Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Introduction

Based on the author’s invention patent literature, this article designs a parameterized simulation model of a multi-layer jet weft insertion system by profiles reed guidance for a 3D loom on the PTC Creo9.0 platform, including the main supersonic nozzle, supersonic auxiliary nozzle (relay nozzle), and multi-slot profiles reed components.

Methods

Based on the existing basic theory, experimental results, and empirical data of turbulent jet, the parameters of the multi-layer jet weft insertion system, as well as the structural parameters and the relative positions of the main, auxiliary nozzle and profile reed components, such as the center distance of each layer's main nozzle, auxiliary nozzle spacing, auxiliary nozzle installation angle, spray direction angle, and spray angle, have been determined preliminarily.

Results

Further, the basic flow field parameters, such as the supply pressure of the main and auxiliary nozzles and the shape of multi-layer profile reeds, have been determined optimally on the Virtual Prototype Collaborative Simulation Platform (PTC Creo9.0/ANSYS Workbench/Fluent 2024R1), and the rationality of the structural design also been verified; on the premise of ensuring that the airflow velocity of each layer's profiles groove meets the requirements of weft insertion, the design and simulation calculation is repeatedly modified, and the optimal structural design parameters of the multi-layer weft insertion system and nozzle is finally determined.

Conclusion

To explore the feasibility of multi-layer jet weft insertion, the design of three-dimensional multi-layer jet weft insertion looms has laid a theoretical foundation, laying a good foundation for the emergence and industrial manufacturing of three-dimensional multi-layer jet weft insertion looms, and providing an important reference for the innovative design of three-dimensional multi-layer water jet weft insertion looms.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976330065241106072805
2024-12-13
2025-12-09
Loading full text...

Full text loading...

References

  1. WangY LiuW LiP 3D multi-layer jet weft insertion loom.CN Patent 105239256B2017
  2. LiP. WangY. WangY.Q. LiuJ. ZhouN. ChenY. Design of weft insertion system for the FLUENT- based On 3D multi-layer air-jet loom.Textile Accessories (Chinese)2018453139144
    [Google Scholar]
  3. WangY ZhouN HaoM ChenY. A multi-layer jet relay weft insertion device.CN Patent 107366077B2019
  4. AbramovichG.N. The theory of turbulent jets.Massachusetts, USThe MIT Press1963
    [Google Scholar]
  5. PeiqingL. Free turbulent jet theory (Chinese).Beijing, ChinaUniversity of Aeronautics and Astronautics Press2008
    [Google Scholar]
  6. NatarajanV. PrasilV. EgrtF. HrusM. New air-jet weft-insertion system without an air-guide and with double-holed relay nozzles: A study of double-holed relay nozzles.J. Textil Inst.199384331432510.1080/00405009308658964
    [Google Scholar]
  7. VangheluweL. Air-jet weft insertion.Textile Progress199929416310.1080/00405169908688878
    [Google Scholar]
  8. SnowdenD.C. The production of woven fabrics.Textile Progress19724118510.1080/00405167208688992
    [Google Scholar]
  9. HearleJ.W.S. The 20th-Century revolution in textile machines and processes. Part 1: Spinning and weaving.Ind. Archaeol. Rev.2013352879910.1179/0309072813Z.00000000019
    [Google Scholar]
  10. LiangZ. ZhihuaF. XiaofeiZ. Influence of auxiliary nozzle and profiled reed in air-jet loom on flow field.J Textil Res (Chinese)2016379129133
    [Google Scholar]
  11. QiaolanC. HongboW. WeidongG. Structure optimization of single circular hole auxiliary nozzle in air-jet loom.J Textil Res (Chinese)2016371142146
    [Google Scholar]
  12. QiaolanC. HongboW. WeidongG. Optimization design of hole shape of auxiliary nozzle on air-jet loom.Shanghai Textile Sci Technol (Chinese)20164471416
    [Google Scholar]
  13. ZeganM. AyeleM. Optimization of air pressure and speed of air jet loom; impact on fabric tensile and tear strength properties using Response Surface Methodology.J. Nat. Fibers20221915102271024010.1080/15440478.2021.1993492
    [Google Scholar]
  14. KetemaM.Y. AyeleM. Effect of cotton/polyester blend ratio, loom speed, and air pressure on yarn twist loss and yarn strength loss: The case of air-jet loom.J. Nat. Fibers2023201216218810.1080/15440478.2022.2162188
    [Google Scholar]
  15. HanY. JieZ. GaoW. PanR. NingZ. Optimization of air-jet loom main nozzle air pressure based on production practice.J Textil Res (Chinese)20173801126131
    [Google Scholar]
  16. NingD. KaixinX. XudongH. YushanX. Loom data acquisition and monitoring system under cloud edge collaboration.J Textil Res(Chinese)20244508215224
    [Google Scholar]
  17. ShichaoX. MinS. JingbingF. ZhenW. LianqingY. Characteristics of weft insertion synthetic airflow from main nozzle and high-speed special-shaped auxiliary nozzles.J Textil Res (Chinese)20234412181188
    [Google Scholar]
  18. DelcourL. PeetersJ. DegrooteJ. Development of an iterative procedure with a flow solver for optimizing the yarn speed in a main nozzle of an air jet loom.J. Textil Inst.2019110685987210.1080/00405000.2018.1529219
    [Google Scholar]
  19. XiaoS. ShenM. YangQ. WangZ. ZhouJ. Characteristics of instantaneous intersecting airflow from main nozzle and various relay nozzles in an air jet loom.J. Textil Inst.2023202311310.1080/00405000.2023.2262115
    [Google Scholar]
  20. DongH. CuiJ. ZhuZ. JinY. Vortex characteristics inside profile reed channel of an air-jet loom based on large eddy simulation.J. Textil Inst.2023202311310.1080/00405000.2023.2281154
    [Google Scholar]
  21. AdámekK. Numerical modelling of air flow in air jet weaving system.Int. J. Polym. Mater.200047461362310.1080/00914030008031316
    [Google Scholar]
  22. JiangS. JinY. HuX. CuiJ. JinY. Characteristics of intersecting airflows in the narrow flow channel.J. Textil Inst.2018109451752310.1080/00405000.2017.1357938
    [Google Scholar]
  23. AdmasA. AyeleM. Impacts of yarn hairiness and voluminous on weft yarn speed and twist loss in air-jet weaving.J. Nat. Fibers2023202225337210.1080/15440478.2023.2253372
    [Google Scholar]
  24. DejeneB.K. AyeleM. Impact of weft yarn structure and fiber type on weft yarn velocity and twist loss in air-jet weaving: A critical review.J. Nat. Fibers2024211236596110.1080/15440478.2024.2365961
    [Google Scholar]
  25. GithaigaJ. VangheluweL. KiekensP. Relationship between the properties of cotton rotor spun yarns and the yarn speed in an air-jet loom.J. Textil Inst.2000911354710.1080/00405000008659486
    [Google Scholar]
  26. ShaoboG. YuzhenJ. XiaochenZ. Analysis on airflow field in extended nozzle of air jet loom.J Textil Res (Chinese)20194004135139
    [Google Scholar]
  27. SihuL. MinS. Influence of structure parameter of auxiliary nozzle in air-jet loom on characteristics of flow field.J Textil Res (Chinese)20194011161167
    [Google Scholar]
  28. JingbingF. MinS. JunxiangL. ZhenW. LianqingY.U. Interaction between weft deformation and synthetic airflow from multiple multi-hole array relay nozzle.J Textil Res (Chinese)20244503194201
    [Google Scholar]
  29. HaobangZ. MinS. LianqingY. ShichaoX. Effect of structural parameter of relay nozzles on characteristics of flow field in profiled reed of air jet loom.J Textil Res (Chinese)20214211166172
    [Google Scholar]
  30. LiangZ. ZhihuaF. ShuaiL. Structure optimization design of auxiliary nozzle for air-jet loom.J Textil Res (Chinese)2016376112117
    [Google Scholar]
  31. BailinF. ChangruiZ. JiahuaG. GanghanH. GuoliangW.E.I. Nozzle structure optimization based on flow simulation for air-jet weaving.J Textil Res (Chinese)20234406200206
    [Google Scholar]
  32. RowlandG. Air jet machine and diagonal Z loop fabric pattern for three-dimensional fabric.US Patent 59244591999
  33. QianY. YanH. JiangY. GeC. Development of electronic shedding system of three-dimensional loom.J Textil Res (Chinese)201435121150
    [Google Scholar]
  34. HillB.J. McIlhaggerR. HarperC.M. Weaving of three-dimensional fabrics for preform construction: Part I: Use of texturised glass yarn.J. Textil Inst.19958619610310.1080/00405009508631312
    [Google Scholar]
  35. VassiliadisS. Advances in modern woven fabrics technology/5. multiaxis three dimensional (3D) woven fabric.London: InTechOpen201110.5772/678
    [Google Scholar]
  36. JeonH-Y. Woven fabrics/ 4.3D woven fabrics.London: InTechOpen201210.5772/2594
    [Google Scholar]
  37. TorunA.R. Theory of multilayer woven structures.J. Textil Inst.2015106444345710.1080/00405000.2014.925627
    [Google Scholar]
  38. ShiJ. ChenH. XuN. HuangX. CaoH. The mechanical properties of Kevlar three-dimensional angle-interlock fabrics and composites.J. Textil Inst.2024202411310.1080/00405000.2024.2366704
    [Google Scholar]
  39. PaulP. AhirwarM. BeheraB.K. Acoustic behavior of three-dimensional woven fabrics and their composites: Role of fiber type and weave architecture.J. Textil Inst.2023202311410.1080/00405000.2023.2284512
    [Google Scholar]
  40. SinghM.K. SaraswatG. MukhopadhyayS. Three-dimensional orthogonal woven hybrid fabrics in X band frequency region for electromagnetic shielding effectiveness.J. Textil Inst.2024115339039710.1080/00405000.2023.2201045
    [Google Scholar]
  41. LiY. LiL. LiY. WangH. WangP. ZhangY. The through-thickness thermal conductivity and heat transport mechanism of carbon fiber three-dimensional orthogonal woven fabric composite.J. Textil Inst.2024115230831510.1080/00405000.2023.2201029
    [Google Scholar]
  42. HillB.J. McIlhaggerR. HarperC.M. Weaving of three-dimensional fabrics for preform construction. Part II: Use of flat continuous glass filament yarn.J. Textil Inst.199586110410910.1080/00405009508631313
    [Google Scholar]
  43. ZhaoL. PoratI. GreenwoodK. The computerised weaving of preforms for composites Part I: The flattening of 3-dimensional preforms.J. Textil Inst.199687118319410.1080/00405009608659066
    [Google Scholar]
  44. KorkmazM. OkurA. The review about the numerical modelling and analysis of 3D woven fabrics.J. Textil Inst.2023114349652210.1080/00405000.2022.2048517
    [Google Scholar]
  45. NejeG. BeheraB. Geometrical modeling of 3D woven spacer fabrics as reinforcement for lightweight sandwich composites.J. Textil Inst.2019110573273910.1080/00405000.2018.1516111
    [Google Scholar]
  46. BuchananS. GrigorashA. QuinnJ.P. McIlhaggerA.T. YoungC. Modelling the geometry of the repeat unit cell of three-dimensional weave architectures.J. Textil Inst.2010101767968510.1080/00405000902746586
    [Google Scholar]
  47. WangY. Dynamic design of high frequency electromagnetic valve for air jet loom.Textile Accessories (Chinese)2007051214
    [Google Scholar]
  48. WangY. WangY. LiuX. YuY. WangX. Research on virtual prototype of take-up and let-off mechatronics of new loom proceedings of the 2010 IEEE International Conference on Mechatronics and Automation.Xi`an,China201011475210.1109/ICMA.2010.5588207
    [Google Scholar]
  49. WangY. WangY. ZhuG. Dynamics modeling and simulation of take-up and let-off mechanism of weaving machine.Adv. Mech. Eng.2013313141
    [Google Scholar]
  50. WangYixuan SuYuewen LiJinhua Research on virtual prototype of weaving machine based on modern CAD/CAE technology.Shanghai Textil Technol2005200505133910.16549/j.cnki.issn.1001‑2044.2005.05.003
    [Google Scholar]
  51. WangY LiP LiuH A double-layer jet relay weft insertion device with adjustable nozzle spraying angle for auxiliary nozzles.CN Patent 107254736B2019
  52. HanB. WangY. ChaoL. LiangY. MeiZ. Design and research of virtual prototype of three-dimensional weaving machine.Tech Textil(Chinese)2016042936
    [Google Scholar]
  53. ANSYSAnsys Fluent Theory Guide.2024Available From: https://dl.cfdexperts.net/cfd_resources/Ansys_Documentation/Fluent/Ansys_Fluent_Theory_Guide.pdf
    [Google Scholar]
  54. JohnD. Fundamentals of Aerodynamics.New YorkMcGraw-Hill Education2017
    [Google Scholar]
  55. MilesJ.H. Collective Interaction of a Compressible Periodic Parallel Jet Flow, National Aeronautics and Space Administration.Cleveland, OH, United StatesLewis Research Center1997
    [Google Scholar]
  56. HirschC. Numerical Computation of Internal and External Flows.AmsterdamElsevier2007
    [Google Scholar]
  57. HirschC. Computational Methods for lnviscid and Viscous Flows/PART VI: The numerical solution of the system of euler equations/ PART VII: The numerical solution of the na vier-stokes equations.Burlington, US: John Wiley & Sons, Ltd19942125674
    [Google Scholar]
  58. Cushman-RoisinB. Environmental fluid mechanics.ChamSpringer2022
    [Google Scholar]
  59. NagashimaM. NagoyaJ. Weft inserting nozzle of air-jet type weaving loom.US Patent 44573461996
  60. SoraG. Main nozzle accelerator chamber for an air-jet loom.US Patent 55268501984
  61. NittaY. SuzukiH. MuramatsuM. Auxiliary nozzle for air jet loom.US Patent 49151411990
  62. MaesD. Auxiliary nozzle for air jet loom.US Patent 47949581989
  63. ShirakiM. Reed pieces with recessed weft guide openings having inclined surfaces.US Patent 53238141994
  64. (aMinistry of Industry and Information Technology of the People’s Republic of China. Nozzles for Jet Looms – Part 1: Main Nozzles [Internet].Available from: https://std.samr.gov.cn/hb/search/stdHBDetailed?id=8B1827F26CE4BB19E05397BE0A0AB44A
  65. (bMinistry of Industry and Information Technology of the People’s Republic of China. Nozzles for Jet Looms – Part 2: Auxiliary Nozzles [Internet].Available from: https://std.samr.gov.cn/hb/search/stdHBDetailed?id=8B1827F14D26BB19E05397BE0A0AB44A
  66. NittaY. MuramatsuM. Profiled reed dent with weft passage recess.US Patent 49896461991
  67. PeetersJ. Reed and reed dent for weaving machines.US Patent 64017622002
  68. Ministry of Industry and Information Technology of the People’s Republic of China. Reeds – Part Five: Profiled Blades for Air-Jet Loom. Standard FZ/T 94011.5-2013. Beijing: Ministry of Industry and Information Technology of the People’s Republic of China; 2013.Available from: https://www.chinesestandard.net/PDF/English.aspx/FZT94011.5-2013
  69. ShirakiM. Weft inserting device for an air jet loom having reed pieces with recessed weft guide openings.US Patent 55884701996
  70. RobertG. Reed assemblyUS Patent 60390872000
  71. HoneggerR. Reed for jet weaving machines.US Patent 44782591984
  72. WahhoudA. Multi-section reed for air jet loom.US Patent 57822711998
  73. RobertG. Weaving reedUS Patent 61020812000
  74. VerhulstJ. Reed for a loom and method for bracing such reed against certain motion.US Patent 200200432912002
  75. YamamotoA. Reed for weavingUS Patent 69688652005
  76. VerhulstJ. Weft inserting nozzle with separate threading duct.US Patent 5111851992
  77. PeetersJ. Auxiliary nozzle for a weaving machine.US Patent 6536482B12003
  78. KernerH. Auxiliary blow nozzle for an air jet weaving machine.US Patent 61387192000
  79. OkesakuM. Auxiliary sub-nozzle for fluid jet loom.US Patent, 49879301998
/content/journals/meng/10.2174/0122127976330065241106072805
Loading
/content/journals/meng/10.2174/0122127976330065241106072805
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test