Skip to content
2000
Volume 18, Issue 5
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Background

The present need for manufacturing industries is the creation of a new class of engineered materials with high specific properties. In this regard, nanocomposite materials have shown promising results compared to monolithic materials. Recent patents also show high mechanical and tribological properties.

Objective

The tribological and mechanical properties of graphene nanoplatelets (GNP)-reinforced aluminium 7075 nanocomposites are reported in this article with the objective of finding optimum properties.

Methods

The nanocomposites were successfully produced with the stir casting technique, a liquid metallurgy route with varying weight percentages of reinforcement composition of 0.5%, 1%, and 2%.

Results

The result showed an improvement in ultimate tensile strength of 69.5% and microhardness of 76.67% in contrast to the base alloy when it was cast. The wear rate was dropped significantly by 43% and 40% in 10 N and 20 N loading conditions with respect to as-cast conditions. Further, a decrease in the average coefficient of friction was observed from 0.680 to 0.565.

Conclusion

Graphene nanoplatelets came out as excellent reinforcement in the aluminium 7075 alloy, as they showed an impact on improved properties. The decreasing wear rate and coefficient of friction showed their self-lubricating nature. Additionally, X-ray diffraction (XRD) results and optical microstructure were also discussed.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976305485240329053923
2024-04-15
2025-11-14
Loading full text...

Full text loading...

References

  1. EdoziunoF.O. NwaejuC.C. AdediranA.A. OdoniB.U. ArunP.V.R. Mechanical and microstructural characteristics of Aluminium 6063 Alloy/Palm Kernel shell composites for lightweight applications.Sci. Am.202112e0078110.1016/j.sciaf.2021.e00781
    [Google Scholar]
  2. SoltaniS. AzariK.R. TaherzadehM.R. JiangZ.Y. FadaviB.A. BrabazonD. Stir casting process for manufacture of Al–SiC composites.Rare Met.201736758159010.1007/s12598‑015‑0565‑7
    [Google Scholar]
  3. DebnathS. OoZ. RahmanM. MalequeM. TanC. Physio-mechanical properties of aluminium metal matrix composites reinforced with Al2O3 and SiC.Inter J of Engi and App Sci20126288291
    [Google Scholar]
  4. MaheshL. ReddyJ.S. Fabrication of TiO2 reinforced aluminum metal matrix composites through p/m process.Int J Eng Res Tech201531714
    [Google Scholar]
  5. A M, R S. Fabrication and characterization of Aluminium boron nitride composite for Fins.Mater. Today Proc.2018528618862410.1016/j.matpr.2017.11.560
    [Google Scholar]
  6. Jebeen MosesJ. Joseph SekharS. Investigation on the tensile strength and microhardness of AA6061/TiC composites by stir casting.Trans. Indian Inst. Met.20177041035104610.1007/s12666‑016‑0891‑y
    [Google Scholar]
  7. SureshS. ShenbagN. MoorthiV. Aluminium-titanium diboride (Al-TiB2) metal matrix composites: Challenges and opportunities.Procedia Eng.201238899710.1016/j.proeng.2012.06.013
    [Google Scholar]
  8. AdediranA.A. SriariyanunM. Applicability of agro-waste materials in the development of aluminium matrix composites for transport structures.Appl Sci Eng Prog2022162663410.14416/j.asep.2022.12.003
    [Google Scholar]
  9. MathewG. KumarK.V. VijaykumarS. Effect of Agro Waste Reinforcements on the Mechanical Properties of Aluminium Composites.Proceedings of International Conference on Intelligent Manufacturing and Automation: ICIMA 2022.Singapore: Spr Nat Sing2022451462
    [Google Scholar]
  10. DwivediP. MauryaM. MauryaN.K. SrivastavaA.K. SharmaS. SaxenaA. Utilization of groundnut shell as reinforcement in development of aluminum-based composite to reduce environment pollution: a review.Evergreen202071152510.5109/2740937
    [Google Scholar]
  11. AkashR. MuralirajaR. SuthanR. ShaisundaramV.S. Synthesis and testing of aluminium composite using industrial waste as reinforcement.Mater. Today Proc.20213763463710.1016/j.matpr.2020.05.627
    [Google Scholar]
  12. DwivediS.P. SrivastavaA.K. Utilization of chrome containing leather waste in development of aluminium based green composite material.Int J Preci Eng ManufactGreen Technol20207378179010.1007/s40684‑019‑00179‑1
    [Google Scholar]
  13. OgawaF. MasudaC. FujiiH. In situ chemical vapor deposition of metals on vapor-grown carbon fibers and fabrication of aluminummatrix composites reinforced by coated fibers.J. Mater. Sci.20185375036505010.1007/s10853‑017‑1921‑9
    [Google Scholar]
  14. NatrayanL. SenthilK.M. Study on squeeze casting of aluminum matrix composites: a review. AntonyK. DavimJ.P. Advanced Manufacturing and Materials Science. Lecture Notes on Multidisciplinary Industrial Engineering.ChamSpringer2018758310.1007/978‑3‑319‑76276‑0_8
    [Google Scholar]
  15. PeatT. GallowayA. ToumpisA. McNuttP. IqbalN. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing.Appl. Surf. Sci.20173961635164810.1016/j.apsusc.2016.10.156
    [Google Scholar]
  16. GyansahL. TariqN.H. TangJ.R. Cold sprayed additive manufacturing of sic/al metal matrix composite: Synthesis, microstructure, heat treatment and tensile properties.Mat Sci For Trans Tech Publi Ltd2018932627510.4028/www.scientific.net/MSF.932.62
    [Google Scholar]
  17. BodukuriA.K. EswaraiahK. RajendarK. SampathV. Fabrication of Al–SiC–B4C metal matrix composite by powder metallurgy technique and evaluating mechanical properties.Perspect. Sci.2016842843110.1016/j.pisc.2016.04.096
    [Google Scholar]
  18. DileepB.P. RavikumarV. VitalH.R. Mechanical and corrosion behavior of Al-Ni-Sic metal matrix composites by powder metallurgy.Mater. Today Proc.201855122571226410.1016/j.matpr.2018.02.204
    [Google Scholar]
  19. DevaneyanS.P. GaneshR. SenthilvelanT. On the mechanical properties of hybrid aluminium 7075 matrix composite material reinforced with SiC and TiC produced by powder metallurgy method.Indian J Mater Sci201720171610.1155/2017/3067257
    [Google Scholar]
  20. VaniV.V. ChakS.K. The effect of process parameters in aluminum metal matrix composites with powder metallurgy.Manuf. Rev.20185710.1051/mfreview/2018001
    [Google Scholar]
  21. SuchentrunkR. Metal matrix composites produced by electroplating: a review on technology and applications. VoevodinA.A. Nanostructured Thin Films and Nanodispersion Strengthened Coatings. NATO Science Series II: Mathematics, Physics and Chemistry.DordrechtSpringer200424125010.1007/1‑4020‑2222‑0_24
    [Google Scholar]
  22. MartinJ AhataB Material and method for producing metal nanocomposites, and metal nanocomposites obtained thereby.CN Patent 109996625B2022
    [Google Scholar]
  23. PaiB.C. PillaiR.M. SatyanarayanaK.G. Stir cast aluminium alloy matrix composites.Key Eng. Mater.199379-8011712810.4028/www.scientific.net/KEM.79‑80.117
    [Google Scholar]
  24. SijoM.T. JayadevanK.R. JanardhananS. Simulation of mushy state solidification in stir casting.World J. Eng.201815115616510.1108/WJE‑04‑2017‑0079
    [Google Scholar]
  25. YeW.B. ArıcıM. Exploring mushy zone constant in enthalpy-porosity methodology for accurate modeling convection-diffusion solid-liquid phase change of calcium chloride hexahydrate.Int. Commun. Heat Mass Transf.202415210729410.1016/j.icheatmasstransfer.2024.107294
    [Google Scholar]
  26. YeW.B. ArıcıM. False diffusion, asymmetrical interface, and equilibrious state for pure solid-gallium phase change modeling by enthalpy-porosity methodology.Int. Commun. Heat Mass Transf.202314410674610.1016/j.icheatmasstransfer.2023.106746
    [Google Scholar]
  27. YeW.B. ArıcıM. 3D validation, 2D feasibility, corrected and developed correlations for pure solid-gallium phase change modeling by enthalpy-porosity methodology.Int. Commun. Heat Mass Transf.202314410678010.1016/j.icheatmasstransfer.2023.106780
    [Google Scholar]
  28. YeW.B. ArıcıM. Redefined interface error, 2D verification and validation for pure solid-gallium phase change modeling by enthalpy-porosity methodology.Int. Commun. Heat Mass Transf.202314710695210.1016/j.icheatmasstransfer.2023.106952
    [Google Scholar]
  29. ZhangY. XuX. Predicting mechanical performance of starch-based foam materials.J. Cell. Plast.202258350551410.1177/0021955X211062638
    [Google Scholar]
  30. KhannaV. KumarV. BansalS.A. Effect of reinforcing graphene nanoplatelets (GNP) on the strength of aluminium (Al) metal matrix nanocomposites.Mater. Today Proc.20226128028510.1016/j.matpr.2021.09.227
    [Google Scholar]
  31. SharmaA. VasudevanB. SujithR. KotkundeN. SureshK. Kumar GuptaA. Effect of graphene nanoplatelets on the mechanical properties of aluminium metal matrix composite.Mater. Today Proc.2019182461246710.1016/j.matpr.2019.07.095
    [Google Scholar]
  32. SharmaA. PriyadarshiniA. SujithR. SubrahmanyamM.V.S. ThomasP.A. GuptaA.K. Effect of graphene nanoplatelets incorporation on microstructural and tribological properties of aluminium metal matrix composites.ASME 2019 International Mechanical Engineering Congress and Exposition2019 Nov 11-14Salt Lake City, Utah, USANew YorkAmerican Society of Mechanical Engineers201910.1115/IMECE2019‑10939
    [Google Scholar]
  33. SrivastavaA.K. SharmaB. SajuB.R. ShuklaA. SaxenaA. MauryaN.K. Effect of Graphene nanoparticles on microstructural and mechanical properties of aluminum based nanocomposites fabricated by stir casting.World J. Eng.202017685986610.1108/WJE‑04‑2020‑0128
    [Google Scholar]
  34. YuhongZ ZhangT LiangJ LiwenC HuaH MuchiL. A kind of preparation method of graphene reinforced aluminum matrix composites.CN Patent 108060321B2019
    [Google Scholar]
  35. GhazanlouS.I. GhazanlouS.I. GhazanlouS.I. HosseinpourS. LiaoY. JavidaniM. Improving the properties of an Al matrix composite fabricated by laser powder bed fusion using graphene–TiO2 nanohybrid.J. Alloys Compd.202393816859610.1016/j.jallcom.2022.168596
    [Google Scholar]
  36. GülerÖ. BağcıN. A short review on mechanical properties of graphene reinforced metal matrix composites.J. Mater. Res. Technol.2020936808683310.1016/j.jmrt.2020.01.077
    [Google Scholar]
  37. Prashantha KumarH.G. Anthony XaviorM. Effect of graphene addition and tribological performance of Al 6061/graphene flake composite. Tribology-Materials.Surf & Inter20171128897
    [Google Scholar]
  38. ZhangY. XuX. Modulus of elasticity predictions through LSBoost for concrete of normal and high strength.Mater. Chem. Phys.202228312600710.1016/j.matchemphys.2022.126007
    [Google Scholar]
  39. ZhangY. XuX. Machine learning surface roughnesses in turning processes of brass metals.Int. J. Adv. Manuf. Technol.20221213-42437244410.1007/s00170‑022‑09498‑1
    [Google Scholar]
  40. XuX. ZhangY. Machine learning the concrete compressive strength from mixture proportions.ASME Open J Eng20221501103710.1115/1.4055194
    [Google Scholar]
  41. ImranM. KhanA.R.A. Characterization of Al-7075 metal matrix composites: A review.J. Mater. Res. Technol.2019833347335610.1016/j.jmrt.2017.10.012
    [Google Scholar]
  42. ChaurasiaR. SarangiS.K. Review on mechanical properties of aluminium metal matrix hybrid composites prepared by stir casting technique.AIP Conference Proceedings20232786105000410.1063/5.0145816
    [Google Scholar]
  43. KhalidM.Y. UmerR. KhanK.A. Review of recent trends and developments in aluminium 7075 alloys and metal matrix composites (MMCs) for aircraft applications.Res in Eng2023101372
    [Google Scholar]
  44. GhoshA. GhoshM. Microstructure and texture development of 7075 alloy during homogenisation.Philos. Mag.201898161470149010.1080/14786435.2018.1439596
    [Google Scholar]
  45. ChakV. ChattopadhyayH. Fabrication and heat treatment of graphene nanoplatelets reinforced aluminium nanocomposites.Mater. Sci. Eng. A202079113965710.1016/j.msea.2020.139657
    [Google Scholar]
  46. BalajiD. A measurement of mechanical properties of AA-TiO2–Gr hybrid composite prepared through powder metallurgy process.Measurement. Sensors202224100433
    [Google Scholar]
  47. LiD. YeY. LiaoX. QinQ.H. A novel method for preparing and characterizing graphene nanoplatelets/aluminum nanocomposites.Nano Res.20181131642165010.1007/s12274‑017‑1779‑9
    [Google Scholar]
  48. RajR.R. YoganandhJ. SaravananM.S.S. KumarS.S. Effect of graphene addition on the mechanical characteristics of AA7075 aluminium nanocomposites.Carbon Letters202131112513610.1007/s42823‑020‑00157‑7
    [Google Scholar]
  49. KhannaV. KumarV. BansalS.A. Fabrication of efficient aluminium/graphene nanosheets (Al-GNP) composite by powder metallurgy for strength applications.J. Mater. Res. Technol.2023223402341210.1016/j.jmrt.2022.12.161
    [Google Scholar]
  50. ŞenelM.C. GürbüzM. KoçE. Mechanical and tribological behaviours of aluminium matrix composites reinforced by graphene nanoplatelets.Mater. Sci. Technol.201834161980198910.1080/02670836.2018.1501839
    [Google Scholar]
  51. OrowanE. Internal stresses in metals and alloys.1st edLondon, UKInstitute of Metals1948
    [Google Scholar]
  52. ZhangZ ChenDL Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength.Scrip materi20065471321131610.1016/j.scriptamat.2005.12.017
    [Google Scholar]
  53. ZhangP.X. YanH. LiuW. ZouX.L. TangB.B. Effect of T6 heat treatment on microstructure and hardness of nanosized Al2O3 reinforced 7075 aluminum matrix composites.Metals2019914410.3390/met9010044
    [Google Scholar]
  54. ArchardJ.F. Contact and rubbing of flat surfaces.J of App Phy195324918988
    [Google Scholar]
  55. SekharR. SinghT.P. Mechanisms in turning of metal matrix composites: A review.J. Mater. Res. Technol.20154219720710.1016/j.jmrt.2014.10.013
    [Google Scholar]
  56. BastwrosM.M.H. EsawiA.M.K. WifiA. Friction and wear behavior of Al–CNT composites.Wear20133071-216417310.1016/j.wear.2013.08.021
    [Google Scholar]
  57. AdegbenjoA.O. ObadeleB.A. OlubambiP.A. Densification, hardness and tribological characteristics of MWCNTs reinforced Ti6Al4V compacts consolidated by spark plasma sintering.J. Alloys Compd.201874981883310.1016/j.jallcom.2018.03.373
    [Google Scholar]
/content/journals/meng/10.2174/0122127976305485240329053923
Loading
/content/journals/meng/10.2174/0122127976305485240329053923
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test