Skip to content
2000
Volume 18, Issue 1
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Semisolid processing is a production method for metallic alloys and metal matrix composites by subjecting them to temperatures between the solidus and liquidus. The material then behaves thixotropically as it flows when sheared but thickens again when allowed to stand. Die design and process prerequisites such as ram speed, time, and needed lubricants were all part of the trial-and-error process. In general, rules controlling the designation of the casting and forging molds cannot be directly applied to metallic alloys and metal matrix composites (MMCs) in a semisolid state since the flow behavior of the materials in a semisolid state is different from that of a completely liquid or thoroughly solid form; therefore, a better and more comprehensive understanding of the semisolid flow behavior within the mold, the dominant frictional conditions, and optimized attributes of the process can be valuable steps in industrialization. The efforts put into industrializing and introducing patents on semisolid processes throughout recent years reveal the need to analyze the possibility of forming intricate industrial parts. This short review article reviews trends of numerical works on the semisolid forming of metals and metal matrix composites

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976294392240408065504
2024-04-22
2025-11-05
Loading full text...

Full text loading...

References

  1. JavdaniA. Daei-SorkhabiA.H. Microstructural and mechanical behavior of blended powder semisolid formed Al7075/B4C composites under different experimental conditions.Transac Nonferrous Metals Soc. China20182871298131010.1016/S1003‑6326(18)64767‑3
    [Google Scholar]
  2. MussattoA. AhadI.U.I. MousavianR.T. DelaureY. BrabazonD. Advanced production routes for metal matrix composites.Eng. Rep.202135e1233010.1002/eng2.12330
    [Google Scholar]
  3. JavdaniA. PouyafarV. AmeliA. VolinskyA.A. Blended powder semisolid forming of Al7075/Al2O3 composites: Investigation of microstructure and mechanical properties.Mater. Design2016109576710.1016/j.matdes.2016.07.042
    [Google Scholar]
  4. SajjadiS.A. EzatpourH.R. BeygiH. Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting.Mater. Sci. Eng. A201152829-308765877110.1016/j.msea.2011.08.052
    [Google Scholar]
  5. LloydD.J. Particle reinforced aluminium and magnesium matrix composites.Int. Mater. Rev.199439112310.1179/imr.1994.39.1.1
    [Google Scholar]
  6. ZebarjadS.M. SajjadiS.A. Microstructure evaluation of Al–Al2O3 composite produced by mechanical alloying method.Mater. Design200627868468810.1016/j.matdes.2004.12.011
    [Google Scholar]
  7. WuY. Development of novel semisolid powder processing for micromanufacturing. Masters of Science.Iowa State University200910.31274/etd‑180810‑1724
    [Google Scholar]
  8. BehrensB-A. FrischkornC. Thixoforging of particle-reinforced steel materials.Prod. Eng.2014833534310.1007/s11740‑014‑0533‑3
    [Google Scholar]
  9. SuryanarayanaC. Mechanical alloying: A novel technique to synthesize advanced materials.Research20192019421981210.34133/2019/4219812 31549063
    [Google Scholar]
  10. LiawP. YehJ-W. ZhangY. High-entropy alloys: Fundamentals and applications.Berlin, HeidelbergSpringer Link2016
    [Google Scholar]
  11. LiG. LuH. HuX. LinF. LiX. ZhuQ. Current progress in rheoforming of wrought aluminum alloys: A review.Metals (Basel)202010223810.3390/met10020238
    [Google Scholar]
  12. LuoX. WuM. FangC. HuangB. The current status and development of Semi-solid Powder Forming (SPF).J. Min. Metals Mater. Soc.2019714349436110.1007/s11837‑019‑03419‑6
    [Google Scholar]
  13. WuM. LiuJ. LiuY. LuoX. WangB. DuC. Microstructure evolution and densification of sintered porous 2024 aluminum alloy compressed in a semi-solid state.Mat. Res. Express20218606650310.1088/2053‑1591/ac045f
    [Google Scholar]
  14. LiuY. LuoX. LiZ. Microstructure evolution during semi-solid powder rolling and post-treatment of 7050 aluminum alloy strips.J. Mat. Proc. Technol.2014214216517410.1016/j.jmatprotec.2013.08.018
    [Google Scholar]
  15. JavdaniA. Ahmadi NajafabadiM. Experimental optimization of blended powder semisolid forming parameters for production of 316L stainless steel nanocomposites reinforced with Al2O3np.J. Min. Metals Mater. Soc.20247612451726110.1007/s11837‑023‑06282‑8
    [Google Scholar]
  16. JavdaniA. Ahmadi NajafabadiM. Achieving homogeneous distribution and dispersion of Al2O3 Nanoparticles within 316L matrix for production of metal matrix nanocomposites via blended powder semisolid forming.Arabian J. Sci. Eng.202320230843710.1007/s13369‑023‑08437‑w
    [Google Scholar]
  17. LiW-Z LiuS-Y Preparation method of aluminum-base composite material.CN Patent 102108455A2009
  18. KokeJ. ModigellM. Flow behaviour of semi-solid metal alloys.J. Non-Newtonian Fluid Mech.20031122-314116010.1016/S0377‑0257(03)00080‑6
    [Google Scholar]
  19. CzerwinskiF. Near liquidus injection molding process.US Patent 109858792007
  20. LiG. Semi-solid processing of aluminum and magnesium alloys: Status, opportunity, and challenge in China.Trans. Nonferrous Metals Soc. China202131113255328010.1016/S1003‑6326(21)65729‑1
    [Google Scholar]
  21. WithersG. Method and apparatus for producing components from metal and/or metal matrix composite materials.US Patent 107536512004
  22. Mìnghettì T. Nastran M. KuzmanK. Uggowitzer P J. Advanced forming techniques for aluminum – based metal matrix composites.Sem Scholar2021
    [Google Scholar]
  23. KangC.G. JungH.K. Semisolid forming process—numerical simulation and experimental study.Metallurgical and Mater. Trans., B.200132236337110.1007/s11663‑001‑0059‑x
    [Google Scholar]
  24. MeshkabadiR. FarajiG. JavdaniA. FataA. PouyafarV. Microstructure and homogeneity of semi-solid 7075 aluminum tubes processed by parallel tubular channel angular pressing.Metal Mater. Int.2017231019102810.1007/s12540‑017‑6760‑3
    [Google Scholar]
  25. MeshkabadiR. FarajiG. JavdaniA. PouyafarV. Combined effects of ECAP and subsequent heating parameters on semi-solid microstructure of 7075 aluminum alloy.Trans. Nonferrous Metals Soc. China201626123091310110.1016/S1003‑6326(16)64441‑2
    [Google Scholar]
  26. ZavaliangosA. LawleyA. Numerical simulation of thixoforming.J. Mater. Eng. Perform.19954404710.1007/BF02682703
    [Google Scholar]
  27. JiangJ. XiaoG. CheC. WangY. Microstructure, mechanical properties and wear behavior of the rheoformed 2024 aluminum matrix composite component reinforced by Al2O3 nanoparticles.Metals20188646010.3390/met8060460
    [Google Scholar]
  28. MoonH.K. Rheological behavior and microstructure of ceramic particulate/aluminum alloy composites.Cambridge, MAMassachusetts Institute of Technology1990http://hdl.handle.net/1721.1/13638
    [Google Scholar]
  29. RagabK.A. BouazaraM. BouaichaA. AllaouiO. Microstructural and mechanical features of aluminium semi-solid alloys made by rheocasting technique.Mater. Sci. Technol.201733664665510.1080/02670836.2016.1216263
    [Google Scholar]
  30. FuJ. WangK. Modelling and simulation of die casting process for A356 semi-solid alloy.Procedia Eng.20148161565157010.1016/j.proeng.2014.10.191
    [Google Scholar]
  31. PlataG. LozaresJ. HurtadoI. AzpilgainZ. Semisolid forging of steels: Readiness from an industrial point of view.AIP Conf Proc20192113114000110.1063/1.5112673
    [Google Scholar]
  32. JolyP.A. MehrabianR. The rheology of a partially solid alloy.J. Mater. Sci.1976111393141810.1007/BF00540873
    [Google Scholar]
  33. ShimaS. OyaneM. Plasticity theory for porous metals.Int. J. Mech. Sci.197618628529110.1016/0020‑7403(76)90030‑8
    [Google Scholar]
  34. ThadelaS. MandalB. DasP. RoyH. LoharA.K. SamantaS.K. Rheological behavior of semi-solid TiB2 reinforced Al composite.Trans. Nonferrous Metals Soc. China201525928783210.1016/S1003‑6326(15)63908‑5
    [Google Scholar]
  35. MeshkabadiR. PouyafarV. JavdaniA. FarajiG. An enhanced steady-state constitutive model for semi-solid forming of al7075 based on cross model.Metallurgical Mater. Trans., A20174894275428510.1007/s11661‑017‑4192‑9
    [Google Scholar]
  36. AtkinsonH.V. Modelling the semisolid processing of metallic alloys.Prog. Mater. Sci.200550334141210.1016/j.pmatsci.2004.04.003
    [Google Scholar]
  37. ModigellM. PolaA. TocciM. Rheological characterization of semi-solid metals: A review.Metals20188424510.3390/met8040245
    [Google Scholar]
  38. Nguyen ThanhL. SuéryM. Compressive behaviour of partially remelted A356 alloys reinforced with SiC particles.Mater. Sci. Technol.1994101089490210.1179/mst.1994.10.10.894
    [Google Scholar]
  39. WuY. Fabrication of metal matrix composite by semi-solid powder processing.Master's thesis, Iowa State University. U.S. Department of Energy201110.2172/1082974
    [Google Scholar]
  40. PetraJ. KotyniaM. The numerical simulation of the thixoforming.Chem. Process Eng.200122311031108
    [Google Scholar]
  41. RogalŁ. Critical assessment: Opportunities in developing semi-solid processing: Aluminium, magnesium, and high-temperature alloys.Mater. Sci. Technol.201733775976410.1080/02670836.2017.1295212
    [Google Scholar]
  42. ChenX-H. LiuG. ChenP. LiuL. RaoS. HuY. Short-process thixoforming of nano-particles reinforced aluminium matrix composites with a high solid fraction.Int. J. Cast. Metals Res.2021341213110.1080/13640461.2020.1863538
    [Google Scholar]
  43. FavierV. 5.10 - Modeling of Semisolid Flow.Comprehensive Materials Processing.Amsterdam, NetherlandsElsevier201419120910.1016/B978‑0‑08‑096532‑1.00519‑7
    [Google Scholar]
  44. YarA.A. MontazerianM. AbdizadehH. BaharvandiH.R. Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO.J. Alloys Compd.20094841-240040410.1016/j.jallcom.2009.04.117
    [Google Scholar]
  45. RokniM Zarei-HanzakiA AbediH HaghdadiN Microstructure evolution and mechanical properties of backward thixoextruded 7075 aluminum alloy.Mater Design (1980-2015)2012365576310.1016/j.matdes.2011.11.061
    [Google Scholar]
  46. SajjadiS.A. EzatpourH.R. Torabi PariziM. Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes.Mater. Des.20123410611110.1016/j.matdes.2011.07.037
    [Google Scholar]
  47. PolaA. TocciM. KapranosP. Microstructure and properties of semi-solid aluminum alloys: A literature review.Metals (Basel)20188318110.3390/met8030181
    [Google Scholar]
  48. PolaA. Correlation between microstructure and properties of semi-solid products.Solid State Phenom.2019285122310.4028/www.scientific.net/SSP.285.12
    [Google Scholar]
  49. KangC.G. JinC.K. BolouriA. Semisolid forming of thin plates with microscale features.Procedia Eng.201481637310.1016/j.proeng.2014.09.129
    [Google Scholar]
  50. BrochuM. VerremanY. AjerschF. BucherL. Fatigue behavior of semi-solid cast aluminum: A critical review.Solid State Phenom.2008141-14372573010.4028/www.scientific.net/SSP.141‑143.725
    [Google Scholar]
  51. BolouriA. ShahmiriM. KangC.G. Study on the effects of the compression ratio and mushy zone heating on the thixotropic microstructure of AA 7075 aluminum alloy via SIMA process.J. Alloys Compd.2011509240240810.1016/j.jallcom.2010.09.042
    [Google Scholar]
  52. ChenX.H. YanH. Fabrication of nanosized Al2O3 reinforced aluminum matrix composites by subtype multifrequency ultrasonic vibration.J. Mater. Res.201530142197220910.1557/jmr.2015.198
    [Google Scholar]
  53. OstwaldW. FUeber die Geschwindigkeitsfunktion der Viskosität disperser Systeme. I.Kolloid-Zeitschrift1925369911710.1007/BF01431449
    [Google Scholar]
  54. MacoskoC.W. Rheology: Principles, Measurements, and Applications.Hoboken, New JerseyWiley1994
    [Google Scholar]
  55. MaZ. Insights into the rheological modeling of semi-solid metals: Theoretical and simulation study.J. Mater. Sci. Technol.202210018219210.1016/j.jmst.2021.05.041
    [Google Scholar]
  56. BarnesH.A. Thixotropy—a review.J. Non-Newtonian Fluid Mech.1997701-213310.1016/S0377‑0257(97)00004‑9
    [Google Scholar]
  57. DennyD.A. BrodkeyR.S. Kinetic interpretation of non-newtonian flow.J. Appl. Phys.19623372269227410.1063/1.1728943
    [Google Scholar]
  58. MooreF. The rheology of ceramic slips and bodies.Trans Br Ceram Soc199558470
    [Google Scholar]
  59. CrossM.M. Rheology of non-newtonian fluids: A new flow equation for pseudoplastic systems.J. Colloid Sci.196520541743710.1016/0095‑8522(65)90022‑X
    [Google Scholar]
  60. SigworthG.K. Rheological properties of metal alloys in the semi-solid state.Can. Metall. Q.199635210112210.1179/cmq.1996.35.2.101
    [Google Scholar]
  61. BirdR.B. Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics.2nd ed.. Hoboken, New JerseyWiley1987
  62. JarforsA.E.W. JafariM. AqeelM. LiljeqvistP. JanssonP. In-production rheometry of semi-solid metal slurries.Metals2022127122110.3390/met12071221
    [Google Scholar]
  63. FaroughiS.A. HuberC. A generalized equation for rheology of emulsions and suspensions of deformable particles subjected to simple shear at low Reynolds number.Rheologica Acta2015548510810.1007/s00397‑014‑0825‑8
    [Google Scholar]
  64. JuL LuoH GuanY The design of a rheological model for semisolid metal slurries.J Phys Conf Ser 22002022101200510.1088/1742‑6596/2200/1/012005
    [Google Scholar]
  65. KangC.G. KangB.S. KimJ.I. An investigation of the mushy state forging process by the finite element method.J. Mater. Process. Technol.199880-8144444910.1016/S0924‑0136(98)00197‑6
    [Google Scholar]
  66. WangJ. PhillionA.B. LuG. Development of a visco-plastic constitutive modeling for thixoforming of AA6061 in semi-solid state.J. Alloys Compd.201460929029510.1016/j.jallcom.2014.04.140
    [Google Scholar]
  67. ChenL ZhaoG YuJ ZhangW. 2015; Constitutive analysis of homogenized 7005 aluminum alloy at evaluated temperature for extrusion process.Mater Design (1980-2015)20156612913610.1016/j.matdes.2014.10.045
    [Google Scholar]
  68. QiL. WangZ. ZhouJ. SuL. LiH. Constitutive behavior of Csf/AZ91D composites compressed at elevated temperature and containing a small fraction of liquid.Compos. Sci. Technol.201171795596110.1016/j.compscitech.2011.02.011
    [Google Scholar]
  69. van HaaftenW.M. MagninB. KoolW.H. KatgermanL. Constitutive behavior of as-cast AA1050, AA3104, and AA5182.Metall. Mater. Trans., A Phys. Metall. Mater. Sci.20023371971198010.1007/s11661‑002‑0030‑8
    [Google Scholar]
  70. QiuH. YanH. HuZ. Effect of samarium (Sm) addition on the microstructures and mechanical properties of Al–7Si–0.7Mg alloys.J. Alloys Compd.2013567778110.1016/j.jallcom.2013.03.050
    [Google Scholar]
  71. LiY. RameshK.T. ChinE.S.C. Viscoplastic deformations and compressive damage in an A359/SiCp metal–matrix composite.Acta Mater.20004871563157310.1016/S1359‑6454(99)00430‑9
    [Google Scholar]
  72. BaoG. LinZ. High strain rate deformation in particle reinforced metal matrix composites.Acta Mater.19964431011101910.1016/1359‑6454(95)00236‑7
    [Google Scholar]
  73. LiY. RameshK.T. Influence of particle volume fraction, shape, and aspect ratio on the behavior of particle-reinforced metal-matrix composites at high rates of strain.Acta Materialia199846165633564610.1016/S1359‑6454(98)00250‑X
    [Google Scholar]
  74. YanH. WangJ.J. ZhangF.Y. A constitutive model for thixotropic plastic forming of composites.Adv. Mater Res.2011154690693
    [Google Scholar]
  75. ChenX.H. YanH. Constitutive behavior of Al2O3np/Al7075 composites with a high solid fraction for thixoforming.J. Alloys Compd.201770875176210.1016/j.jallcom.2017.03.063
    [Google Scholar]
/content/journals/meng/10.2174/0122127976294392240408065504
Loading
/content/journals/meng/10.2174/0122127976294392240408065504
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test