Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Introduction

In phase change thermal management systems, the development of magnetic phase change materials offers the possibility of effectively integrating passive and active heat control technologies. The low dispersibility of traditional heat transfer additives, the high interfacial thermal resistance with phase change matrices, and the restricted magnetic response characteristics are some of the current problems that must be resolved.

Methods

To overcome these challenges, this study employed a co-precipitation method to composite magnetic nanoparticles FeO with graphene oxide (GO). The active sites on GO were functionalized with alkyl groups to prepare FeO-modified graphene oxide (FeO-MGO)/paraffin magnetic composite phase change materials. The morphology, structure, chemical composition, and thermal properties of the resulting magnetic composite phase change materials were tested and characterized.

Results

The results indicated that FeO-MGO exhibits good dispersibility in paraffin, which can enhance the thermal conductivity of the phase change material. The thermal conductivity of the composite phase change material with a FeO-MGO mass fraction of 2.0% was measured to be 0.461 W/m·K, representing a 47.3% increase compared to pure paraffin. Additionally, FeO-MGO demonstrated a certain phase change capability, with a phase change enthalpy reaching 70.35 kJ/kg.

Conclusion

The findings of this study are expected to provide technical support for innovative applications of magnetic-controlled phase change thermal management. The emergence of magnetic phase change materials holds the promise of achieving efficient integration of passive and active heat control technologies within phase change thermal management systems. However, several issues still need to be addressed in patents and related research.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976324000241029061830
2024-12-12
2025-12-21
Loading full text...

Full text loading...

References

  1. WangC.H. FanX.B. XieS.Y. WuT.T. An Efficient Thermal Energy Storage Device: China,CN Patent 201811393986.8201910.1016/j.cej.2021.132741
  2. HuangZ. WangC. ZhouL. WuC. Thermal conductivity enhancement and shape stability of phase-change materials using high-strength 3D graphene skeleton.Surf. Interfaces20212610133810.1016/j.surfin.2021.101338
    [Google Scholar]
  3. WuS. YanT. KuaiZ. PanW. Thermal conductivity enhancement on phase change materials for thermal energy storage: A review.Energy Storage Mater.20202525129510.1016/j.ensm.2019.10.010
    [Google Scholar]
  4. RenS.J. LiJ.H. ZhangB.F. HuangK.Y. BaiY.B. Preparation of a composite phase change material with high thermal storage capacity using modified expanded graphite as the matrix.Diam. Relat. Mater.20222022121
    [Google Scholar]
  5. ZhaoY. ZhangZ. CaiC. ZhouZ. LingZ. FangX. Vertically aligned carbon fibers-penetrated phase change thermal interface materials with high thermal conductivity for chip heat dissipation.Appl. Therm. Eng.202323012080710.1016/j.applthermaleng.2023.120807
    [Google Scholar]
  6. BaiJ. ZhangB. YangB. ShangJ. WuZ. Preparation of three-dimensional interconnected graphene/ionic liquid composites to enhanced thermal conductivities for battery thermal management.J. Clean. Prod.202237013357210.1016/j.jclepro.2022.133572
    [Google Scholar]
  7. LiuX. RaoZ. Experimental study on the thermal performance of graphene and exfoliated graphite sheet for thermal energy storage phase change material.Thermochim. Acta2017647152110.1016/j.tca.2016.11.010
    [Google Scholar]
  8. WangJ. XieH. XinZ. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes.Thermochim. Acta20094881-2394210.1016/j.tca.2009.01.022
    [Google Scholar]
  9. WangJ. XieH. XinZ. Preparation and thermal properties of grafted CNTs composites.J. Mater. Sci. Technol.201127323323810.1016/S1005‑0302(11)60055‑8
    [Google Scholar]
  10. TengT.P. ChengC.M. ChengC.P. Performance assessment of heat storage by phase change materials containing MWCNTs and graphite.Appl. Therm. Eng.201350163764410.1016/j.applthermaleng.2012.07.002
    [Google Scholar]
  11. TaoY.B. LinC.H. HeY.L. Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material.Energy Convers. Manage.20159710311010.1016/j.enconman.2015.03.051
    [Google Scholar]
  12. FanL.W. FangX. WangX. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials.Appl. Energy201311016317210.1016/j.apenergy.2013.04.043
    [Google Scholar]
  13. DeloueiA.A. NaeimiH. SajjadiH. AtashafroozM. ImanparastM. ChamkhaA.J. An active approach to heat transfer enhancement in indirect heaters of city gate stations: An experimental modeling.Appl. Therm. Eng.20242024237
    [Google Scholar]
  14. HedeshiM. JalaliA. ArabkoohsarA. Amiri DeloueiA. Nanofluid as the working fluid of an ultrasonic-assisted double-pipe counter-flow heat exchanger.J. Therm. Anal. Calorim.2023148168579859110.1007/s10973‑023‑12102‑7
    [Google Scholar]
  15. FengY. LiH. GuoK. LeiX. ZhaoJ. Numerical study on saturated pool boiling heat transfer in presence of a uniform electric field using lattice Boltzmann method.Int. J. Heat Mass Transf.201913588589610.1016/j.ijheatmasstransfer.2019.01.119
    [Google Scholar]
  16. HeW. ZhuangY. ChenY. WangC. Experimental and numerical investigations on the melting behavior of Fe3O4 nanoparticles composited paraffin wax in a cubic cavity under a magnetic-field.Int. J. Therm. Sci.202318410796110.1016/j.ijthermalsci.2022.107961
    [Google Scholar]
  17. DeloueiA.A. SajjadiH. AhmadiG. The effect of piezoelectric transducer location on heat transfer enhancement of an ultrasonic-assisted liquid-cooled CPU radiator.Iran. J. Sci. Technol. Trans. Mech. Eng.202448123925210.1007/s40997‑023‑00667‑5
    [Google Scholar]
  18. DeloueiA.A. SajjadiH. AtashafroozM. HesariM. Ben HamidaM.B. ArabkoohsarA. Louvered fin-and-flat tube compact heat exchanger under ultrasonic excitation.Fire (Basel)202361
    [Google Scholar]
  19. DeloueiA.A. SajjadiH. AhmadiG. Ultrasonic vibration technology to improve the thermal performance of CPU water-cooling systems: Experimental investigation.Water202214244000
    [Google Scholar]
  20. TadaY. YoshiokaS. TakimotoA. HayashiY. Heat transfer enhancement in a gas–solid suspension flow by applying electric field.Int. J. Heat Mass Transf.20169377878710.1016/j.ijheatmasstransfer.2015.09.063
    [Google Scholar]
  21. HeW.X. ZhuangY.J. ChenY.J. WangC.H. Thermo-magnetic convection regulating the solidification behavior and energy storage of FeO nanoparticles composited paraffin wax under the magnetic-field.Appl. Therm. Eng.20222022214
    [Google Scholar]
  22. ZawiszaB. SitkoR. MalickaE. TalikE. Graphene oxide as a solid sorbent for the preconcentration of cobalt, nickel, copper, zinc and lead prior to determination by energy-dispersive X-ray fluorescence spectrometry.Anal. Methods20135226425643010.1039/c3ay41451e
    [Google Scholar]
  23. ZhangW. ShiX. ZhangY. GuW. LiB. XianY. Synthesis of water-soluble magnetic graphene nanocomposites for recyclable removal of heavy metal ions.J. Mater. Chem. A Mater. Energy Sustain.2013151745175310.1039/C2TA00294A
    [Google Scholar]
  24. HanQ. WangZ. XiaJ. ChenS. ZhangX. DingM. Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples.Talanta201210138839510.1016/j.talanta.2012.09.046 23158339
    [Google Scholar]
  25. ZhangS.P. SongH.O. Supramolecular graphene oxide-alkylamine hybrid materials: Variation of dispersibility and improvement of thermal stability.New J. Chem.20123691733173810.1039/c2nj40214a
    [Google Scholar]
  26. WuT. WangC. HuY. ZhouL. HeK. Research on novel battery thermal management system coupling with shape memory PCM and molecular dynamics analysis.Appl. Therm. Eng.202221011837310.1016/j.applthermaleng.2022.118373
    [Google Scholar]
  27. ArefA.H. EntezamiA.A. Erfan-NiyaH. ZaminpaymaE. Thermophysical properties of paraffin-based electrically insulating nanofluids containing modified graphene oxide.J. Mater. Sci.20175252642266010.1007/s10853‑016‑0556‑6
    [Google Scholar]
  28. LiuC. ZhangX. LvP. LiY. RaoZ. Experimental study on the phase change and thermal properties of paraffin/carbon materials based thermal energy storage materials.Phase Transit.201790771773110.1080/01411594.2016.1277219
    [Google Scholar]
  29. SahanN. FoisM. PaksoyH. Improving thermal conductivity phase change materials-A study of paraffin nanomagnetite composites.Sol. Energy Mater. Sol. Cells2015137616710.1016/j.solmat.2015.01.027
    [Google Scholar]
  30. OwolabiAL Al-KayiemHH BahetaAT Nanoadditives induced enhancement of the thermal properties of paraffin-based nanocomposites for thermal energy storage.Int J Sol Energy2016135644665310.1016/j.solener.2016.06.008
    [Google Scholar]
/content/journals/meng/10.2174/0122127976324000241029061830
Loading
/content/journals/meng/10.2174/0122127976324000241029061830
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test