Skip to content
2000
Volume 18, Issue 3
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Aims and objectives

The aim of this study was to fabricate epoxy resin-based hybrid composites reinforced with biodegradable leaf powder in conjunction with glass sheets, boron nitride, and alumina for the production of printed circuit boards.

Methods

For this application, various thermal, physical, and electrical tests were conducted by the authors. The thermal test results showed that the alumina-based epoxy hybrid composite has more thermal stability than the neat epoxy. Moreover, upon adding BN/Alumina, the flame retarding properties of the epoxy hybrid composites improved. We also observed that with the increase in the content of BN and alumina, the thermal conductivity of the hybrid composite was enhanced. From the water absorption tests, the hybrid composite with 6 g BN showed the least amount of water consumption. Particularly, adding BN and leaf powder from 2 to 6 g gave better results for the decrease in water absorption, as compared to adding alumina in the epoxy-based hybrid composite.

Results

Lastly, from the electric tests, we observed that with the increase in frequencies, the dielectric constant of the hybrid composite decreases. At a lower frequency range, the hybrid composite having 2 g of BN and leaf powder shows the lowest dielectric constant, whereas, at a higher frequency range, 2 g of alumina and leaf powder shows the lowest dielectric constant.

Conclusion

We predict that the results reported in this investigation will aid in accelerating the engineering applications of epoxy resin-based hybrid composite materials and help patent the material compositions for specific purposes.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976302601240404060719
2025-06-01
2025-10-17
Loading full text...

Full text loading...

References

  1. KumarV. GuptaM. Comparative study of different natural fibre printed circuit board (PCB) composites.Mater. Today Proc.2021442097210110.1016/j.matpr.2020.12.182
    [Google Scholar]
  2. A New Circular Vision for Electronics Time for a Global Reboot. Available from: https://www3.weforum.org/docs/WEF_A_New_Circular_Vision_for_Electronics.pdf
  3. BaldéC.P. FortiV. GrayV. KuehrR. StegmannP. The global e-waste monitor2017Quantities, flows and resources United Nations University: Bonn, Germany; Geneva, Switzerland; Vienna, Austria, International Telecommunication Union, and International Solid Waste Association. Available from: http://collections.unu.edu/eserv/unu:6341/GEM_2017-R.pdf
    [Google Scholar]
  4. WangJ. LiZ. LuH. Current research and patents of plant fiber composites.Recent Pat. Mech. Eng.2019121374410.2174/2212797611666181119105203
    [Google Scholar]
  5. ChowdhuryM. NuruzzamanD. RahamanM. Erosive wear behavior of composite and polymer materials-A review.Recent Pat. Mech. Eng.20092214415310.2174/2212797610902020144
    [Google Scholar]
  6. ChowdhuryM. NuruzzamanD. RahamanM. Tribological behavior of composite materials - A review.Recent Pat. Mech. Eng.20081212312810.2174/2212797610801020123
    [Google Scholar]
  7. EnglandC. Design of automotive metal and composite chassis structures.Recent Pat. Mech. Eng.20103321122510.2174/2212797611003030211
    [Google Scholar]
  8. ZhaoG. ZhongJ. ZhangY.X. Research progress on mechanical properties of short carbon fibre/epoxy composites.Recent Pat. Mech. Eng.201912131310.2174/2212797612666181213091233
    [Google Scholar]
  9. SharathB.N. MadhuP. VermaA. Enhancing tribological performance: A review of ceramic reinforced aluminium hybrid composites for high-temperature engineering applications.Hybrid Advances2023410009410.1016/j.hybadv.2023.100094
    [Google Scholar]
  10. KosbarL.L. GelormeJ.D. JappR.M. FotornyW.T. Introducing biobased materials into the electronics industry.J. Ind. Ecol.2000439310510.1162/108819800300106401
    [Google Scholar]
  11. ClydeF. Coombs, Jr. Printed Circuits Handbook. 6th ed. New York, NY, USA: McGraw-Hill Education 2008. Available from:https://www.accessengineeringlibrary.com/content/book/9780071467346
  12. DengY. ParaskevasD. TianY. Van AckerK. DewulfW. DuflouJ.R. Life cycle assessment of flax-fibre reinforced epoxidized linseed oil composite with a flame retardant for electronic applications.J. Clean. Prod.201613342743810.1016/j.jclepro.2016.05.172
    [Google Scholar]
  13. BharathK.N. MadhuP. GowdaT.G.Y. VermaA. SanjayM.R. SiengchinS. A novel approach for development of printed circuit board from biofiber based composites.Polym. Compos.202041114550455810.1002/pc.25732
    [Google Scholar]
  14. LimL.T. AurasR. RubinoM. Processing technologies for poly(lactic acid).Prog. Polym. Sci.200833882085210.1016/j.progpolymsci.2008.05.004
    [Google Scholar]
  15. SiracusaV. BlancoI. RomaniS. TylewiczU. RocculiP. RosaM.D. Poly(lactic acid)‐modified films for food packaging application: Physical, mechanical, and barrier behavior.J. Appl. Polym. Sci.2012125S2E390E40110.1002/app.36829
    [Google Scholar]
  16. SaeidlouS. HuneaultM.A. LiH. ParkC.B. Poly(lactic acid) crystallization.Prog. Polym. Sci.201237121657167710.1016/j.progpolymsci.2012.07.005
    [Google Scholar]
  17. MartinO. AvérousL. Poly(lactic acid): plasticization and properties of biodegradable multiphase systems.Polymer200142146209621910.1016/S0032‑3861(01)00086‑6
    [Google Scholar]
  18. RasalR.M. JanorkarA.V. HirtD.E. Poly(lactic acid) modifications.Prog. Polym. Sci.201035333835610.1016/j.progpolymsci.2009.12.003
    [Google Scholar]
  19. LincolnJ.D. ShapiroA.A. EarthmanJ.C. SaphoresJ.D.M. OgunseitanO.A. Design and evaluation of bioepoxy-flax composites for printed circuit boards.IEEE Trans. Electron. Packag. Manuf.200831321122010.1109/TEPM.2008.926273
    [Google Scholar]
  20. NägeleH. PfitzerJ. LehnbergerC. Renewable resources for use in printed circuit boards.Circuit World2005312262910.1108/03056120510571824
    [Google Scholar]
  21. RigoldiA. TroguE.F. MarcheselliG.C. Advances in recovering noble metals from waste printed circuit boards (WPCBs).ACS Sustain. Chem.& Eng.2019711308131710.1021/acssuschemeng.8b04983
    [Google Scholar]
  22. CozzaG. D’AdamoI. RosaP. Circular manufacturing ecosystems: Automotive printed circuit boards recycling as an enabler of the economic development.Prod. Manuf. Res.2023111218283710.1080/21693277.2023.2182837
    [Google Scholar]
  23. LinK.H. TsaiJ.H. LanC.L. ChiangH.L. The effect of microwave pyrolysis on product characteristics and bromine migration for a non-metallic printed circuit board.Waste Manag.202215314715510.1016/j.wasman.2022.08.030 36096042
    [Google Scholar]
  24. ChenW. ChenY. ShuY. HeY. WeiJ. Characterization of solid, liquid and gaseous products from waste printed circuit board pyrolysis.J. Clean. Prod.202131312788110.1016/j.jclepro.2021.127881
    [Google Scholar]
  25. PreetamA. MishraS. NaikS.N. PantK.K. KumarV. A sustainable approach for material and metal recovery from E-waste using subcritical to supercritical methanol.Waste Manag.2022145293710.1016/j.wasman.2022.04.011 35500319
    [Google Scholar]
  26. Mathenulla ShariffM. ArpithaG.R. JainN. ShankarU. VermaA. ShivakumarN.D. A comparative study on the effect of reinforcing boron nitride/alumina in epoxy-based hybrid composite with Millettia pinnata leaf powder and glass sheets: Experimental fabrication, mechanical and micro-structural characterization.Hybrid Advances2023410009510.1016/j.hybadv.2023.100095
    [Google Scholar]
  27. ArpithaG.R. JainN. VermaA. MadhusudhanM. Corncob bio-waste and boron nitride particles reinforced epoxy-based composites for lightweight applications: fabrication and characterization.Biomass Convers. Biorefin.202414125311253810.1007/s13399‑022‑03717‑1
    [Google Scholar]
  28. VermaA. BauraiK. SanjayM.R. SiengchinS. Mechanical, microstructural, and thermal characterization insights of pyrolyzed carbon black from waste tires reinforced epoxy nanocomposites for coating application.Polym. Compos.202041133834910.1002/pc.25373
    [Google Scholar]
  29. VermaA. NegiP. SinghV.K. Experimental analysis on carbon residuum transformed epoxy resin: Chicken feather fiber hybrid composite.Polym. Compos.20194072690269910.1002/pc.25067
    [Google Scholar]
  30. VermaA. SinghV.K. Mechanical, microstructural and thermal characterization of epoxy-based human hair–reinforced composites.J. Test. Eval.20194721193121510.1520/JTE20170063
    [Google Scholar]
  31. JainN. VermaA. SinghV.K. Dynamic mechanical analysis and creep-recovery behaviour of polyvinyl alcohol based cross-linked biocomposite reinforced with basalt fiber.Mater. Res. Express201961010537310.1088/2053‑1591/ab4332
    [Google Scholar]
  32. VermaA. BudiyalL. SanjayM.R. SiengchinS. Processing and characterization analysis of pyrolyzed oil rubber (from waste tires)‐epoxy polymer blend composite for lightweight structures and coatings applications.Polym. Eng. Sci.201959102041205110.1002/pen.25204
    [Google Scholar]
  33. VermaA. GaurA. SinghV.K. Mechanical properties and microstructure of starch and sisal fiber biocomposite modified with epoxy resin.Mater. Perform. Charact.20176150052010.1520/MPC20170069
    [Google Scholar]
  34. VermaA. NegiP. SinghV.K. Physical and thermal characterization of chicken feather fiber and crumb rubber reformed epoxy resin hybrid composite.Adv. Civ. Eng. Mater.20187153855710.1520/ACEM20180027
    [Google Scholar]
  35. RastogiS. VermaA. SinghV.K. Experimental response of nonwoven waste cellulose fabric–reinforced epoxy composites for high toughness and coating applications.Mater. Perform. Charact.2020912019025110.1520/MPC20190251
    [Google Scholar]
  36. VermaA. JoshiK. GaurA. SinghV.K. Starch-jute fiber hybrid biocomposite modified with an epoxy resin coating: fabrication and experimental characterization.J. Mech. Behav. Mater.2018275-62018200610.1515/jmbm‑2018‑2006
    [Google Scholar]
  37. VermaA. SinghC. SinghV.K. JainN. Fabrication and characterization of chitosan-coated sisal fiber – Phytagel modified soy protein-based green composite.J. Compos. Mater.201953182481250410.1177/0021998319831748
    [Google Scholar]
  38. TsuchiyaY. SumiK. Thermal decomposition products of poly(vinyl alcohol).J. Polym. Sci. A119697113151315810.1002/pol.1969.150071111
    [Google Scholar]
  39. PattanaikA. BhuyanS.K. SamalS.K. BeheraA. MishraS.C. Dielectric properties of epoxy resin fly ash composite.IOP Conf. Series Mater. Sci. Eng.2016115101200310.1088/1757‑899X/115/1/012003
    [Google Scholar]
  40. RiandeE. Díaz-CallejaR. Electrical properties of polymers.Boca Raton, FLCRC Press2004
    [Google Scholar]
  41. RittinAK AlanB AkhilKR AshinC BevinJ ChackoPK Duck feather fiber based hybrid sandwich composite laminate with epoxy resin as matrix. AU Patent 2021102369A4,2021
/content/journals/meng/10.2174/0122127976302601240404060719
Loading
/content/journals/meng/10.2174/0122127976302601240404060719
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): alumina; boron nitride; Composite; epoxy; flame retardants; Millettia pinnata leaf powder
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test