Skip to content
2000
Volume 18, Issue 3
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Background

Machine learning (ML) methodologies have demonstrated efficacy in the determination of erosion rates and material removal. In this context, a novel Erosion Prediction Gaussian Process Regression Algorithm (EPGPRA) was developed to predict the volumetric erosion in thermal spray coatings.

Aim

In this patent, a novel EPGPRA based model was developed to predict the volumetric loss of 30AlO and 20CrO reinforced Ni-based coatings deposited using a high-velocity oxy-fuel (HVOF) process.

Objective

The objective of this patent is to develop a GPR model for the prediction of Ni-30AlO and Ni-20CrO coatings.

Methods

Spraying powders were applied to the SS316L steel substrate in order to develop coatings. An erosion tester was used in order to investigate the wear resistance of HVOF-coated steel. The gathered experimental dataset is put to use in the construction of a powerful GPR model. The outcomes from GPR model were then measured against the values obtained from the experiments. To demonstrate the accuracy of the GPR model, the produced model is evaluated against various cutting-edge machine learning methods.

Results

This innovation was successful in terms of developing a new GPR model for wear prediction. The discrepancy between the actual and expected values is the smallest for Matern 5/2 (M5/2) GPR in the validation set. It was also lesser as compared to Ensemble Boosted Trees, Support Vector Machine, Linear regression, and Fine Tree. In terms of MSE, MAE, RMSE, and R2 the accuracy performance of the M5/2 GPR model was determined to be 9.8565×10-5, 0.0048884, 0.009928, and 0.93 correspondingly. Ni-Chromia coating performed better than the Ni-Alumina.

Conclusion

As per this patent, a novel EPGPRA-based model was developed, which is the better machine learning technique for wear prediction of Ni-based HVOF coatings.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976292328240304081217
2025-06-01
2025-10-17
Loading full text...

Full text loading...

References

  1. SinghJ. Tribo-performance analysis of HVOF sprayed 86WC-10Co4Cr & Ni-Cr2O3 on AISI 316L steel using DOE-ANN methodology.Ind. Lubr. Tribol.202173572773510.1108/ILT‑04‑2020‑0147
    [Google Scholar]
  2. KumarS. SinghJ. MohapatraS.K. Role of particle size in assessment of physico-chemical properties and trace elements of Indian fly ash.Waste Manag. Res.201836111016102210.1177/0734242X18804033 30307833
    [Google Scholar]
  3. ClarkM.C.I. Specimen diameter, impact velocity, erosion rate and particle density in a slurry pot erosion tester.Wear1993162–16466967810.1016/0043‑1648(93)90065‑T
    [Google Scholar]
  4. ClarkH.M. HartwichR.B. A re-examination of the ‘particle size effect’ in slurry erosion.Wear20012481-214716110.1016/S0043‑1648(00)00556‑1
    [Google Scholar]
  5. SinghJ. Wear performance analysis and characterization of HVOF deposited Ni–20Cr2O3, Ni–30Al2O3, and Al2O3–13TiO2 coatings.Appl Surf Sci Adv2021610016110.1016/j.apsadv.2021.100161
    [Google Scholar]
  6. ChandelS. SinghS.N. SeshadriV. Experimental study of erosion wear in a centrifugal slurry pump using coriolis wear test rig.Particul. Sci. Technol.201230217919510.1080/02726351.2010.523926
    [Google Scholar]
  7. BitterJ.G.A. A study of erosion phenomena. Part I.Wear19636316919010.1016/0043‑1648(63)90073‑5
    [Google Scholar]
  8. BitterJ.G.A. A study of erosion phenomena. Part II.Wear196363169190
    [Google Scholar]
  9. WheelerD.W. WoodR.J.K. Erosion of hard surface coatings for use in offshore gate valves.Wear20052581-452653610.1016/j.wear.2004.03.035
    [Google Scholar]
  10. ChattopadhyayR. High silt wear of hydroturbine runners.Wear1993162-1641040104410.1016/0043‑1648(93)90119‑7
    [Google Scholar]
  11. BuytozS. UlutanM. IslakS. KurtB. ÇelikN.O. Microstructural and wear characteristics of high velocity oxygen fuel (HVOF) sprayed NiCrBSi-SiC composite coating on SAE 1030 steel.Arab. J. Sci. Eng.20133861481149110.1007/s13369‑013‑0536‑y
    [Google Scholar]
  12. ChengW.Z. LiuJ.X. MeiY.A. A novel two-step spin-coating process for preparing PEDOT/PSS thin films and review of recent advances in spin coating.Recent Pat. Mater. Sci.20158217618210.2174/1874464808666150310233622
    [Google Scholar]
  13. CookeK.O. McleanJ. A review of recently patented work on thermal sprayed coatings used for wear and corrosion protection.Recent Pat. Corros. Sci.201221667410.2174/2210683911202010066
    [Google Scholar]
  14. HeimannR. LehmannH. Recently patented work on thermally sprayed coatings for protection against wear and corrosion of engineered structures.Recent Pat. Mater. Sci.200811415510.2174/1874464810801010041
    [Google Scholar]
  15. NuruzzamanD.M. ChowdhuryM.A. NakajimaA. RahamanM.L. KarimS.M.I. Friction and wear of diamond like carbon (DLC) coatings -A review.Recent Pat. Mech. Eng.201141557810.2174/2212797611104010055
    [Google Scholar]
  16. ThakurL. AroraN. JayaganthanR. SoodR. An investigation on erosion behavior of HVOF sprayed WC–CoCr coatings.Appl. Surf. Sci.201125831225123410.1016/j.apsusc.2011.09.079
    [Google Scholar]
  17. MatikainenV. Rubio PeregrinaS. OjalaN. Erosion wear performance of WC-10Co4Cr and Cr3C2-25NiCr coatings sprayed with high-velocity thermal spray processes.Surf. Coat. Tech.201937019621210.1016/j.surfcoat.2019.04.067
    [Google Scholar]
  18. KumarR. BhandariS. GoyalA. SinglaY.K. Slurry erosion performance study of HVFS sprayed Ni-20Al2O3 and Ni-15Al2O3 -5TiO2 coatings under hydro accelerated conditions.Ind. Lubr. Tribol.201870480581710.1108/ILT‑11‑2016‑0278
    [Google Scholar]
  19. ArjiR. DwivediD.K. GuptaS.R. Sand slurry erosive wear of thermal sprayed coating of stellite.Surf. Eng.200723539139710.1179/174329407X247145
    [Google Scholar]
  20. KarimiM.R. SalimijaziH.R. GolozarM.A. Effects of remelting processes on porosity of NiCrBSi flame sprayed coatings.Surf. Eng.201632323824310.1179/1743294415Y.0000000107
    [Google Scholar]
  21. SinghJ. Analysis on suitability of HVOF sprayed Ni-20Al, Ni-20Cr and Al-20Ti coatings in coal-ash slurry conditions using artificial neural network model.Ind. Lubr. Tribol.201971797298210.1108/ILT‑12‑2018‑0460
    [Google Scholar]
  22. SaladiS. RamanaP.V. TailorP.B. Evaluation of microstructural features of HVOF sprayed Ni–20Al coatings.Trans. Indian Inst. Met.201871102387239410.1007/s12666‑018‑1369‑x
    [Google Scholar]
  23. HuH.X. JiangS.L. TaoY.S. XiongT.Y. ZhengY.G. Cavitation erosion and jet impingement erosion mechanism of cold sprayed Ni–Al2O3 coating.Nucl. Eng. Des.2011241124929493710.1016/j.nucengdes.2011.09.038
    [Google Scholar]
  24. ChenL. WangL. ZengZ. XuT. Influence of pulse frequency on the microstructure and wear resistance of electrodeposited Ni–Al2O3 composite coatings.Surf. Coat. Tech.20062013-459960510.1016/j.surfcoat.2005.12.008
    [Google Scholar]
  25. SalehB. AlyA.A. Artificial neural network model for evaluation the effect of surface properties amendment on slurry erosion behavior of AISI 5117 steel.Ind. Lubr. Tribol.201668667668210.1108/ILT‑12‑2015‑0190
    [Google Scholar]
  26. KharbS.S. AntilP. SinghS. AntilS.K. SihagP. KumarA. Machine learning-based erosion behavior of silicon carbide reinforced polymer composites.Silicon20211341113111910.1007/s12633‑020‑00497‑z
    [Google Scholar]
  27. Fallah ShojaieE. DarihakiF. ShiraziS.A. A method to determine the uncertainties of solid particle erosion measurements utilizing machine learning techniques.Wear202352220468810.1016/j.wear.2023.204688
    [Google Scholar]
  28. AntilS.K. AntilP. SinghS. KumarA. PruncuC.I. Artificial neural network and response surface methodology based analysis on solid particle erosion behavior of polymer matrix composites.Materials2020136138110.3390/ma13061381 32197554
    [Google Scholar]
  29. KumarP.P. SatapathyA. Solid particle erosion behavior of BFS-filled epoxy–SGF composites using Taguchi’s experimental design and ANN.Tribol. Trans.201457339640710.1080/10402004.2013.877178
    [Google Scholar]
  30. BeckerA. FalsH.D.C. RocaA.S. Artificial neural networks applied to the analysis of performance and wear resistance of binary coatings Cr3C237WC18M and WC20Cr3C27Ni.Wear202147720379710.1016/j.wear.2021.203797
    [Google Scholar]
  31. SzalaM. AwtoniukM. ŁatkaL. MacekW. BrancoR. Artificial neural network model of hardness, porosity and cavitation erosion wear of APS deposited Al2O3 -13 wt% TiO2 coatings.J. Phys. Conf. Ser.20211736101203310.1088/1742‑6596/1736/1/012033
    [Google Scholar]
  32. LazovskayaT. TarkhovD. VasilyevA. Parametric neural network modeling in engineering.Recent Pat. Eng.2017111101510.2174/1872212111666161207155157
    [Google Scholar]
  33. ZhangY. XuX. Machine learning tensile strength and impact toughness of wheat straw reinforced composites.Mach. Learn. Appl.2021610018810.1016/j.mlwa.2021.100188
    [Google Scholar]
  34. ZhangY. XuX. Machine learning lattice constants for cubic perovskite A 2 X Y 6 compounds.J. Solid State Chem.202029112155810.1016/j.jssc.2020.121558
    [Google Scholar]
  35. ZhangY. XuX. Machine learning decomposition onset temperature of lubricant additives.J. Mater. Eng. Perform.202029106605661610.1007/s11665‑020‑05146‑5
    [Google Scholar]
  36. ZhangY. XuX. Predicting the thermal conductivity enhancement of nanofluids using computational intelligence.Phys. Lett. A20203842012650010.1016/j.physleta.2020.126500
    [Google Scholar]
  37. SinghJ. SinghS. Neural network prediction of slurry erosion of heavy-duty pump impeller/casing materials 18Cr-8Ni, 16Cr-10Ni-2Mo, super duplex 24Cr-6Ni-3Mo-N, and grey cast iron.Wear202147620374110.1016/j.wear.2021.203741
    [Google Scholar]
  38. RasmussenC.E. Gaussian processes in machine learning In:. Bousquet O, von Luxburg U, Rätsch G, editors. Advanced lectures on machine learning Berlin: Springer;.20046371
    [Google Scholar]
  39. XieY. ZhuC. JiangW. BiJ. ZhuZ. Analyzing machine learning models with gaussian process for the indoor positioning system.Math. Probl. Eng.2020202011010.1155/2020/4696198
    [Google Scholar]
  40. XuY. WangP. An enhanced squared exponential kernel with Manhattan similarity measure for high-dimensional Gaussian process models.In: Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering ConferenceAugust 17–19,New YorkASME202110.1115/DETC2021‑71445
    [Google Scholar]
  41. PalB. BhatV.R. The SIUQRD and Matérn 5/2 GPR models describing the COVID-19 pandemic in India.In: Proceedings of the 4th International Conference on Electrical, Computer and Communication Technologies (ICECCT); July 15–17, 2021; Coimbatore, India. New York: IEEE;20211610.1109/ICECCT52121.2021.9616706
    [Google Scholar]
  42. UlapaneN. ThiyagarajanK. KodagodaS. Hyper-parameter initialization for squared exponential kernel-based Gaussian process regression.In: Proceedings of the 15th IEEE Conference on Industrial Electronics and Applications (ICIEA) 2020; New York: IEEE20201154910.1109/ICIEA48937.2020.9248120
    [Google Scholar]
  43. SinghJ. KumarS. KumarR. MohapatraS.K. Machine learning regression tools for erosion prediction of WC-10Co4Cr thermal spray coating.Result Surfac Interf20231310015610.1016/j.rsurfi.2023.100156
    [Google Scholar]
  44. NagelkerkeN.J.D. A note on a general definition of the coefficient of determination.Biometrika199178369169210.1093/biomet/78.3.691
    [Google Scholar]
  45. GuptaR. SinghS.N. SehadriV. Prediction of uneven wear in a slurry pipeline on the basis of measurements in a pot tester.Wear1995184216917810.1016/0043‑1648(94)06566‑7
    [Google Scholar]
  46. KosarevV. KlinkovS. SovaA. Recently patented facilities and applications in cold spray engineering.Recent Pat. Eng.200711354210.2174/187221207779814716
    [Google Scholar]
  47. SharmaS.D. Review of patented technologies for fluid-solid separation relevant to specific industrial applications.Recent Pat. Mech. Eng.2010328510510.2174/2212797611003020085
    [Google Scholar]
  48. WalkerC.I. HambeM. Influence of particle shape on slurry wear of white iron.Wear2015332-3331021102710.1016/j.wear.2014.12.029
    [Google Scholar]
  49. WalkerC.I. RobbieP. Comparison of some laboratory wear tests and field wear in slurry pumps.Wear20133021-21026103410.1016/j.wear.2012.11.053
    [Google Scholar]
  50. OkaY.I. OkamuraK. YoshidaT. Practical estimation of erosion damage caused by solid particle impact.Wear20052591-69510110.1016/j.wear.2005.01.039
    [Google Scholar]
  51. GandhiB.K. SinghS.N. SeshadriV. A study on the effect of surface orientation on erosion wear of flat specimens moving in a solid–liquid suspension.Wear2003254121233123810.1016/S0043‑1648(03)00109‑1
    [Google Scholar]
  52. TarodiyaR. GandhiB.K. Experimental investigation on slurry erosion behavior of 304L steel, grey cast iron, and high chromium white cast iron.J. Tribol.2019141909160210.1115/1.4043903
    [Google Scholar]
  53. PorterD. JavaheriV. PorterD. KuokkalaV. Slurry erosion of steel – Review of tests, mechanisms and materials Slurry erosion of steel – Review of tests, mechanisms and materials.Wear2018408–409248273
    [Google Scholar]
  54. ShivamurthyR.C. KamarajM. NagarajanR. ShariffS.M. PadmanabhamG. Influence of microstructure on slurry erosive wear characteristics of laser surface alloyed 13Cr–4Ni steel.Wear20092671-420421210.1016/j.wear.2008.12.027
    [Google Scholar]
  55. AlamT. IslamA.M. FarhatZ.N. Slurry erosion of pipeline steel: Effect of velocity and microstructure.J. Tribol.2016138202160410.1115/1.4031599
    [Google Scholar]
  56. Al-BukhaitiM.A. AhmedS.M. BadranF.M.F. EmaraK.M. Effect of impingement angle on slurry erosion behaviour and mechanisms of 1017 steel and high-chromium white cast iron.Wear20072629-101187119810.1016/j.wear.2006.11.018
    [Google Scholar]
  57. Al-HashemA.H. GoudaV.K. AbdullahA.M. RiadW.T. Cavitation-corrosion behaviour of nodular cast iron in aqueous environments.J. King Saud Univ. Eng. Sci.19968119
    [Google Scholar]
  58. AubryP. BlancC. DemirciI. DalM. MalotT. MaskrotH. Analysis of nickel based hardfacing materials manufactured by laser cladding for sodium fast reactor.Phys. Procedia20168361362310.1016/j.phpro.2016.08.064
    [Google Scholar]
  59. BellmanR.Jr LevyA. Erosion mechanism in ductile metals.Wear198170112710.1016/0043‑1648(81)90268‑4
    [Google Scholar]
  60. MartinovićS. VlahovićM. DojčinovićM. PavlovićM. HusovićV.T. Comparison of cavitation erosion behavior of cordierite and zircon based samples using image and morphological analyses.Mater. Lett.201822013613910.1016/j.matlet.2018.03.029
    [Google Scholar]
  61. SinghJ. SinghS. Support vector machine learning on slurry erosion characteristics analysis of Ni- and Co-alloy coatings.Surf. Rev. Lett.20232023234000610.1142/S0218625X23400061
    [Google Scholar]
  62. WangQ. ZhangS. ChengY. XiangJ. ZhaoX. YangG. Wear and corrosion performance of WC-10Co4Cr coatings deposited by different HVOF and HVAF spraying processes.Surf. Coat. Tech.201321812713610.1016/j.surfcoat.2012.12.041
    [Google Scholar]
  63. DesaleG.R. GandhiB.K. JainS.C. Improvement in the design of a pot tester to simulate erosion wear due to solid–liquid mixture.Wear20052591-619620210.1016/j.wear.2005.02.068
    [Google Scholar]
  64. SinghJ. GillR. KumarS. Comparative analysis on reinforcement of potential additives in WOKA cermet HVOF coating subjected to slurry erosion in ash conditions.Iran J Mater Sci Eng202219411210.22068/ijmse.2834
    [Google Scholar]
  65. WangS. FanY. JinS. AninakwaT.P. FernandezC. Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries.Reliab. Eng. Syst. Saf.202323010892010.1016/j.ress.2022.108920
    [Google Scholar]
  66. WangS. WuF. AninakwaT.P. FernandezC. StroeD-I. HuangQ. Improved singular filtering-Gaussian process regression-long short-term memory model for whole-life-cycle remaining capacity estimation of lithium-ion batteries adaptive to fast aging and multi-current variations.Energy202328412867710.1016/j.energy.2023.128677
    [Google Scholar]
  67. LiangY. WangS. FanY. HaoX. LiuD. FernandezC. State of health prediction of lithium-ion batteries using combined machine learning model based on nonlinear constraint optimization.J. Electrochem. Soc.2024171101050810.1149/1945‑7111/ad18e1
    [Google Scholar]
  68. KumarR. KumarS. MudgalD. Deposition of Al2O3/Cr2O3 ceramics HVOF sprayed coatings for protection against silt erosion.Surf. Rev. Lett.20232023224000810.1142/S0218625X2240008X
    [Google Scholar]
  69. MaL. HuangC. XieY. Modeling of erodent particle trajectories in slurry flow.Wear2015334-335495510.1016/j.wear.2015.04.013
    [Google Scholar]
  70. MohsinR. MajidZ.A. Erosive failure of natural gas pipes.J. Pipeline Syst. Eng. Pract.2014540401400510.1061/(ASCE)PS.1949‑1204.0000170
    [Google Scholar]
  71. VasudevH. PrasharG. ThakurL. BansalA. Electrochemical corrosion behavior and microstructural characterization of HVOF sprayed inconel-718 coating on gray cast iron.J. Fail. Anal. Prev.202121125026010.1007/s11668‑020‑01057‑8
    [Google Scholar]
  72. LindgrenM. PerolainenJ. Slurry pot investigation of the influence of erodent characteristics on the erosion resistance of austenitic and duplex stainless steel grades.Wear20143191-2384810.1016/j.wear.2014.07.006
    [Google Scholar]
  73. ArabnejadH. ShiraziS.A. McLauryB.S. SubramaniH.J. RhyneL.D. The effect of erodent particle hardness on the erosion of stainless steel.Wear2015332-3331098110310.1016/j.wear.2015.01.017
    [Google Scholar]
  74. HebbaleA.M. SrinathM.S. Taguchi analysis on erosive wear behavior of cobalt based microwave cladding on stainless steel AISI-420.Measurement2017999810710.1016/j.measurement.2016.12.024
    [Google Scholar]
  75. GirolamoD.G. PagnottaL. Thermally sprayed coatings for high-temperature applications.Recent Pat. Mater. Sci.20114317319010.2174/1874464811104030173
    [Google Scholar]
  76. MathewsP.A. BhardwajS. GadheP. DameracharlaS.R. Patent trends of detonation spray coating technology.Recent Pat. Mech. Eng.20169191910.2174/2212797609666151221212226
    [Google Scholar]
  77. GnanasekaranS. PadmanabanG. BalasubramanianV. Effect of laser power on metallurgical, mechanical and tribological characteristics of hardfaced surfaces of nickel-based alloy.Lasers Manuf Mater Proc20174417819210.1007/s40516‑017‑0045‑z
    [Google Scholar]
  78. HuC. TianY. ZhengW. A review of corrosion-protective transition metal nitride coatings.Innov. Corros. Mater. Sci.2015512910.2174/2352094905666150130193317
    [Google Scholar]
  79. PanC. GuY. ChangJ. WangC. Recent patents on friction and wear tester.Recent Pat. Eng.2022174e21062220624010.2174/1872212117666220621103655
    [Google Scholar]
  80. ChowdhuryM. NuruzzamanD. RahamanM. Erosive wear behavior of composite and polymer materials - A review.Recent Pat. Mech. Eng.20092214415310.2174/2212797610902020144
    [Google Scholar]
  81. DawoudU.M. NaggarE.M.M.A. Effectiveness of some coats in marine atmosphere.J. King Saud Univ. Eng. Sci.19968879610.1016/S1018‑3639(18)31067‑5
    [Google Scholar]
  82. GengZ. HouS. ShiG. DuanD. LiS. Tribological behaviour at various temperatures of WC-Co coatings prepared using different thermal spraying techniques.Tribol. Int.2016104364410.1016/j.triboint.2016.08.025
    [Google Scholar]
  83. GholipourA. ShamanianM. AshrafizadehF. Microstructure and wear behavior of stellite 6 cladding on 17–4 PH stainless steel.J. Alloys Compd.20115094905490910.1016/j.jallcom.2010.09.216
    [Google Scholar]
  84. SeongB.S.I.K. WonH.K. DonghuhJ. Method of manufacturing high-density YF3 coating layer by using HVOF, and high-density YF3 coating layer manufactured through SAME. US Patent 2023062876A12022
    [Google Scholar]
/content/journals/meng/10.2174/0122127976292328240304081217
Loading
/content/journals/meng/10.2174/0122127976292328240304081217
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): gaussian process regression; HVOF coating; Machine learning; thermal spray; tribology; wear
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test