Skip to content
2000
Volume 18, Issue 3
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Introduction

This paper highlights the representative patents related to the application of maskless electrochemical micromachining (EMM) using microtextured tools and developed cells under electrolysis conditions for the generation of high-quality complex patterns, ., cascade micropattern on stainless steel.

Methods

To acquire high accuracy level, the workpiece and tools are fixtured properly in the developed microtextured cell, and a developed vertical cross-flow system is utilized for the generation of a precise cascade micropattern. An electrochemical microtextured cell is designed and developed inexpensively for the fabrication of high-quality complex micropatterns. The eco-friendly combined electrolyte of NaNO and NaCl is employed for precise micro texturing.

Results

The consequence of predominant input factors, ., IEG, voltage, and flow rate, are explored on machining rate, precision, depth, and surface finish during complex micro-texturing using developed microtextured cells. The complex microtextured tool is fixtured in tool holding device in a developed microtextured cell and fabricates nineteen precise complex micropatterns.

Conclusion

An effort has been made to find suitable input factors for the generation of precise complex micropatterns.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976287865240326062010
2025-06-01
2025-08-13
Loading full text...

Full text loading...

References

  1. AmatoI. Fomenting a revolution, in miniature.Science1998282538840240510.1126/science.282.5388.402
    [Google Scholar]
  2. CraigheadH.G. Nanoelectromechanical systems.Science200029054961532153510.1126/science.290.5496.1532 11090343
    [Google Scholar]
  3. EhrfeldW. HesselV. LöweH. Microreactors - New Technology for Modern Chemistry.WeinheimWiley-VCH200010.1002/3527601953
    [Google Scholar]
  4. EberhardtW. In Transducers 01. The 11th International Conference on Solid-State Sensors and Actuators, . June 10 - 14, 2001 Munich, Germany. Berlin: Springer;2001
    [Google Scholar]
  5. Rai ChoudhuryP. Handbook of Microlithography, Micromachining, and Microfabrication. Bellingham, WA: SPIE Optical Engineering Press 1997; 1 and 2.
    [Google Scholar]
  6. FriedrichC.R. Handbook of Microlithography, Micromachining, & Microfabrication.Bellingham, WASPIE1997299377
    [Google Scholar]
  7. DattaM. HarrisD. Electrochemical micromachining: An environmentally friendly, high speed processing technology.Electrochim. Acta19974220-223007301310.1016/S0013‑4686(97)00147‑3
    [Google Scholar]
  8. DattaM. LandoltD. Fundamental aspects and applications of electrochemical microfabrication.Electrochim. Acta20004515-162535255810.1016/S0013‑4686(00)00350‑9
    [Google Scholar]
  9. KolbD.M. UllmannR. WillT. Nanofabrication of small copper clusters on gold(111) electrodes by a scanning tunneling microscope.Science199727553031097109910.1126/science.275.5303.1097 9027304
    [Google Scholar]
  10. EngelmannG.E. ZieglerJ.C. KolbD.M. Electrochemical fabrication of large arrays of metal nanoclusters.Surf. Sci.19984012L420L42410.1016/S0039‑6028(98)00078‑8
    [Google Scholar]
  11. SchindlerW. HofmannD. KirschnerJ. Localized electrodeposition using a scanning tunneling microscope tip as a nanoelectrode.J. Electrochem. Soc.20011482C124C13010.1149/1.1343107
    [Google Scholar]
  12. LiW. VirtanenJ.A. PennerR.M. Nanometer-scale electrochemical deposition of silver on graphite using a scanning tunneling microscope.Appl. Phys. Lett.199260101181118310.1063/1.107398
    [Google Scholar]
  13. SchusterR. KirchnerV. XiaX.H. BittnerA.M. ErtlG. Nanoscale electrochemistry.Phys. Rev. Lett.199880255599560210.1103/PhysRevLett.80.5599
    [Google Scholar]
  14. XiaX.H. SchusterR. KirchnerV. ErtlG. Balance between surface and electrochemical energy: The growth of size-determined Cu clusters in nanometer holes on Au (111).J. Electrochem. Soc.1999461102109
    [Google Scholar]
  15. ZachM.P. NgK.H. PennerR.M. Molybdenum nanowires by electrodeposition.Science200029054992120212310.1126/science.290.5499.2120 11118141
    [Google Scholar]
  16. KunarS. BhattacharyyaB. Fabrication of cascade micropattern by maskless electrochemical micromachining.Int J Mach Mach Mater2020223/423324710.1504/IJMMM.2020.107054
    [Google Scholar]
  17. NouraeiS. RoyS. Electrochemical process for micropattern transfer without photolithography: A modeling analysis.J. Electrochem. Soc.20081552D97D10310.1149/1.2806032
    [Google Scholar]
  18. ChenX.L. DongB.Y. ZhangC.Y. WuM. GuoZ.N. Jet electrochemical machining of micro dimples with conductive mask.J. Mater. Process. Technol.201825710111110.1016/j.jmatprotec.2018.02.035
    [Google Scholar]
  19. CostaH.L. HutchingsI.M. Development of a maskless electrochemical texturing method.J. Mater. Process. Technol.200920983869387810.1016/j.jmatprotec.2008.09.004
    [Google Scholar]
  20. SchönenbergerI. RoyS. Microscale pattern transfer without photolithography of substrates.Electrochim. Acta200551580981910.1016/j.electacta.2005.04.053
    [Google Scholar]
  21. ParreiraJ.G. GalloC.A. CostaH.L. New advances on maskless electrochemical texturing (MECT) for tribological purposes.Surf. Coat. Tech.201221211310.1016/j.surfcoat.2012.08.043
    [Google Scholar]
  22. FanG. ChenX. SaxenaK.K. LiuJ. GuoZ. Jet electrochemical micromachining of micro-grooves with conductive-masked porous cathode.Micromachines202011655710.3390/mi11060557 32486287
    [Google Scholar]
  23. QuN. ChenX. LiH. ZengY. Electrochemical micromachining of micro-dimple arrays on cylindrical inner surfaces using a dry-film photoresist.Chin. J. Aeronauti.20142741030103610.1016/j.cja.2014.03.012
    [Google Scholar]
  24. KunarS. MahataS. BhattacharyyaB. Influence of electrochemical micromachining process parameters during fabrication of varactor micropattern.Int. J. Adv. Manuf. Technol.20189641142710.1007/s00170‑017‑1563‑8
    [Google Scholar]
  25. KunarS. SrikanthK. Maskless electrochemical microtexturing.AIP Conf. Proc.20232786020009
    [Google Scholar]
  26. PanC. YanY. CaoY. ShaoR. Recent patents on manufacturing microtextured surface.Recent Pat. Eng.2024181e13022321363510.2174/1872212117666230213150318
    [Google Scholar]
  27. LeeT.A. JohnC. DouglasL. Electrochemical machining employing electrical voltage pulses to drive reduction and oxidation reactions. US Patent 10487416B2.2019
  28. KunarS. KumarR. DashS.K. KibriaG. PrasadB.V. Influence of maskless electrochemical micromachining process parameters during fabrication of complex micropattern.Mater. Today Proc.2021472426243010.1016/j.matpr.2021.04.499
    [Google Scholar]
/content/journals/meng/10.2174/0122127976287865240326062010
Loading
/content/journals/meng/10.2174/0122127976287865240326062010
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test