Eng. Technol.20204371297130710.1002/ceat.201900651
    [Google Scholar]
  56. JoshiJ.B. NereN.K. RaneC.V. CFD simulation of stirred tanks: Comparison of turbulence models. Part I: Radial flow impellers.Can. J. Chem. Eng.2011891238210.1002/cjce.20446
    [Google Scholar]
  57. GelvesR. DietrichA. TakorsR. Modeling of gas–liquid mass transfer in a stirred tank bioreactor agitated by a Rushton turbine or a new pitched blade impeller.Bioprocess Biosyst. Eng.201437336537510.1007/s00449‑013‑1001‑8 23828243
    [Google Scholar]
  58. TorotwaI. JiC. A study of the mixing performance of different impeller designs in stirred vessels using computational fluid dynamics.Designs (Basel)2018211010.3390/designs2010010
    [Google Scholar]
  59. YangF.L. ZhouS.J. Effect of gravity on the hydrodynamics in an unbaffled stirred vessel.Chem. Eng. Technol.201538581982610.1002/ceat.201400223
    [Google Scholar]
  60. SajjadiB. RamanA.A.A. IbrahimS. A comparative fluid flow characterisation in a low frequency/high power sonoreactor and mechanical stirred vessel.Ultrason. Sonochem.20152735937310.1016/j.ultsonch.2015.04.034 26186855
    [Google Scholar]
  61. HoseiniS.S. NajafiG. GhobadianB. AkbarzadehA.H. Impeller shape-optimization of stirred-tank reactor: CFD and fluid structure interaction analyses.Chem. Eng. J.202141312749710.1016/j.cej.2020.127497
    [Google Scholar]
  62. Escamilla-RuízI.A. Sierra-EspinosaF.Z. GarcíaJ.C. Valera-MedinaA. CarrilloF. Experimental data and numerical predictions of a single-phase flow in a batch square stirred tank reactor with a rotating cylinder agitator.Heat Mass Transf.20175392933294910.1007/s00231‑017‑2030‑7
    [Google Scholar]
  63. GaoF. WangH. WangH. Comparison of different turbulence models in simulating unsteady flow.Procedia Eng.20172053970397710.1016/j.proeng.2017.09.856
    [Google Scholar]
  64. ŞibilR. ArasE. KankalM. Comparison of various turbulence model performance in computational fluid dynamics analyses of the oxidation ditches with experimental validation.Process Saf. Environ. Prot.2021154435910.1016/j.psep.2021.07.046
    [Google Scholar]
  65. KoutsourakisN. BartzisJ.G. MarkatosN.C. Evaluation of Reynolds stress, k-ε and RNG k-ε turbulence models in street canyon flows using various experimental datasets.Environ. Fluid Mech.201212437940310.1007/s10652‑012‑9240‑9
    [Google Scholar]
  66. KhalajiM.N. KocaA. Kotcioğluİ. Investigation of numerical analysis velocity contours k-ε model of RNG, standard and realizable turbulence for different geometries.Int J Innov Res Rev2019322934
    [Google Scholar]
  67. DaróczyL. JanigaG. PetraschK. WebnerM. ThéveninD. Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors.Energy20159068069010.1016/j.energy.2015.07.102
    [Google Scholar]
  68. LiuZ. ChenY. WuY. WangW. LiL. Simulation of exchange flow between open water and floating vegetation using a modified RNG k-ε turbulence model.Environ. Fluid Mech.201717235537210.1007/s10652‑016‑9489‑5
    [Google Scholar]
  69. EscueA. CuiJ. Comparison of turbulence models in simulating swirling pipe flows.Appl. Math. Model.201034102840284910.1016/j.apm.2009.12.018
    [Google Scholar]
  70. SaeedM. YuJ.Y. AbdallaA.A.A. ZhongX.P. GhazanfarM.A. An assessment of k-ε turbulence models for gas distribution analysis.Nucl. Sci. Tech.2017281014610.1007/s41365‑017‑0304‑x
    [Google Scholar]
  71. WangP. ReviolT. RenH. BöhleM. Effects of turbulence modeling on the prediction of flow characteristics of mixing non-Newtonian fluids in a stirred vessel.Chem. Eng. Res. Des.201914725927710.1016/j.cherd.2019.05.001
    [Google Scholar]
  72. EbrahimiM. RoozbahaniM.H. Comparative investigation in a turbine blade passage flows with several different turbulence models.Int J Innov Res Rev2019322934
    [Google Scholar]
  73. WangMao.Z-S. YangC. Experimental and numerical investigation on gas holdup and flooding in an aerated stirred tank with Rushton impeller.Ind. Eng. Chem. Res.20064531141115110.1021/ie0503085
    [Google Scholar]
  74. JamshidzadehM. KazemzadehA. Ein-MozaffariF. LohiA. Intensification of gas dispersion in pseudoplastic fluids with coaxial mixers.Chem. Eng. Process.202015510805810.1016/j.cep.2020.108058
    [Google Scholar]
  75. MontanteG. PagliantiA. Gas hold-up distribution and mixing time in gas–liquid stirred tanks.Chem. Eng. J.201527964865810.1016/j.cej.2015.05.058
    [Google Scholar]
  76. LiuB. XiaoQ. SunN. GaoP. FanF. SundenB. Effect of gas distributor on gas–liquid dispersion and mass transfer characteristics in stirred tank.Chem. Eng. Res. Des.201914531432210.1016/j.cherd.2019.03.035
    [Google Scholar]
  77. JainS.V. SwarnkarA. MotwaniK.H. PatelR.N. Effects of impeller diameter and rotational speed on performance of pump running in turbine mode.Energy Convers. Manage.20158980882410.1016/j.enconman.2014.10.036
    [Google Scholar]
/content/journals/meng/10.2174/0122127976338968241016045114
Loading
/content/journals/meng/10.2174/0122127976338968241016045114
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test