Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Background

In recent decades, there has been a concerning decrease in the accessibility of purified water, accompanied by a notable rise in demand. Seawater desalination can help address the issue of insufficient drinking water.

Objective

An experiment was conducted using different energy storage materials incorporated into the water basin of a pyramid solar still (PSS) to examine its efficiency. Apparently this modified-PSS design can be patented and be used for future home needs.

Methods

This study determined the optimal water depth for the basin, ranging from 4 to 8 cm.

Results

Based on the findings, a water depth of 4 cm significantly increased productivity compared to depths of 5, 6, 7, and 8 cm, showing respective increases of 15%, 24.2%, 32.4%, and 40%.

Conclusion

Moreover, studies were carried out to improve PSS output at a water depth of 4 cm using paraffin wax, basalt stone, blue metal stone, and glass marbles. The experimental results demonstrated that using paraffin wax increased productivity by 10%, 21.1%, and 34.3% compared to using blue metal stone, basalt stone, and kanche marbles, respectively.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976288061240228045000
2024-03-11
2025-08-13
Loading full text...

Full text loading...

References

  1. SaidiS. Ben RadhiaR. NafiriN. BenhamouB. JabrallahS.B. Numerical study and experimental validation of a solar powered humidification-dehumidification desalination system with integrated air and water collectors in the humidifier.Renew. Energy202320646648010.1016/j.renene.2023.02.048
    [Google Scholar]
  2. Al-RawajfehA. ZarooniM. New processes in seawater desalination.Recent Pat. Chem. Eng.20081214115010.2174/2211334710801020141
    [Google Scholar]
  3. ArunkumarT. WilsonH.M. LimH.W. HameedA.Z. LeeS.J. Peanut shell-derived photothermal absorber for solar desalination.Desalination202356511690110.1016/j.desal.2023.116901
    [Google Scholar]
  4. AdamuN.I. BiswalD.K. PulagamM.K.R. RoutS.K. Performance analysis of solar desalination system with thermal energy storage materials.Mater. Today Proc.2023.7480180710.1016/j.matpr.2022.11.173
    [Google Scholar]
  5. BamasagA. AlmatrafiE. AlqahtaniT. Recent advances and future prospects in direct solar desalination systems using membrane distillation technology.J. Clean. Prod.202338513573710.1016/j.jclepro.2022.135737
    [Google Scholar]
  6. ZhouP. ZhuQ. SunX. LiuL. CaiZ. XuJ. Recent advances in MXene-based membrane for solar-driven interfacial evaporation desalination.Chem. Eng. J.202346414250810.1016/j.cej.2023.142508
    [Google Scholar]
  7. ZhaoX. WangT. JiangY. LuQ. PanJ. Robust and versatile polypyrrole supramolecular network packed photothermal aerogel for solar-powered desalination.Desalination202356111667410.1016/j.desal.2023.116674
    [Google Scholar]
  8. GajbhiyeT.S. WaghmareS.N. SirsatP.M. BorkarP. AwatadeS.M. Role of nanomaterials on solar desalination systems: A review.Mater. Today Proc.202310.1016/j.matpr.2023.04.532
    [Google Scholar]
  9. TawalbehM. JavedR.M.N. Al-OthmanA. AlmomaniF. Salinity gradient solar ponds hybrid systems for power generation and water desalination.Energy Convers. Manage.202328911718010.1016/j.enconman.2023.117180
    [Google Scholar]
  10. XuZ. YangY. YeC. LinX. ShenJ. YeM. Salt-resistance holocellulose-based solar steam evaporator for desalination brine water.J. Environ. Chem. Eng.202311511063410.1016/j.jece.2023.110634
    [Google Scholar]
  11. XiaoX. PanL. ChenT. Scalable core–sheath yarn for boosting solar interfacial desalination through engineering controllable water supply.Engineering20233015316010.1016/j.eng.2023.03.015
    [Google Scholar]
  12. ShengM. BinX. YangY. QueW. Passive solar-driven interfacial evaporation nanosystems: Beyond desalination towards multiple applications.Recent Pat. Nanotechnol.202317317618210.2174/1872210516666220203093217 35125089
    [Google Scholar]
  13. GoosenM. MahmoudiH. AlyousefY. GhaffourN. Solar desalination: A review of recent developments in environmental, regulatory and economic issues.Solar Compass2023510003410.1016/j.solcom.2023.100034
    [Google Scholar]
  14. HeW. HuangG. MarkidesC.N. Synergies and potential of hybrid solar photovoltaic-thermal desalination technologies.Desalination202355211642410.1016/j.desal.2023.116424
    [Google Scholar]
  15. AbediM. TanX. KlausnerJ.F. BénardA. Solar desalination chimneys: Investigation on the feasibility of integrating solar chimneys with humidification–dehumidification systems.Renew. Energy20232028810210.1016/j.renene.2022.11.069
    [Google Scholar]
  16. ParsaS.M. NorozpourF. ElsheikhA.H. KabeelA.E. Solar desalination/purification (Solar stills, humidification-dehumidification, solar disinfection) in high altitude during COVID-19: Insights of gastrointestinal manifestations and systems’ mechanism.JHM Advances202310100259
    [Google Scholar]
  17. ZhongX. WuY. ZhangP. Turnover polypyrrole decorated cotton fabric based solar evaporator for cost-effective and steady desalination.J. Clean. Prod.202341713808810.1016/j.jclepro.2023.138088
    [Google Scholar]
  18. WangX. ZhangL. ZhengD. XuX. BaiB. DuM. A polyelectrolyte hydrogel coated loofah sponge evaporator based on Donnan effect for highly efficient solar-driven desalination.Chem. Eng. J.202346214226510.1016/j.cej.2023.142265
    [Google Scholar]
  19. JiangH. LiuX. WangH. Waterwheel-inspired rotating evaporator for efficient and stable solar desalination even in saturated brine.Sci. Bull.202368151640165010.1016/j.scib.2023.07.011 37481437
    [Google Scholar]
  20. ShoeibiS. MirjalilyS.A.A. KargarsharifabadH. KhiadaniM. PanchalH. A comprehensive review on performance improvement of solar desalination with applications of heat pipes.Desalination202254011598310.1016/j.desal.2022.115983
    [Google Scholar]
  21. SunJ. XinY. SunT. SunB. FanX. A high-efficiency solar desalination biomass material prepared by DBD plasma.J. Environ. Chem. Eng.202311511041110.1016/j.jece.2023.110411
    [Google Scholar]
  22. WangY. ZhaoJ. ZhangZ. XuJ. GaoZ.D. SongY.Y. Water strider inspired floating solar evaporator with high salt-resistant ability for desalination of contaminated seawater.J. Environ. Chem. Eng.202311310980010.1016/j.jece.2023.109800
    [Google Scholar]
  23. RashidiS. KarimiN. YanW.M. Applications of machine learning techniques in performance evaluation of solar desalination systems – A concise review.Eng. Anal. Bound. Elem.202214439940810.1016/j.enganabound.2022.08.031
    [Google Scholar]
  24. ShoeibiS. SaemianM. KargarsharifabadH. A review on evaporation improvement of solar still desalination using porous material.Int. Commun. Heat Mass Transf.202213810638710.1016/j.icheatmasstransfer.2022.106387
    [Google Scholar]
  25. WuS. TianS. JianR. ZhouL. LuoT. XiongG. Bio-inspired salt-fouling resistant graphene evaporators for solar desalination of hypersaline brines.Desalination202354611619710.1016/j.desal.2022.116197
    [Google Scholar]
  26. KahealM.M. ChiassonA. AlsehliM. Component-based, dynamic simulation of a novel once through multistage flash (MSF-OT) solar thermal desalination plant.Desalination202354811629010.1016/j.desal.2022.116290
    [Google Scholar]
  27. FinnertyC.T.K. KarimahM.M. ConwayK.M. TurkatteC.K. EskafiA. MiB. Demand for off-grid desalination technology in small-island communities — Can interfacial solar vapor generation be the answer?Desalination202355311645410.1016/j.desal.2023.116454
    [Google Scholar]
  28. LiX. WangM. TaoH. Constructing of efficient interface solar evaporator: In-situ colloid foaming strategy for solar desalination and visible light response sewage purification.J. Colloid Interface Sci.202364910711710.1016/j.jcis.2023.06.071 37339561
    [Google Scholar]
  29. GuoC. ZhangW. LiuK. Developing an expandable ferric tannate/gallate polyurethane sponge evaporator for efficient solar desalination.Appl. Therm. Eng.202322111983710.1016/j.applthermaleng.2022.119837
    [Google Scholar]
  30. MenonA.K. JiaM. KaurS. DamesC. PrasherR.S. Distributed desalination using solar energy: A technoeconomic framework to decarbonize nontraditional water treatment.iScience202326210596610.1016/j.isci.2023.105966 36756368
    [Google Scholar]
  31. HanW. GaoJ. YuJ. WangR. XuZ. Efficient and low-cost solar desalination device with enhanced condensation on nail arrays.Desalination202254411613210.1016/j.desal.2022.116132
    [Google Scholar]
  32. BhagwatiA. ShahM. PrajapatiM. Emerging technologies to sustainability: A comprehensive study on solar desalination for sustainable development.Sustainable Manufac Service Econ2023210000710.1016/j.smse.2022.100007
    [Google Scholar]
  33. TunsoundV. KrasianT. DaranarongD. Ethyl cellulose composite membranes containing a 2D material (MoS2) and helical carbon nanotubes for efficient solar steam generation and desalination.Int. J. Biol. Macromol.202324412539010.1016/j.ijbiomac.2023.125390 37330098
    [Google Scholar]
  34. EasaA.S. Khalaf-AllahR.A. MohamedS.M. KandelM.G. BarakatW.S. HabbaM.I.A. Experimental and statistical analysis of a solar desalination HDH arrangement with high-speed acceleration centrifugal sprayer.Desalination202355111641910.1016/j.desal.2023.116419
    [Google Scholar]
  35. YuvaperiyasamyM. SenthilkumarN. DeepanrajB. Experimental investigation on the performance of a pyramid solar still for varying water depth, contaminated water temperature, and addition of circular fins.Int J Renew Energy Dev20231261123113010.14710/ijred.2023.57327
    [Google Scholar]
  36. RaoB.J.M. BarmanM. BalakrishnaK. Improved design of solar desalination system.Mater. Today Proc.202310.1016/j.matpr.2023.07.066
    [Google Scholar]
  37. MalviyaR. VishwakarmaV. BaredarP.V. KumarA. Potential of solar distillation plant in India.In: Solar Thermal Systems: Thermal Analysis and its Application.SharjahBentham Science Publishers202216919010.2174/9789815050950122010009
    [Google Scholar]
  38. KalogirouS. Recent patents in solar energy collectors and applications.Recent Patents on Engineering200711233310.2174/187221207779814644
    [Google Scholar]
  39. MosahebiM. RashidiS. MirhosseiniM. Experimental investigation of performance of cascade solar water desalination system equipped with internal reflector and concave steps.J. Taiwan Inst. Chem. Eng.202314810472710.1016/j.jtice.2023.104727
    [Google Scholar]
  40. AnnamalaiM. KannappanT. Experimental studies on solar multi - effect sea water desalination system.Sol. Energy202325924625610.1016/j.solener.2023.05.004
    [Google Scholar]
  41. KherrafS. BakkoucheC. BarhmiS. Forecasting of permeate conductivity using MLR and ANN methods of boujdour seawater reverse osmosis desalination plant.Curr. Anal. Chem.202319434835510.2174/1573411019666230221143245
    [Google Scholar]
  42. HuQ. WangX. GamilA. LiP. Experimental study of desalination using a system integrated by a glass-covered solar collection water basin and a heat dissipating chimney.Energy Nexus2023910017110.1016/j.nexus.2023.100171
    [Google Scholar]
  43. ChoiY.W. YooS.S. LeeJ.H. MoonM.W. YooP.J. Graphite/SnSe hybrid-embedded monolithic foams with hierarchical and bimodal pores for high performance solar desalination membranes with spontaneous salt rejection.Separ. Purif. Tech.202230212216610.1016/j.seppur.2022.122166
    [Google Scholar]
  44. SharbatiyanM.H. RashidiS. MirhosseiniM. Experimental study on the performance of floating solar desalination system with porous absorbent plate.J. Taiwan Inst. Chem. Eng.202314810467710.1016/j.jtice.2023.104677
    [Google Scholar]
  45. BelmehdiF. OtmaniS. Taha-JananM. Global trends of solar desalination research: A bibliometric analysis during 2010–2021 and focus on Morocco.Desalination202355511649010.1016/j.desal.2023.116490
    [Google Scholar]
  46. HafsH. AnsariO. BahA. Impact of wind-driven mixed convection on the performance of passive solar desalination with PCM heat storage in varied Moroccan climates.Acta Ecol. Sin.20237110.1016/j.chnaes.2023.07.001
    [Google Scholar]
  47. YuvaperiyasamyM. SenthilkumarN. DeepanrajB. Experimental and theoretical analysis of solar still with solar pond for enhancing the performance of sea water desalination.Water Reuse202313462063310.2166/wrd.2023.102
    [Google Scholar]
  48. JavedH.M.A. SarfarazM. MahmoodA. Design and development of a solar water purification system with graphene-plasmonic based hybrid nanocomposites: A review.Recent Pat. Nanotechnol.2022161304410.2174/1872210515666210609151201 35086444
    [Google Scholar]
  49. KalogirouS. Recent Patents in Solar Energy Collectors and Applications.Recent Patents on Engineering200711223310.2174/187221207779814644
    [Google Scholar]
  50. AgolomM DoddsC KatribJ. A system and method for estimating total dissolved solids in boiler water.G0 Patent 1N33/18532024
/content/journals/meng/10.2174/0122127976288061240228045000
Loading
/content/journals/meng/10.2174/0122127976288061240228045000
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test