Skip to content
2000
Volume 18, Issue 3
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Introduction

In response to the challenge of autonomous localization and navigation for mobile disinfection robots in unknown environments during the COVID-19 pandemic based on the existing patent technology of mobile robots, a localization and navigation approach combining the Cartographer-Simultaneous Localization and Mapping (SLAM) algorithm, an improved A* algorithm, and the Dynamic Window Approach (DWA) has been proposed, enabling effective disinfection and prevention work.

Methods

First, a comprehensive analysis of two laser SLAM algorithm frameworks, Gmapping-SLAM and Cartographer-SLAM, was conducted, which determined the Cartographer algorithm as the optimal SLAM algorithm for the mobile disinfection robot due to its superior performance. Second, an improved A* algorithm was developed based on its principles and integrated with the DWA algorithm for optimal path planning.

Results

Simulation and prototype experiments demonstrated that the proposed approach effectively solved the autonomous localization and navigation challenges faced by mobile disinfection robots in unknown environments, enabling successful disinfection and prevention tasks.

Conclusion

The proposed approach has the potential to lead to new patent applications in this field.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976297666240510054304
2025-06-01
2025-08-16
Loading full text...

Full text loading...

References

  1. QuG. LiX. HuL. JiangG. An imperative need for research on the role of environmental factors in transmission of novel coronavirus (COVID-19).Environ. Sci. Technol.20205473730373210.1021/acs.est.0c0110232202420
    [Google Scholar]
  2. ChiaP.Y. ColemanK.K. TanY.K. OngS.W.X. GumM. LauS.K. SutjiptoS. LeeP.H. YoungB.E. Detection of air and surface contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in hospital rooms of infected patients.medRxiv20202020.0310.1101/2020.03.29.20046557
    [Google Scholar]
  3. LuoL. LiuD. ZhangH. LiZ. ZhenR. ZhangX. XieH. SongW. LiuJ. HuangQ. LiuJ. YangX. ChenZ. MaoC. Air and surface contamination in non-health care settings among 641 environmental specimens of 39 COVID-19 cases.PLoS Negl. Trop. Dis.20201410e000857010.1371/journal.pntd.000857033035211
    [Google Scholar]
  4. VamsiK. AlleP. BrichpuriaT. MalarvizhiP. ROS based autonomous disinfectant mobile robot for hospitals.2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA)Coimbatore, India20219410010.1109/ICECA52323.2021.9675920
    [Google Scholar]
  5. MehtaI. HsuehH-Y. KourtzanidisN. BrylkaM. SaeediS. Far-UVC disinfection with robotic mobile manipulator.2022 International Symposium on Medical Robotics (ISMR)13-15 April 2022GA, USA202210.1109/ISMR48347.2022.9807593
    [Google Scholar]
  6. MehtaI. HsuehH.Y. TaghipourS. LiW. SaeediS. UV disinfection robots: A review.Robot. Auton. Syst.202316110433210.1016/j.robot.2022.10433236514383
    [Google Scholar]
  7. WangS. Research and design of intelligent anti-epidemic disinfection robot based on ROS.J. Phys. Conf. Ser.20232562101205010.1088/1742‑6596/2562/1/012050
    [Google Scholar]
  8. GuettariM. GharbiI. HamzaS. UVC disinfection robot.Environ. Sci. Pollut. Res. Int.20212830403944039910.1007/s11356‑020‑11184‑233058078
    [Google Scholar]
  9. GuoK. PanY. ChanH.F.R. HoK.F. ChenC. Far-UVC disinfection of airborne and surface virus in indoor environments: Laboratory experiments and numerical simulations.Build. Environ.202324511090010.1016/j.buildenv.2023.110900
    [Google Scholar]
  10. VanT.N. XuanN.H. DucN.N. Design and development of multifunctional autonomous mobile disinfection robot against SARS-CoV-2 virus.IJMERR2022111071872310.18178/ijmerr.11.10.718‑723
    [Google Scholar]
  11. RusdinarA. PurnamaI. FuadiA.Z. AdiluhungH. WicaksonoM. RisnandaR. NingrumR.A. Automated ultraviolet C light mobile robot for room sterilization and disinfection.Int. J. Technol.202112485410.14716/ijtech.v12i4.4817
    [Google Scholar]
  12. MehmedovicB.L. KarabegovicI. JahicJ. OmercicM. Optimal path planning of a disinfection mobile robot against COVID-19 in a ROS-based research platform.Adv. Prod. Eng. Manag.202116440541710.14743/apem2021.4.409
    [Google Scholar]
  13. AlsadikB. KaramS. The simultaneous localization and mapping (SLAM)-An overview.J. Appl. Sci. Technol. Trends20212214715810.38094/jastt204117
    [Google Scholar]
  14. JiaG. LiX. ZhangD. XuW. LvH. ShiY. CaiM. Visual-SLAM classical framework and key techniques: A review.Sensors20222212458210.3390/s2212458235746363
    [Google Scholar]
  15. PerminovS. MikhailovskiyN. SeduninA. OkunevichI. KalinovI. KurenkovM. TsetserukouD. UltraBot: Autonomous mobile robot for indoor UV-C disinfection.2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)23-27 August 2021Lyon, France10.1109/CASE49439.2021.9551413
    [Google Scholar]
  16. SobczakŁ. FilusK. DomańskaJ. DomańskiA. Finding the best hardware configuration for 2D SLAM in indoor environments via simulation based on google cartographer.Sci. Rep.20221211881510.1038/s41598‑022‑22938‑y36335221
    [Google Scholar]
  17. RuanK. WuZ. XuQ. Smart cleaner: A new autonomous indoor disinfection robot for combating the COVID-19 pandemic.Robotics20211038710.3390/robotics10030087
    [Google Scholar]
  18. BačíkJ. TkáčP. HricL. AlexovičS. KyslanK. OlexaR. PerdukováD. Phollower—the universal autonomous mobile robot for industry and civil environments with COVID-19 germicide addon meeting safety requirements.Appl. Sci.20201021768210.3390/app10217682
    [Google Scholar]
  19. ZhangH. TaoY. ZhuW. Global path planning of unmanned surface vehicle based on improved a-star algorithm.Sensors20232314664710.3390/s2314664737514941
    [Google Scholar]
  20. XuB. Precise path planning and trajectory tracking based on improved A-star algorithm.Meas. Control202457810.1177/00202940241228725
    [Google Scholar]
  21. JiangH. SunY. WangX. zhangP. Research on path planning of mobile disinfection robot based on improved A * algorithm.2021 6th International Symposium on Advances in Electrical, Electronics and Computer Engineering (ISAEECE 2021)12-14 March 2021Nanjing, China 202101211110.1088/1742‑6596/1871/1/012111
    [Google Scholar]
  22. LiangZ. HeP. LiangW. ZhaoX. WeiB. SLAM mapping method of laser radar for tobacco production line inspection robot based on improved RBPF.Int. J. Adv. Comput. Sci. Appl.202314810.14569/IJACSA.2023.0140894
    [Google Scholar]
  23. MullaneJ. VoB.N. AdamsM.D. VoB.T. A random-finite-set approach to bayesian SLAM.IEEE Trans. Robot.201127226828210.1109/TRO.2010.2101370
    [Google Scholar]
  24. Le CorffS. FortG. MoulinesE. Online expectation maximization algorithm to solve the SLAM problem.2011 IEEE Statistical Signal Processing Workshop (SSP)Nice, France201122522810.1109/SSP.2011.5967666
    [Google Scholar]
  25. TeameW.G. YuY. ZhongminW. Optimization of SLAM gmapping based on simulation.IJERT20209410.17577/IJERTV9IS040107
    [Google Scholar]
  26. ZhaoJ. LiJ. ZhouJ. Research on two-round self-balancing robot SLAM based on the gmapping algorithm.Sensors2023235248910.3390/s2305248936904692
    [Google Scholar]
  27. HuangZ. GengJ. Research on laser-based mobile robot SLAM and autonomous navigation.J. Phys. Conf. Ser.20242711101202110.1088/1742‑6596/2711/1/012021
    [Google Scholar]
  28. An extensive analysis and fine-tuning of gmapping’s initialization parameters.Int. J. Intell. Eng. Syst.202316312613810.22266/ijies2023.0630.10
    [Google Scholar]
  29. RatulM.T.A. MahmudM.S.A. AbidinM.S.Z. AyopR. Design and development of GMapping based SLAM algorithm in virtual agricultural environment.2021 11th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)27-28 August 2021Penang, Malaysia202110.1109/ICCSCE52189.2021.9530991
    [Google Scholar]
  30. TianC. LiuH. LiuZ. LiH. WangY. Research on multi-sensor fusion SLAM algorithm based on improved gmapping.IEEE Access202311136901370310.1109/ACCESS.2023.3243633
    [Google Scholar]
  31. LiL. SchulzeL. KalavadiaK. Promising SLAM methods for automated guided vehicles and autonomous mobile robots.Procedia Comput. Sci.20242322867287410.1016/j.procs.2024.02.103
    [Google Scholar]
  32. KobayashiM. ZushiH. NakamuraT. MotoiN. Local path planning: Dynamic window approach with q-learning considering congestion environments for mobile robot.IEEE Access202311967339674210.1109/ACCESS.2023.3311023
    [Google Scholar]
  33. ChangL. ShanL. JiangC. DaiY. Reinforcement based mobile robot path planning with improved dynamic window approach in unknown environment.Auton. Robots2021451517610.1007/s10514‑020‑09947‑4
    [Google Scholar]
  34. IbáñezS.J.R. del-PulgarP.C.J. CerezoG.A. Path planning for autonomous mobile robots: A review.Sensors20212123789810.3390/s2123789834883899
    [Google Scholar]
  35. SuW. WangQ. ZhaoX. LiuW. QinT. Design and research of flatworm-inspired marine exploration robot.Intelligent Robotics and Applications YangH. LiuH. ZouJ. YinZ. LiuL. YangG. OuyangX. WangZ. SingaporeSpringer Nature Singapore202323724510.1007/978‑981‑99‑6498‑7_21
    [Google Scholar]
  36. FoxD. BurgardW. ThrunS. The dynamic window approach to collision avoidance.IEEE Robot. Autom. Mag.199741233310.1109/100.580977
    [Google Scholar]
  37. FuB. ChenL. ZhouY. ZhengD. WeiZ. DaiJ. PanH. An improved A* algorithm for the industrial robot path planning with high success rate and short length.Robot. Auton. Syst.2018106263710.1016/j.robot.2018.04.007
    [Google Scholar]
  38. ZhengT. XuY. ZhengD. AGV path planning based on improved a-star algorithm.2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)11-13 October 2019Chongqing, China201910.1109/IMCEC46724.2019.8983841
    [Google Scholar]
  39. MooreT PowersB Dynamic window approach using optimal reciprocal collision avoidance cost-critic.US Patent 10429847B22019
  40. KhatibO. Real-time obstacle avoidance for manipulators and mobile robots.Int. J. Robot. Res.198651909810.1177/027836498600500106
    [Google Scholar]
  41. LiuY. WangC. WuH. WeiY. Mobile robot path planning based on kinematically constrained a-star algorithm and DWA fusion algorithm.Mathematics20231121455210.3390/math11214552
    [Google Scholar]
  42. de LimaD. A. VictorinoA. C. An image based dynamic window approach for local navigation of an autonomous vehicle in urban environments.IEEE ICRA Workshop on Modelling, Estimation, Perception and Control of All Terrain Mobile Robots (WMEPC 2014)May 2014Hong Kong, Hong Kong SAR China2014
    [Google Scholar]
/content/journals/meng/10.2174/0122127976297666240510054304
Loading
/content/journals/meng/10.2174/0122127976297666240510054304
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test