Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

The utilization of nanotechnology and nanotechnology in contemporary society has garnered significant interest due to their captivating properties across various academic disciplines. The investigation and development of biodiesel production and fabrication using nanotechnology and nanomaterials have emerged as a central area of scholarly inquiry worldwide. Implementing strategies to accelerate biodiesel production is essential to its success; there is an increasing focus on utilizing state-of-the-art nanotechnology, which enables achieving maximum output while minimizing costs. Consequently, the investigation will center on using various nanomaterials and nanocatalysts to explore the manufacture of biodiesel from diverse materials. The examination of this research project will primarily focus on the culture of algae utilizing nanomaterials and the subsequent collection of lipids. Furthermore, the present investigation is intended to serve as a comprehensive examination of the foremost obstacles and prospective ahead-of-time enhancements regarding the utilization of biodiesel blended with nanoparticle additives in internal combustion engines. Additionally, this study will analyze existing patents related to nanomaterials and their role in biodiesel production. Furthermore, this essay will specifically address the problems related to the welfare of individuals and the environment in using nanomaterials in mass manufacturing biodiesel. Consequently, future producers, researchers, and academics stand to gain valuable insights from this study, as it offers a comprehensive understanding of the existing body of research on the application of nanoparticles and nanotechnology in making biodiesel, along with the advancements in enhancing its efficiency.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976287172240228162047
2025-03-25
2025-08-17
Loading full text...

Full text loading...

References

  1. Amiri DeloueiA. NaeimiH. SajjadiH. AtashafroozM. ImanparastM. ChamkhaA.J. An active approach to heat transfer enhancement in indirect heaters of city gate stations: An experimental modeling.Appl. Therm. Eng.202423712179510.1016/j.applthermaleng.2023.121795
    [Google Scholar]
  2. Amiri DeloueiA. AtashafroozM. SajjadiH. KarimnejadS. The thermal effects of multi-walled carbon nanotube concentration on an ultrasonic vibrating finned tube heat exchanger.Int. Commun. Heat Mass Transf.202213510609810.1016/j.icheatmasstransfer.2022.106098
    [Google Scholar]
  3. ShalabyA. Biofuel: Sources, extraction and determination.In: Liquid, Gaseous and Solid Biofuels - Conversion Techniques.CroatiaInTech;2013.45147810.5772/51943
    [Google Scholar]
  4. FolaranmiJ. Production of biodiesel (B100) from Jatropha oil using sodium hydroxide as catalyst.J Petr Eng2012201316
    [Google Scholar]
  5. DeloueiA SajjadiH AhmadiG The effect of piezoelectric transducer location on heat transfer enhancement of an ultrasonic-assisted liquid-cooled CPU radiator.Iran J Sci Technol Trans Mech Eng20234723925210.1007/s40997‑023‑00667‑5
    [Google Scholar]
  6. AhmadM. KhanM.A. ZafarM. SultanaS. Biodiesel from non-edible oil seeds: a renewable source of bioenergy.In: Economic Effects of Biofuel Production.InTech201125928010.5772/26872
    [Google Scholar]
  7. TafarrojM.M. Amiri DeloueiA. HajjarA. Ben HamidaM.B. IzadiM. MLP and optimized FCM-ANFIS models proposed for inlet turbulent flow under ultrasonic vibration.J. Therm. Anal. Calorim.202314824139951400910.1007/s10973‑023‑12592‑5
    [Google Scholar]
  8. EsfandyariM. Amiri DeloueiA. JalaiA. Optimization of ultrasonic-excited double-pipe heat exchanger with machine learning and PSO.Int. Commun. Heat Mass Transf.202314710698510.1016/j.icheatmasstransfer.2023.106985
    [Google Scholar]
  9. AhmmedB. SamaddarO.U. KibriaK.Q. Production of biodiesel from used vegetable oils.Intern J Bio-Sci Bio-Techno2019117124133
    [Google Scholar]
  10. Amiri DeloueiA. SajjadiH. AhmadiG. Ultrasonic vibration technology to improve the thermal performance of CPU water-cooling systems: Experimental investigation.Water20221424400010.3390/w14244000
    [Google Scholar]
  11. Anu Mary EaliaS. SaravanakumarM.P. A review on the classification, characterisation, synthesis of nanoparticles and their application.IOP Conf. Series Mater. Sci. Eng.2017263303201910.1088/1757‑899X/263/3/032019
    [Google Scholar]
  12. JeevanandamJ. BarhoumA. ChanY.S. DufresneA. DanquahM.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations.Beilstein J. Nanotechnol.2018911050107410.3762/bjnano.9.98
    [Google Scholar]
  13. HedeshiM. JalaliA. ArabkoohsarA. Amiri DeloueiA. Nanofluid as the working fluid of an ultrasonic-assisted double-pipe counter-flow heat exchanger.J. Therm. Anal. Calorim.2023148168579859110.1007/s10973‑023‑12102‑7
    [Google Scholar]
  14. DuanX. XuL. XuL. Performance analysis and comparison of the spark ignition engine fuelled with industrial by-product hydrogen and gasoline.J. Clean. Prod.202342413889910.1016/j.jclepro.2023.138899
    [Google Scholar]
  15. RaiR.K. SahooR.R. Impact of different shape based hybrid nano additives in emulsion fuel for exergetic, energetic, and sustainability analysis of diesel engine.Energy202121411908610.1016/j.energy.2020.119086
    [Google Scholar]
  16. PanditP.R. FulekarM.H. Egg shell waste as heterogeneous nanocatalyst for biodiesel production: Optimized by response surface methodology.J. Environ. Manage.201719831932910.1016/j.jenvman.2017.04.100
    [Google Scholar]
  17. AryaI. PoonaA. DikshitP.K. Current trends and future prospects of nanotechnology in biofuel production.Catalysts20211111130810.3390/catal11111308
    [Google Scholar]
  18. AkohH. TsukasakiY. YatsuyaS. TasakiA. Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate.J. Cryst. Growth19784549550010.1016/0022‑0248(78)90482‑7
    [Google Scholar]
  19. LoC.H. TsungT.T. ChenL.C. Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system (SANSS).J. Cryst. Growth20052771-463664210.1016/j.jcrysgro.2005.01.067
    [Google Scholar]
  20. PatraJ.K. BaekK.H. Green nanobiotechnology: Factors affecting synthesis and characterization techniques.J. Nanomater.201520142199
    [Google Scholar]
  21. LvJ. WangS. MengB. The effects of nano-additives added to diesel-biodiesel fuel blends on combustion and emission characteristics of diesel engine: A review.Energies2022153103210.3390/en15031032
    [Google Scholar]
  22. BanoS. GanieA.S. SultanaS. SabirS. KhanM.Z. Fabrication and optimization of nanocatalyst for biodiesel production: An overview.Front. Energy Res.2020857901410.3389/fenrg.2020.579014
    [Google Scholar]
  23. NabiM.N. HussamW.K. AfrozH.M.M. RashidA.B. IslamJ. MukutA.N.M.M.I. Investigation of engine performance, combustion, and emissions using waste tire Oil-Diesel-Glycine max biodiesel blends in a diesel engine.Case Stud. Therm. Eng.20223910243510.1016/j.csite.2022.102435
    [Google Scholar]
  24. NabiM.N. HussamW.K. RashidA.B. IslamJ. IslamS. AfrozH.M.M. Notable improvement of fuel properties of waste tire pyrolysis oil by blending a novel pumpkin seed oil–biodiesel.Energy Rep.2022811211910.1016/j.egyr.2022.10.246
    [Google Scholar]
  25. PulluriG.K. PadalK.T.B. SagariJ. Experimental investigation on a compression ignition engine operating with Al2O3 nanoparticles and Schleichera oleosa biodiesel: Combustion, vibration, and noise approach.Nanotech Environ Eng20238249950910.1007/s41204‑022‑00299‑1
    [Google Scholar]
  26. SalviB.L. Transesterification methods.In: Production of Biodiesel from Non-Edible Sources.Elsevier202211715110.1016/B978‑0‑12‑824295‑7.00005‑X
    [Google Scholar]
  27. QuaakP. KnoefH. StassenH.E. Energy from biomass: a review of combustion and gasification technologies.Washington, (DC)World Bank199910.1596/0‑8213‑4335‑1
    [Google Scholar]
  28. AchtenW.M.J. AlmeidaJ. FobeletsV. Life cycle assessment of Jatropha biodiesel as transportation fuel in rural India.Appl. Energy201087123652366010.1016/j.apenergy.2010.07.003
    [Google Scholar]
  29. PandeyK.K. PragyaN. SahooP.K. Life cycle assessment of small-scale high-input Jatropha biodiesel production in India.Appl. Energy201188124831483910.1016/j.apenergy.2011.06.026
    [Google Scholar]
  30. PrueksakornK. GheewalaS.H. MalakulP. BonnetS. Energy analysis of Jatropha plantation systems for biodiesel production in Thailand.Energy Sustain. Dev.20101411510.1016/j.esd.2009.12.002
    [Google Scholar]
  31. RasouliH EsmaeiliH. Characterization of MgO nanocatalyst to produce biodiesel from goat fat using transesterification process.3 Biotech20199111429
    [Google Scholar]
  32. KaurN. AliA. Lithium ions-supported magnesium oxide as nano-sized solid catalyst for biodiesel preparation from mutton fat.Energy Sources A Recovery Util. Environ. Effects201335218419210.1080/15567036.2011.592912
    [Google Scholar]
  33. GurunathanB. RaviA. Biodiesel production from waste cooking oil using copper doped zinc oxide nanocomposite as heterogeneous catalyst.Bioresour. Technol.201518812412710.1016/j.biortech.2015.01.012
    [Google Scholar]
  34. DegfieT.A. MamoT.T. MekonnenY.S. Optimized biodiesel production from waste cooking oil (WCO) using calcium oxide (CaO) nano-catalyst.Sci. Rep.2019911898210.1038/s41598‑019‑55403‑4
    [Google Scholar]
  35. Molaei DehkordiA. GhasemiM. Transesterification of waste cooking oil to biodiesel using Ca and Zr mixed oxides as heterogeneous base catalysts.Fuel Process. Technol.201297455110.1016/j.fuproc.2012.01.010
    [Google Scholar]
  36. AshokA. KennedyL.J. VijayaJ.J. AruldossU. Optimization of biodiesel production from waste cooking oil by magnesium oxide nanocatalyst synthesized using coprecipitation method.Clean Technol. Environ. Policy20182061219123110.1007/s10098‑018‑1547‑x
    [Google Scholar]
  37. WenZ. YuX. TuS.T. YanJ. DahlquistE. Biodiesel production from waste cooking oil catalyzed by TiO2-MgO mixed oxides.Bioresour. Technol.2010101249570957610.1016/j.biortech.2010.07.066
    [Google Scholar]
  38. MamoT.T. MekonnenY.S. Microwave-assisted biodiesel production from microalgae, scenedesmus species, using goat bone–made nano-catalyst.Appl. Biochem. Biotechnol.202019041147116210.1007/s12010‑019‑03149‑0
    [Google Scholar]
  39. TeoS.H. IslamA. Taufiq-YapY.H. Algae derived biodiesel using nanocatalytic transesterification process.Chem. Eng. Res. Des.201611136237010.1016/j.cherd.2016.04.012
    [Google Scholar]
  40. SantosS. PunaJ. GomesJ. A review on bio-based catalysts (immobilized enzymes) used for biodiesel production.Energies20201311301310.3390/en13113013
    [Google Scholar]
  41. WeiH. WangQ. ZhangR. LiuM. ZhangW. Efficient biodiesel production from waste cooking oil by fast co-immobilization of lipases from Aspergillus oryzae and Rhizomucor miehei in magnetic chitosan microcapsules.Process Biochem.202312517118010.1016/j.procbio.2022.12.025
    [Google Scholar]
  42. VermaM.L. PuriM. BarrowC.J. Recent trends in nanomaterials immobilised enzymes for biofuel production.Crit. Rev. Biotechnol.201636110811910.3109/07388551.2014.928811
    [Google Scholar]
  43. MoreiraK.S. de OliveiraA.L.B. JúniorL.S.M. Lipase from Rhizomucor miehei immobilized on magnetic nanoparticles: performance in fatty acid ethyl ester (FAEE) optimized production by the Taguchi method.Front. Bioeng. Biotechnol.2020869310.3389/fbioe.2020.00693
    [Google Scholar]
  44. MéndezJ.C. ArellanoU. SolísS. WangJ.A. ChenL. Immobilization of Candida rugosa lipase on Ca/Kit-6 used as bifunctional biocatalysts for the transesterification of coconut oil to biodiesel.Mole Catal202253311279310.1016/j.mcat.2022.112793
    [Google Scholar]
  45. WangX. LiuX. ZhaoC. DingY. XuP. Biodiesel production in packed-bed reactors using lipase–nanoparticle biocomposite.Bioresour. Technol.2011102106352635510.1016/j.biortech.2011.03.003
    [Google Scholar]
  46. LiuC.H. HuangC.C. WangY.W. LeeD.J. ChangJ.S. Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles.Appl. Energy2012100414610.1016/j.apenergy.2012.05.053
    [Google Scholar]
  47. MacarioA. VerriF. DiazU. CormaA. GiordanoG. Pure silica nanoparticles for liposome/lipase system encapsulation: Application in biodiesel production.Catal. Today201320414815510.1016/j.cattod.2012.07.014
    [Google Scholar]
  48. NgoT.P.N. LiA. TiewK.W. LiZ. Efficient transformation of grease to biodiesel using highly active and easily recyclable magnetic nanobiocatalyst aggregates.Bioresour. Technol.201314523323910.1016/j.biortech.2012.12.053
    [Google Scholar]
  49. SakaiS. LiuY. YamaguchiT. WatanabeR. KawabeM. KawakamiK. Production of butyl-biodiesel using lipase physically-adsorbed onto electrospun polyacrylonitrile fibers.Bioresour. Technol.2010101197344734910.1016/j.biortech.2010.04.036
    [Google Scholar]
  50. HuangJ. WangJ. HuangZ. LiuT. LiH. Photothermal technique-enabled ambient production of microalgae biodiesel: Mechanism and life cycle assessment.Bioresour. Technol.202336912839010.1016/j.biortech.2022.128390
    [Google Scholar]
  51. Ferreira MotaG. Germano de SousaI. Luiz Barros de OliveiraA. Biodiesel production from microalgae using lipase-based catalysts: Current challenges and prospects.Algal Res.20226210261610.1016/j.algal.2021.102616
    [Google Scholar]
  52. Tien ThanhN. MostaphaM. LamM.K. Fundamental understanding of in-situ transesterification of microalgae biomass to biodiesel: A critical review.Energy Convers. Manage.202227011621210.1016/j.enconman.2022.116212
    [Google Scholar]
  53. LeeY.C. LeeK. OhY.K. Recent nanoparticle engineering advances in microalgal cultivation and harvesting processes of biodiesel production: A review.Bioresour. Technol.2015184637210.1016/j.biortech.2014.10.145
    [Google Scholar]
  54. TorkamaniS. WaniS.N. TangY.J. SureshkumarR. Plasmon-enhanced microalgal growth in miniphotobioreactors.Appl. Phys. Lett.201097404370310.1063/1.3467263
    [Google Scholar]
  55. ErogluE. EggersP.K. WinsladeM. SmithS.M. RastonC.L. Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices.Green Chem.201315113155315910.1039/c3gc41291a
    [Google Scholar]
  56. NguyenM.K. MoonJ.Y. BuiV.K.H. OhY.K. LeeY.C. Recent advanced applications of nanomaterials in microalgae biorefinery.Algal Res.20194110152210.1016/j.algal.2019.101522
    [Google Scholar]
  57. HeM. YanY. PeiF. Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles.Sci. Rep.2017711552610.1038/s41598‑017‑15667‑0
    [Google Scholar]
  58. MetzlerD.M. ErdemA. TsengY.H. HuangC.P. Responses of algal cells to engineered nanoparticles measured as algal cell population, chlorophyll a, and lipid peroxidation: effect of particle size and type.J. Nanotechnol.2012201211210.1155/2012/237284
    [Google Scholar]
  59. Sadhik BashaJ. AnandR.B. Role of nanoadditive blended biodiesel emulsion fuel on the working characteristics of a diesel engine.J. Renew. Sustain. Energy20113202310610.1063/1.3575169
    [Google Scholar]
  60. SajithV. SobhanC.B. PetersonG.P. Experimental investigations on the effects of cerium oxide nanoparticle fuel additives on biodiesel.Adv. Mech. Eng.2010258140710.1155/2010/581407
    [Google Scholar]
  61. rahimi H, Ghobadian B, Yusaf T, Najafi G, Khatamifar M. Diesterol: An environment-friendly IC engine fuel.Renew. Energy200934133534210.1016/j.renene.2008.04.031
    [Google Scholar]
  62. TripathiS.K. KumarR. ShuklaS.K. QidwaiA. DikshitA. Exploring application of nanoparticles in production of biodiesel. SrivastavaN. SrivastavaM. PandeyH. MishraP.K. RamtekeP.W. Green Nanotechnology for Biofuel Production.ChamSpringer2018141153Available from:10.1007/978‑3‑319‑75052‑1_8
    [Google Scholar]
  63. QiD.H. ChenH. GengL.M. BianY.Z. Effect of diethyl ether and ethanol additives on the combustion and emission characteristics of biodiesel-diesel blended fuel engine.Renew. Energy20113641252125810.1016/j.renene.2010.09.021
    [Google Scholar]
  64. SanN.O. KurşungözC. TümtaşY. YaşaÖ. OrtaçB. TekinayT. Novel one-step synthesis of silica nanoparticles from sugarbeet bagasse by laser ablation and their effects on the growth of freshwater algae culture.Particuology201417293510.1016/j.partic.2013.11.003
    [Google Scholar]
  65. WangS.K. StilesA.R. GuoC. LiuC.Z. Harvesting microalgae by magnetic separation: A review.Algal Res.2015917818510.1016/j.algal.2015.03.005
    [Google Scholar]
  66. HuY.R. WangF. WangS.K. LiuC.Z. GuoC. Efficient harvesting of marine microalgae Nannochloropsis maritima using magnetic nanoparticles.Bioresour. Technol.201313838739010.1016/j.biortech.2013.04.016
    [Google Scholar]
  67. WangS.K. WangF. HuY.R. StilesA.R. GuoC. LiuC.Z. Magnetic flocculant for high efficiency harvesting of microalgal cells.ACS Appl. Mater. Interfaces20146110911510.1021/am404764n
    [Google Scholar]
  68. ZhangX.L. YanS. TyagiR.D. SurampalliR.Y. Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production.Renew. Sustain. Energy Rev.20132621622310.1016/j.rser.2013.05.061
    [Google Scholar]
  69. AhmedW. BoothM. NourafkanE. Emerging nanotechnologies for renewable energy.Elsevier202110.1016/C2019‑0‑01919‑X
    [Google Scholar]
  70. SaxenaV. KumarN. SaxenaV.K. A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled C.I. engine.Renew. Sustain. Energy Rev.20177056358810.1016/j.rser.2016.11.067
    [Google Scholar]
  71. WangT. ZhangD. DaiL. ChenY. DaiX. Effects of metal nanoparticles on methane production from waste-activated sludge and microorganism community shift in anaerobic granular sludge.Sci. Rep.2016612585710.1038/srep25857
    [Google Scholar]
  72. WangH. CovarrubiasJ. ProckH. WuX. WangD. BossmannS.H. Acid-functionalized magnetic nanoparticle as heterogeneous catalysts for biodiesel synthesis.J. Phys. Chem. C201511946260202602810.1021/acs.jpcc.5b08743
    [Google Scholar]
  73. PeñaL. HohnK.L. LiJ. SunX.S. WangD. Synthesis of propyl-sulfonic acid-functionalized nanoparticles as catalysts for cellobiose hydrolysis.J. Biomater. Nanobiotechnol.20145424125310.4236/jbnb.2014.54028
    [Google Scholar]
  74. ErdemS. ErdemB. ÖksüzoğluR.M. Magnetic nano-sized solid acid catalyst bearing sulfonic acid groups for biodiesel synthesis.Open Chem.201816192392910.1515/chem‑2018‑0092
    [Google Scholar]
  75. LaiD. DengL. GuoQ. FuY. Hydrolysis of biomass by magnetic solid acid.Energy Environ. Sci.2011493552355710.1039/c1ee01526e
    [Google Scholar]
  76. AntunesF A F. GaikwadS. IngleA.P. Bioenergy and biofuels: Nanotechnological solutions for sustainable production.Nanotech Bio Biofuel Prod2017318
    [Google Scholar]
  77. VincentK.A. LiX. BlanfordC.F. BelseyN.A. WeinerJ.H. ArmstrongF.A. Enzymatic catalysis on conducting graphite particles.Nat. Chem. Biol.200731276176210.1038/nchembio.2007.47
    [Google Scholar]
  78. KwonC.H. KoY. ShinD. High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton fibers.Nat. Commun.201891447910.1038/s41467‑018‑06994‑5
    [Google Scholar]
  79. Aquino NetoS. AlmeidaT.S. PalmaL.M. MinteerS.D. de AndradeA.R. Hybrid nanocatalysts containing enzymes and metallic nanoparticles for ethanol/O2 biofuel cell.J. Power Sources2014259253210.1016/j.jpowsour.2014.02.069
    [Google Scholar]
  80. HebiéS. HoladeY. MaximovaK. Advanced electrocatalysts on the basis of bare Au nanomaterials for biofuel cell applications.ACS Catal.20155116489649610.1021/acscatal.5b01478
    [Google Scholar]
  81. ZhangY. ShenJ. Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater.Int. J. Hydrogen Energy2007321172310.1016/j.ijhydene.2006.06.004
    [Google Scholar]
  82. SuL. ShiX. GuoG. ZhaoA. ZhaoY. Stabilization of sewage sludge in the presence of nanoscale zero-valent iron (nZVI): Abatement of odor and improvement of biogas production.J. Mater. Cycles Waste Manag.201315446146810.1007/s10163‑013‑0150‑9
    [Google Scholar]
  83. KarriS. Sierra-AlvarezR. FieldJ.A. Zero valent iron as an electron‐donor for methanogenesis and sulfate reduction in anaerobic sludge.Biotechnol. Bioeng.200592781081910.1002/bit.20623
    [Google Scholar]
  84. KobayashiH. HosakaY. HaraK. FengB. HirosakiY. FukuokaA. Control of selectivity, activity and durability of simple supported nickel catalysts for hydrolytic hydrogenation of cellulose.Green Chem.201416263764410.1039/C3GC41357H
    [Google Scholar]
  85. YigezuZ.D. MuthukumarK. Catalytic cracking of vegetable oil with metal oxides for biofuel production.Energy Convers. Manage.20148432633310.1016/j.enconman.2014.03.084
    [Google Scholar]
  86. HashmiS. GoharS. MahmoodT. NawazU. FarooqiH. Biodiesel production by using CaO-Al2O3 Nano catalyst.Intern J Eng Res & Sci2016234349
    [Google Scholar]
  87. KimM. DiMaggioC. SalleyS.O. Simon NgK.Y. A new generation of zirconia supported metal oxide catalysts for converting low grade renewable feedstocks to biodiesel.Bioresour. Technol.2012118374210.1016/j.biortech.2012.04.035
    [Google Scholar]
  88. CaoX. LiL. ShitaoY. Catalytic conversion of waste cooking oils for the production of liquid hydrocarbon biofuels using in-situ coating metal oxide on SBA-15 as heterogeneous catalyst.J. Anal. Appl. Pyrolysis201913813714410.1016/j.jaap.2018.12.017
    [Google Scholar]
  89. AbbasM. Parvatheeswara RaoB. Nazrul IslamM. NagaS.M. TakahashiM. KimC. Highly stable- silica encapsulating magnetite nanoparticles (Fe3O4/SiO2) synthesized using single surfactantless- polyol process.Ceram. Int.20144011379138510.1016/j.ceramint.2013.07.019
    [Google Scholar]
  90. KunzmannA. AnderssonB. VogtC. Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells.Toxicol. Appl. Pharmacol.20112532819310.1016/j.taap.2011.03.011
    [Google Scholar]
  91. MohanS.V. MohanakrishnaG. ReddyS.S. RajuB.D. RaoK.R. SarmaP.N. Self-immobilization of acidogenic mixed consortia on mesoporous material (SBA-15) and activated carbon to enhance fermentative hydrogen production.Intern J Hyd Energy2008332161336142
    [Google Scholar]
  92. ChenY. LiuT. HeH. LiangH. Fe 3 O 4/ZnMg(Al)O magnetic nanoparticles for efficient biodiesel production.Appl. Organomet. Chem.2018325e433010.1002/aoc.4330
    [Google Scholar]
  93. ChiangY.D. DuttaS. ChenC.T. Functionalized Fe3O4@ silica core–shell nanoparticles as microalgae harvester and catalyst for biodiesel production.ChemSusChem20158578979410.1002/cssc.201402996
    [Google Scholar]
  94. PapadopoulouA. ZarafetaD. GalanopoulouA.P. StamatisH. Enhanced catalytic performance of Trichoderma reesei cellulase immobilized on magnetic hierarchical porous carbon nanoparticles.Protein J.201938664064810.1007/s10930‑019‑09869‑w
    [Google Scholar]
  95. ParambathJ.B. AblaF. AhmadA.A. KananS.M. MohamedA.A. Biocatalysts for biofuels production.Bioenergy Engineering.Woodhead Publishing202340942510.1016/B978‑0‑323‑98363‑1.00005‑3
    [Google Scholar]
  96. SemwalS. AroraA.K. BadoniR.P. TuliD.K. Biodiesel production using heterogeneous catalysts.Bioresour. Technol.201110232151216110.1016/j.biortech.2010.10.080
    [Google Scholar]
  97. NarasimhanM. ChandrasekaranM. GovindasamyS. AravamudhanA. Heterogeneous nanocatalysts for sustainable biodiesel production: A review.J. Environ. Chem. Eng.20219110487610.1016/j.jece.2020.104876
    [Google Scholar]
  98. AkiaM. YazdaniF. MotaeeE. HanD. ArandiyanH. A review on conversion of biomass to biofuel by nanocatalysts.Biofuel Res J201411162510.18331/BRJ2015.1.1.5
    [Google Scholar]
  99. IbrahimA.A. LinA. ZhangF. AbouZeidK.M. El-ShallM.S. Palladium nanoparticles supported on hybrid MOF-PRGO for catalytic hydrodeoxygenation of vanillin as a model for biofuel upgrade reactions.ChemCatChem2016946948010.1002/cctc.201600956
    [Google Scholar]
  100. ZhaoW. ZhangY. DuB. WeiD. WeiQ. ZhaoY. Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria.Bioresour. Technol.201314224024510.1016/j.biortech.2013.05.042
    [Google Scholar]
  101. KhanM.M. LeeJ. ChoM.H. Electrochemically active biofilm mediated bio-hydrogen production catalyzed by positively charged gold nanoparticles.Intern J Hyd Energy2013381352435250
    [Google Scholar]
  102. MohanrajS. AnbalaganK. RajaguruP. PugalenthiV. Effects of phytogenic copper nanoparticles on fermentative hydrogen production by Enterobacter cloacae and Clostridium acetobutylicum.Int. J. Hydrogen Energy20164125106391064510.1016/j.ijhydene.2016.04.197
    [Google Scholar]
  103. TaherdanakM. ZiloueiH. KarimiK. The effects of Fe0 and Ni0 nanoparticles versus Fe2+ and Ni2+ ions on dark hydrogen fermentation.Int. J. Hydrogen Energy201641116717310.1016/j.ijhydene.2015.11.110
    [Google Scholar]
  104. ElreedyA. IbrahimE. HassanN. Nickel-graphene nanocomposite as a novel supplement for enhancement of biohydrogen production from industrial wastewater containing mono-ethylene glycol.Energy Convers. Manage.201714013314410.1016/j.enconman.2017.02.080
    [Google Scholar]
  105. MohanrajS. KodhaiyoliiS. RengasamyM. PugalenthiV. Phytosynthesized iron oxide nanoparticles and ferrous iron on fermentative hydrogen production using Enterobacter cloacae: Evaluation and comparison of the effects.Int. J. Hydrogen Energy20143923119201192910.1016/j.ijhydene.2014.06.027
    [Google Scholar]
  106. PandeyA. GuptaK. PandeyA. Effect of nanosized TiO2 on photofermentation by Rhodobacter sphaeroides NMBL-02.Biomass Bioenergy20157227327910.1016/j.biombioe.2014.10.021
    [Google Scholar]
  107. NzilaA. Mini review: Update on bioaugmentation in anaerobic processes for biogas production.Anaerobe20174631210.1016/j.anaerobe.2016.11.007
    [Google Scholar]
  108. AbdelsalamE. SamerM. AttiaY.A. Abdel-HadiM.A. HassanH.E. BadrY. Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure.Energy201712084285310.1016/j.energy.2016.11.137
    [Google Scholar]
  109. GanzouryM.A. AllamN.K. Impact of nanotechnology on biogas production: A mini-review.Renew. Sustain. Energy Rev.2015501392140410.1016/j.rser.2015.05.073
    [Google Scholar]
  110. SuanonF. SunQ. LiM. Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion: Impact on methane yield and pharmaceutical and personal care products degradation.J. Hazard. Mater.2017321475310.1016/j.jhazmat.2016.08.076
    [Google Scholar]
  111. AmenT.W.M. EljamalO. KhalilA.M.E. MatsunagaN. Biochemical methane potential enhancement of domestic sludge digestion by adding pristine iron nanoparticles and iron nanoparticles coated zeolite compositions.J. Environ. Chem. Eng.2017555002501310.1016/j.jece.2017.09.030
    [Google Scholar]
  112. ChumakovDS DykmanLA KhlebtsovNG BogatyrevVA Nondestructive method of assessing cytotoxicity of nanoparticles using a microalga Dunaliella salina as a biosensor.RU Patent 2692675C12019
/content/journals/meng/10.2174/0122127976287172240228162047
Loading
/content/journals/meng/10.2174/0122127976287172240228162047
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biodiesel; biofuel production; lipids; nano additives; Nanomaterials; nanotechnology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test