Current Pharmaceutical Design - Online First
Description text for Online First listing goes here...
21 - 40 of 131 results
-
-
The Effect of Tricyclic Antidepressants on Fracture Healing: An Experimental Study
Authors: Mesut Kilic, Murat Erdogan, Engin Eren Desteli and Henry Claude SagiAvailable online: 10 October 2025More LessIntroductionDisorders of mood and post-traumatic stress disorder (PTSD) are common after major trauma, and one of the treatments used is Tricyclic Antidepressants (TCA). These medications work by inhibiting the re-uptake of neurotransmitters like serotonin and noradrenaline. Serotonin is known to have measurable effects on bone tissue due to the presence of specific receptors on bone cells. However, there are conflicting reports about how serotonin signaling affects bone tissue and the process of fracture healing. This study aimed to evaluate the effect of TCAs on fracture healing.
MethodTwelve skeletally mature Wistar rats were used in the study. All rats underwent intra-medullary pinning of the right tibia, and a complete mid-diaphyseal fracture was created. The rats were then randomly split into two groups: a control group and a study group. For twenty-eight days, the study group received a daily dose of 10 mg/kg of amitriptyline via intraperitoneal infusion, while the control group received an equal volume of plain saline via the same route. On day twenty-eight, five hours after the final dose, all rats were euthanized to assess fracture healing using radiological, microscopic, and histological methods.
ResultsThe study found a significant difference in the total volume of new bone formation between the two groups on day twenty-eight. The control group had a mean bone formation volume of 1.077 mm3, whereas the amitriptyline-treated group had a significantly higher mean volume of 1.824 mm3 (p<0.01).
DiscussionThe results suggest that TCAs positively influence the early phases of fracture healing. The increased new bone formation observed in the amitriptyline group indicates a potential therapeutic benefit beyond their known psychiatric effects. This finding adds to the existing literature on the complex relationship between serotonin signaling and bone metabolism, providing evidence that this class of antidepressants may enhance the process of bone repair.
ConclusionTricyclic Antidepressants, specifically amitriptyline, significantly increase new bone formation in the early stages of fracture healing in Wistar rats.
-
-
-
Cataract Management in the Modern Era: Therapeutic Advances and Unmet Needs
Available online: 09 October 2025More LessCataract remains one of the leading causes of blindness worldwide. Studies have shown that its onset is predominantly age-related, particularly affecting the elderly. According to the latest report by the World Health Organization (WHO), more than fifty percent of global blindness cases are attributed to cataracts alone. If timely and appropriate measures are not implemented, this percentage is projected to double in the coming decades. Therefore, there is an urgent need to develop alternative approaches to manage cataracts more effectively, beyond the current reliance on surgical intervention. In recent years, researchers have been actively exploring simpler, non-surgical treatment options that could potentially dissolve cataracts in their early stages. The successful development of such therapies would mark a significant breakthrough and offer immense benefits to humanity. This article highlights the evolution of surgical techniques used in cataract management, from traditional practices to modern innovations, while also discussing emerging non-invasive strategies such as lanosterol-based pharmacotherapy, nanomedicine-driven drug delivery systems, and regenerative approaches like stem cell therapy. These advances signal a promising future for safer, more accessible, and more effective cataract care.
-
-
-
Unveiling the Therapeutic Targets and Active Components of Xianlinggubao Capsule in Osteoarthritis and Osteoporosis through Network Pharmacology and Bioinformatic Analysis
Authors: Quanji Ma, Xuhui Ma, Xuejiao Hua and Jianhui LiuAvailable online: 08 October 2025More LessIntroductionThe Xianling Gubao capsule (XLGB), a traditional Chinese medicine formulation approved by the China Food and Drug Administration, has been effectively used to treat two common medical conditions: osteoarthritis (OA) and osteoporosis (OP). However, due to the complex ingredients, the molecular mechanisms underlying its therapeutic effects for OA and OP remain unknown.
MethodsThis study identified XLGB-related therapeutic target genes and pathways for OA and OP by using bioinformatics and network pharmacology. Molecular docking assessed the interactions between core genes and compounds, while quantitative real-time PCR and Western blotting analyses validated the mRNA and protein expression of key target genes.
ResultsBioinformatics analysis identified 473 unique genes common to OA and OP. Network pharmacology analysis identified 30 intersecting genes as the principal target genes for anti-OA and anti-OP effects. Ten hub genes were identified using protein-protein interaction as potential therapeutic targets. These genes were related to transcription regulation and enriched in certain signaling pathways, such as interleukin-17 and tumor necrosis factor. Molecular docking analysis revealed danshenxinkun B to exhibit a strong affinity for Ptgs2, Fos, and Tnfaip3, while miltirone displayed a strong affinity for Ptgs2. The experimental results have been verified using cellular experiments.
DiscussionThis study showed Ptgs2, Fos, and Tnfaip3 to be mainly enriched in interleukin-17 and tumor necrosis factor signaling pathways. Moreover, danshenxinkun B and miltirone significantly modulated the expression levels of these genes.
ConclusionThis study has demonstrated that danshenxinkun B and miltirone may be pivotal agents in treating OA and OP by down-regulating the expressions of Ptgs2, Fos, and Tnfaip3.
-
-
-
Predictive Value of 48-hour Anion Gap Fluctuations in ICU Patients with Acute Kidney Injury: An Analysis based on MIMIC Database
Authors: Liling Hu, Shiva Khoshravesh and Qingquan LiuAvailable online: 07 October 2025More LessIntroductionIncreasing anion gap (AG) correlates with both short- and long-term mortality in intensive care unit (ICU) patients with acute kidney injury (AKI). However, the relationship between AG fluctuations and AKI prognosis has been understudied. This study aims to evaluate the predictive value of AG fluctuations within the first 48 hours after ICU admission for renal recovery and 30-day all-cause mortality in AKI patients.
MethodsData were extracted from the Medical Information Mart for Intensive Care (MIMIC-IV, v2.2) database, including AKI patients aged 18 and older. A multifactorial Cox regression model was employed to assess the impact of AG fluctuations within 48 hours of ICU admission on mortality, adjusted using five models. Kaplan-Meier survival curves and curve-fitting analysis were used to illustrate the relationship between AG fluctuations and mortality risk.
ResultsA total of 15,438 patients with AKI were included, 57.0% of whom were male. The 30-day all-cause mortality rate was 19.19%. Patients were categorized into three groups based on AG fluctuations within the first 48 hours: <3 mmol/L, 3-5 mmol/L, and >5 mmol/L. Cox regression and survival analysis indicated a significantly higher 30-day mortality rate in the >5 mmol/L group (HR = 1.63; 95% CI = 1.50-1.77, P < 0.001), with the worst prognosis. Restricted cubic spline analysis revealed a nonlinear relationship between AG fluctuations and 30-day mortality risk.
DiscussionThe findings suggest that AG fluctuations during the first 48 hours of ICU admission are closely associated with adverse outcomes in AKI patients. Monitoring AG dynamics may aid clinicians in identifying high-risk patients and enhancing patient management by allowing for timely interventions that may improve prognosis.
ConclusionAG fluctuations within the first 48 hours of ICU admission are a key predictor of renal recovery and 30-day mortality in AKI patients. AG fluctuations greater than 5 mmol/L are significantly associated with increased mortality risk.
-
-
-
Computational Exploration of Flavonoids as HCV NS3/4A Protease Inhibitors: Advancing Antiviral Therapies to Mitigate Liver Cancer Risk
Authors: Eman Mahmoud and Mohd RehanAvailable online: 07 October 2025More LessIntroductionHepatitis C virus (HCV) remains a major global health challenge, driving chronic hepatitis C (CHC) progression to severe liver diseases, including hepatocellular carcinoma (HCC). Direct-acting antivirals (DAAs) have transformed HCV treatment by achieving high sustained virological response (SVR) rates. However, limitations such as resistance, reinfection, and restricted accessibility emphasize the urgent need for novel therapeutic approaches. Among HCV therapeutic targets, the NS3/4A protease is critical for viral replication and immune evasion, positioning it as a prime focus for innovative drug discovery.
MethodsA comprehensive computational approach was adopted to evaluate flavonoids, natural compounds with known antiviral and anticancer properties, as potential inhibitors of the HCV NS3/4A protease. A curated flavonoid library was subjected to virtual screening using molecular docking techniques. Top-ranked flavonoids were further assessed based on binding affinity, dissociation constants, and key protein-ligand interactions. Pharmacokinetic profiling, molecular dynamics simulations, MM/PBSA energy calculations, and principal component analysis were performed to validate the most promising candidate.
ResultsThe top ten scoring flavonoids demonstrated strong binding affinities and stable interactions with key catalytic residues of the NS3/4A protease. CID 100943380 emerged as the most promising candidate, exhibiting favorable pharmacokinetic properties and sustained stability throughout molecular dynamics simulations. MM/PBSA and PCA analyses further confirmed its robust binding and conformational stability.
DiscussionThe findings highlight flavonoids as promising inhibitors of NS3/4A protease, supporting their potential for further antiviral development.
ConclusionThis investigation identifies 10 flavonoids with high potential as NS3/4A protease inhibitors, providing a basis for future biological validation and safer drug development.
-
-
-
Intranasal Drug Delivery: Exploiting Nasal Anatomy for Enhanced Therapeutic Outcomes
Authors: Amrish Kumar, Kuldeep Rajpoot and Sunil K. JainAvailable online: 06 October 2025More LessNanotechnology has significantly improved drug delivery and targeting in central nervous system diseases and neurodegenerative diseases. Intranasal drug delivery has emerged as a promising approach for enhancing therapeutic outcomes by leveraging the unique anatomical and physiological characteristics of the nasal cavity. This route offers several advantages, including rapid absorption, bypassing the blood-brain barrier for central nervous system targeting, and improved patient compliance. The highly vascularized nasal mucosa facilitates efficient systemic drug absorption, making it an attractive option for both local and systemic treatments. This article explores the principles of intranasal drug delivery, the influence of nasal anatomy on drug bioavailability, and advancements in formulation strategies to optimize efficacy. Additionally, it addresses current challenges, including mucociliary clearance and enzymatic degradation, as well as innovative solutions designed to enhance drug stability and absorption. Understanding the interplay between nasal anatomy and drug delivery mechanisms can pave the way for novel therapeutic interventions and enhance the effectiveness of intranasal medications in various clinical applications. It also highlights challenges in the nasal delivery of therapeutics.
-
-
-
Effect of Lavender Essential Oil-based Aromatherapy on Anxiety: An Overview of Results of Recent Randomized Controlled Trials
Available online: 06 October 2025More LessEssential oils (EOs) are plant-derived bioactive compounds, primarily made up of terpenoids, which possess various biological and pharmacological effects. Lavender essential oil (LEO) is one of the most extensively studied options. LEO contains terpenes, ketones, alcohols, polyphenols, and flavonoids. Aromatherapy, a practice dating back to ancient civilizations such as the Egyptians, Romans, and Chinese, involved the use of incense, baths, and embalming rituals. Anxiety disorders have gained significant attention in understanding both physical and mental health. Many people are turning to complementary and alternative therapies for the management of anxiety due to the side effects of pharmacological treatments. Several preclinical studies suggest that LEO may alleviate anxiety-like behaviors in experimental models. This review examines the chemical composition, pharmacological properties, and mechanisms of LEO that contribute to its role in managing anxiety in humans. The literature indicates that LEO-based aromatherapy may effectively reduce anxiety in various groups, such as nursing students, patients undergoing surgery, and those involved in clinical procedures. While the exact mechanisms behind LEO’s anxiolytic effects remaining unclear, active compounds in EOs may influence the production and release of neurotransmitters through pathways involving γ-aminobutyric acid, dopamine, and serotonin. More extensive preclinical and clinical studies with diverse subject groups are needed to better understand the molecular mechanisms of LEO’s anxiolytic properties, which could ultimately help in developing optimized treatments for managing anxiety disorders.
-
-
-
Determination of Potential Inhibitors against Mycobacterium tuberculosis,Staphylococcus aureus, and Helicobacter pylori Shikimate Dehydrogenase by using Virtual Screening
Authors: Manaf AlMatar, Emel Eker, Omar Sajer Naser, Raja Lakhal and Tahani AlkalafAvailable online: 06 October 2025More LessDrug development is expensive and time-consuming, and current efforts to lower the process's financial and temporal costs rely increasingly on computational methodologies. Specifically, during emergencies such as the coronavirus 2019 pandemic, the time needed for vaccine and medical research is increased. Computer-aided drug design (CADD) is a powerful tool for discovering potential therapeutic compounds in traditional drug discovery, having surpassed other high-throughput screening methods commonly used in drug development. The advancement of numerous clinically utilized medications has been significantly aided by CADD. CADD can be approached in two main ways: (1) ligand-based (analogue-based) and (2) structure-based (target-based). Both methods utilize molecular mechanics (MM) force fields to represent atomic-level interactions and define molecular shapes, energy, and motion. The two predominant approaches in drug design are structure-based drug design and ligand-based drug design, both of which provide insights into drug-receptor interactions. Therefore, CADD plays a crucial role in identifying suitable pharmacological properties and compatibility, providing a significant advantage in pre-clinical trials. In this review, we reported the use of the computer-aided drug discovery (CADD) technique to suggest new therapeutic targets and possible inhibitor ligands for M. tuberculosis, S. aureus, and H. pylori. The results of the review may be useful in managing the treatment problems brought on by the higher incidence of antibiotic resistance in the aforementioned bacteria.
-
-
-
Hinokitiol as a Promising Anticancer Agent: Mechanisms of Action, Potential in Combination Therapy, and Overcoming Chemoresistance
Authors: Fatma H. Ahmed, Majdeldin E. Abdelgilil and Wael M. El-SayedAvailable online: 06 October 2025More LessCancer remains a major global health challenge, with conventional treatments such as chemotherapy and radiotherapy often lacking specificity and causing significant side effects. Hinokitiol, a natural tropolone derivative from the Cupressaceae family, has emerged as a promising anticancer agent due to its broad-spectrum activity. This review provides a comprehensive overview of hinokitiol’s anticancer properties, mechanisms of action, and safety profile. Hinokitiol has demonstrated potent effects across various cancer types, including breast, lung, prostate, colorectal, and melanoma. Its mechanisms include apoptosis induction, cell cycle arrest at the G1/S and G2/M checkpoints, inhibition of Epithelial-Mesenchymal Transition (EMT), suppression of metastasis, and iron chelation. Additionally, it may enhance chemosensitivity in cancer cells that are resistant to treatment. Importantly, this review identifies and discusses key research gaps limiting hinokitiol’s clinical translation. These include the absence of human clinical trials, limited pharmacokinetic and pharmacodynamic data, insufficient toxicity profiling, and context-dependent effects on cellular pathways such as ferroptosis and autophagy. We also highlight its unexplored potential in combination therapies aimed at overcoming multidrug resistance. By synthesizing current preclinical findings and outlining future research directions such as optimizing delivery systems, clarifying mechanisms in specific cancer contexts, and initiating clinical evaluation, this review contributes a critical perspective on the steps needed to develop hinokitiol as a viable anticancer therapeutic. Addressing these gaps could significantly enhance its therapeutic utility and integration into modern oncology.
-
-
-
History, Challenges, and Perspectives of CNS-Targeted Transdermal Formulations
Available online: 06 October 2025More LessCentral nervous system (CNS) disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Schizophrenia (Sch) present significant challenges for healthcare systems, both in terms of prevalence and the complexity of pharmacological treatment. While current therapies offer symptomatic relief, there is a high rate of failure in addressing the full spectrum of clinical symptoms and patient adherence issues, especially in long-term care. Since ancient times, various civilizations, including the Chinese, Egyptians, and indigenous South African cultures, have investigated and utilized the transdermal route for therapeutic and medicinal applications. Recent advances in transdermal drug delivery systems (TDS) offer a promising alternative to traditional routes of administration, enhancing drug absorption and minimizing side effects, such as gastrointestinal distress. This review explores the potential of TDS for improving the pharmacotherapy of AD, PD, and Sch. We also highlight the ongoing challenges in optimizing TDS formulations, such as drug absorption through the skin, skin irritation, and maintaining therapeutic efficacy. Furthermore, the review discusses the progress in prodrug design strategies aimed at enhancing skin permeation and bioavailability, particularly in the context of CNS-targeted drugs. The need for continued research into TDS technology is emphasized, as it holds promise for improving treatment adherence, patient quality of life, and caregiver burden, thereby advancing therapeutic options for CNS disorders.
-
-
-
ACSL4-Mediated Ferroptosis and its Biological Functions and Potential Therapeutic Significance in Liver Diseases
Authors: Dengke Jia, Yaping He, Hao Wu, Qianle Chen and Yawu ZhangAvailable online: 06 October 2025More LessAs the body's main metabolic organ, the liver performs many crucial functions. Liver diseases such as hepatitis and liver cancer are chronic diseases that can seriously damage health. Currently, effective therapeutic strategies remain limited. In recent years, ferroptosis has become an emerging therapeutic target in the diagnosis and treatment of human diseases. Initially identified in tumor cells linked to neurological disorders, it has recently been acknowledged as a crucial element in the advancement of hepatic ailments. Acyl-CoA synthetase long-chain family member 4 (ACSL4) could be a target for ferroptosis driven by unsaturated fatty acid (FA). More specifically, overexpression of ACSL4 causes reactive oxygen species (ROS) and lipid peroxidation (LPO) products to accumulate, therefore aggravating the course of liver cell ferroptosis. Given that ACSL4 has a complex involvement in liver pathophysiology, its targeted control may represent a novel therapeutic approach for liver illnesses. Even so, more research is required to better understand the molecular mechanisms of ACSL4 and its clinical implications. This article will focus on elucidating the key regulatory molecular mechanisms of ACSL4 in ferroptosis and liver disease progression, aiming to highlight ACSL4 as a potential therapeutic target and provide deep insights into the molecular basis of liver pathology.
-
-
-
Mechanisms, Mediators, and Pharmacological Approaches Targeting Brain Cholesterol Transport in Alzheimer’s Disease
Available online: 01 October 2025More LessCholesterol transport within the brain represents a highly regulated process essential for maintaining neuronal function and central nervous system (CNS) homeostasis. Unlike peripheral tissues, the brain
relies on in situ cholesterol synthesis, primarily by astrocytes and other glial cells, which supply neurons via high-density lipoprotein (HDL)-like particles, identified in the human cerebrospinal fluid (CSF). The major component of HDL-like lipoproteins is the apolipoprotein E (ApoE), whose E4 isoform represents the strongest genetic risk factor for late-onset Alzheimer’s disease (AD). Growing evidence suggests that impaired cholesterol transport contributes to the pathogenesis of various neurodegenerative disorders, particularly AD, a major public health concern due to increasing prevalence and the lack of effective treatments. Indeed, the unconvincing outcomes of the amyloid-targeting monoclonal antibodies underscore the urgency of identifying alternative therapeutic strategies. This review provides a comprehensive analysis of cholesterol transport mechanisms within the brain and their dysregulation in AD by examining the astrocyte-to-neuron cholesterol supply pathways, including endogenous biosynthesis, cholesterol efflux from astrocytes, neuronal uptake, and intracellular processing. Key molecular players involved in each step are discussed, focusing on their roles in AD pathophysiology and potential as therapeutic targets. Furthermore, the review critically evaluates recent preclinical studies exploring pharmacological interventions able to modulate cerebral cholesterol homeostasis. These emerging approaches offer promising alternatives to amyloid-based treatments and may open new perspectives for preventing or mitigating neurodegeneration in AD. By providing an integrated overview of cholesterol transport in the brain, this review highlights novel directions for research and drug development targeting CNS cholesterol metabolism.
-
-
-
Exploring the Mechanism of Bu Zhong Yi Qi Decoction in Treating Sepsis-induced Acute Lung Injury based on Network Pharmacology and Experimental Verification
Authors: Jiaxin Li, Jiayao Zhao, Zhitao Shan, Jian Zhang, Minghai Gong and Qun LiangAvailable online: 30 September 2025More LessIntroductionSepsis-induced acute lung injury (S-ALI) is one of the diseases with a very high fatality rate. However, the traditional Chinese medicine compound Buzhong Yiqi Decoction (BZYQD) has an excellent effect in the treatment of S-ALI. Nevertheless, its mechanism of action is still unclear. In this study, we explored the molecular mechanisms of S-ALI injury treated with buzhong yiqi decoction through network pharmacology, in combination with in vivo experimental validation.
MethodsTraditional Chinese medicine system pharmacology (TCMSP) database was used to screen thechemical composition of BZYQD and its action targets; Multiple databases were used to collect target genesfor-S-ALI, including OMIM, TTD, GeneCards, and DrugBank; The STRING database was used for the protein-protein interaction (PPI) analysis of the common targets of the BZYQD and the S-ALI; The DAVID databasewas used for GO and KEGG analysis; molecular docking was used to detect the binding capacity of corecomponents and targets. HE staining was used to visualize the pathology of lung tissue in each group; ELISA wasused to detect the levels of inflammatory factors (IL-1β, IL-6, IL-8, NF-κB and TNF-α) and oxidative stressrelatedfactors (LDH, CK-MB, SOD, GSH-Px); The qPCR and Western blot were used to examine the mRNAand protein expression of IL-1β, IL-6, TNF-α NF-κB, p-NF-κB, PI3K, p-PI3K, AKT, and IKKα.
Results113 chemical components and 226 targets were screened from BZYQD; 9059 S-ALI-related geneswere screened out, with a total of 228 intersecting targets between BZYQD and S-ALI. Stigmasterol, quercetin, and isorhamnetin are the core components of BZYQD, PPI analysis shows that AKT1, IL6, TNF, andIL1B are the core targets of BZYQD for treating S-ALI, and molecular docking results show that the corecomponents have high binding activity with the target; Enrichment analysis shows that these core targets arerelated to the TNF signaling pathway. In vivo experimental studies have found that BZYQD can improve thedegree of inflammatory infiltration and edema in lung tissue of S-ALI model mice, reduce the expression ofIL-6, IL-1β, IL-8, TNF-α, LDH, CK-MB, and NF-κB in serum (P0.05), as well as the mRNA and proteinexpression of IL-6, IL-1β, TNF-α, NF-κB, p-NF-κB, PI3K, p-PI3K, AKT, and IKKα in lung tissue (P0.05),and levels of SOD and GSH-Px were increased (P0.05).
DiscussionThe action targets of the main chemical components of BZYQD are TNF, AKT, and IL6. Thesetargets can promote the activation of PI3K and TNF pathways and mediate the occurrence of inflammationand oxidative stress, which provides inspiration for the treatment of S-ALI. However, the results of this study still need to be verified in combination with in vitro approaches.
ConclusionThis study suggests that the mechanism of BZYQD in treating S-ALI may be achieved by inhibiting the TNF and PI3K signaling pathway and reducing inflammation and oxidative stress levels.
-
-
-
Salvianolic Acid B-Loaded Albumin Nanoparticles Reduce Portal Hypertension in Cirrhotic Mice and Inhibit the Proliferation and Contraction of Hepatic Stellate Cells
Authors: RuiQing Wang, LianJun Xing, Xiao Yu, PeiMin Pu, Nan Shen and YuChen FangAvailable online: 29 September 2025More LessIntroductionSalvianolic acid B (SAB), as one of the major water-soluble compounds of Salvia miltiorrhiza, has proved to effectively reduce elevated portal pressure in cirrhotic rats. However, the short half-life and in vivo retention time of SAB affect its pharmacodynamics. Therefore, in this study, we prepared albumin nanoparticles loaded with SAB (SAB-ALB-NPs) to improve the in vivo retention time of the drug and enhance bioavailability.
MethodsWe prepared and characterized SAB-ALB-NPs, including particle size, polydispersity index (PDI), zeta potential, stability, EE, in-vitro release, and pharmacokinetics. Subsequently, we investigated the effects and potential mechanisms of SAB-ALB-NPs in CCl4-induced portal hypertension (PHT) mice models, and it was found that angiotensin-II (Ang-II) induced proliferation and contraction in hepatic stellate cells (HSCs). The CCl4 (0.3:1 in corn oil, 1mL/kg) was injected repeatedly, leading to the PHT mice model. The effect of SAB-ALB-NPs on PHT mice was evaluated by hematoxylin-eosin, Sirius red staining, immunohistochemistry, and Western blot.
ResultsWe successfully prepared SAB-loaded albumin nanoparticles with smaller-sized particles, lower PDI and zeta potential with stable properties, and higher EE. Importantly, the SAB-ALB-NPs notably prolonged the in vitro release of SAB. SAB-ALB-NPs significantly reduced portal pressure, inhibited inflammation (decrease the concentration of TNF-α and IL-6) and hepatotoxicity of the liver (down-regulated the level of ALT and AST) against fibrous tissue hyperplasia, and reduced collagen deposition in the liver. Afterward, we used Ang-II to facilitate the proliferation of HSCs and induce HSC cell contraction. Cotreatment of SAB-ALB-NPs markedly inhibited Ang II-induced effects on cell proliferation and contraction and improved apoptosis. Importantly, SAB-ALB-NPs were preliminarily found to inhibit the expression of RhoA and ROCK II in Ang-II-treated HSC and CCl4-induced PHT mice, suggesting that SAB-ALB-NPs may participate in the regulation of RhoA/ROCK II pathway.
ConclusionSAB-ALB-NPs improved portal hypertension by suppressing inflammation and inhibiting HSCs activation and proliferation to attenuate liver fibrosis. This therapeutic function of SAB-ALB-NPs may be owing to SAB-ALB-NPs regulating the RhoA/ROCK2 pathway, which may be one of its molecular mechanisms for reducing portal hypertension.
-
-
-
Para-probiotics as Novel Anti-Inflammatory Agents: Insight into Health Benefits and Therapeutic Applications
Available online: 29 September 2025More LessPara-probiotics, also referred to as non-viable microbial cells or cell components that confer health benefits, are emerging as promising agents in the prevention and management of inflammation-associated diseases. Unlike traditional probiotics, which require viability for efficacy, these inactivated forms offer significant advantages in terms of safety, stability, and applicability in vulnerable populations, including immunocompromised individuals. Recent studies have highlighted their capacity to modulate immune responses, enhance mucosal defense mechanisms, and reinforce intestinal barrier integrity through interactions involving microbial-associated molecular patterns (MAMPs) and host pattern recognition receptors. Such interactions influence signaling cascades like NF-κB, MAPKs, and inflammasome pathways, contributing to anti-inflammatory and immunomodulatory effects. One of the key advantages is the reduced risk of adverse effects and concerns associated with live probiotic use. In addition, their robust physicochemical stability under industrial processing conditions supports their incorporation into a range of functional foods and nutraceuticals. Despite these advantages, their mechanisms of action remain incompletely understood and require further investigation. This review synthesizes current evidence on their anti-inflammatory properties, highlights preclinical and clinical studies, and discusses technological approaches for their production. Overall, these bioactives represent a safe, stable, and efficacious alternative to traditional probiotics in managing inflammatory disorders.
-
-
-
YF Reduces Alveolar Epithelial Cell Apoptosis and PF by Inactivating JAK2/STAT3
Authors: Na Xiao, Rui Dong, Ying Dong, Xiaoli Li, Yuhui Wang, Shusen Zhang and Xianmei ZhouAvailable online: 25 September 2025More LessIntroductionPulmonary fibrosis (PF) is a chronic pulmonary disorder with unknown etiology and an irreversible course. Traditional Chinese medicine (TCM) possesses promising clinical benefits for PF treatment through a multi-component and multi-target approach. This study evaluates the efficacy of Yangyin Yifei Tongluo Wan (YF), a traditional formulation, in the treatment of PF, and further explores the underlying mechanism.
MethodsA bleomycin (BLM)-induced PF mouse model was established. Mice were administered with low-, medium-, and high-dose YF (1.5, 3, and 6 g/kg/d, respectively). The fibrosis degree of mouse lung tissues was evaluated by morphometric measurements and hydroxyproline (HYP) analysis. Network pharmacology-based bioinformatics were employed for constructing a network involving components, targets, and disease, and YF's potential mechanism and molecular targets for PF therapy were explored. This was further validated by TUNEL staining, Western blot, RT-qPCR, and ELISA in BLM-treated mice.
ResultsYF could relieve PF in BLM-treated mice in a dose-dependent manner, evidenced by a notable decrease in collagen deposition, and collagen I and III, HYP, fibronectin, vimentin, and α-SMA expressions. Network pharmacology revealed that JAK2/STAT3 signaling pathway-mediated alveolar epithelial cell apoptosis may be a potential therapeutic target for YF in treating PF. In vivo assays confirmed that YF's anti-fibrosis effect on BLM-induced PF was ascribed to the suppression of alveolar epithelial cell apoptosis and disruption of the JAK2/STAT3 signaling pathway.
DiscussionYF can block alveolar epithelial cell apoptosis through inactivation of the JAK2/STAT3 signaling, subsequently enhancing the resolution of PF.
ConclusionYF may be a promising therapeutic candidate for PF treatment.
-
-
-
Potential Role of Natural Oil in the Management of Diabetic Neuropathy- A Review
Available online: 24 September 2025More LessIntroductionDiabetic neuropathy (DN) is a common complication of diabetes with limited therapeutic options. Given its complex pathophysiology involving oxidative stress, inflammation, and impaired nerve function, there is increasing interest in complementary therapies. This review aims to summarize the potential use of natural oils, both as dietary supplements and topical agents, for the prevention and management of DN.
MethodsA systematic literature search was conducted using databases such as SciFinder and PubMed for studies published from 1988 to January 2024. The search employed keywords including “diabetic neuropathy,” “natural oils,” and “bioactive constituents.” Relevant studies involving preclinical and clinical evaluation of natural oils or their active compounds in DN were selected, analyzed, and categorized based on the type of oil, mode of application, and mechanism of action.
ResultsSeveral natural oils of plant and animal origin demonstrated protective and therapeutic effects against DN in both animal models and limited clinical settings. Their beneficial effects were attributed to anti-inflammatory and antioxidant properties, enhanced nerve conduction velocity, and modulation of vascular and neurotrophic factors. Both oral and topical applications contributed to symptom improvement.
DiscussionDue to the involvement of various signalling pathways and complex pathophysiology, DN has long been a condition with few acceptable treatment options. Although several natural oils have demonstrated activity against DN, very few clinical studies have been conducted to explore their therapeutic potential fully.
ConclusionNatural oils represent a potential complementary strategy for managing DN. However, more rigorous clinical investigations are essential to confirm their safety, efficacy, and translational value.
-
-
-
Development of an Advanced Drug Delivery System for Protein- and Peptide-Based Therapeutics
Available online: 24 September 2025More LessAdvancements in biotechnology have played a key role in driving the development of protein- and peptide-based therapeutics. Drug delivery systems (DDSs) designed for proteins and peptides are carefully crafted to improve drug stability, enhance bioavailability, and reduce toxic side effects by ensuring precise delivery to targeted areas. However, despite their promising therapeutic potential, protein- and peptide-based drugs face substantial challenges due to their distinct physicochemical properties and biological barriers. Ongoing developments in protein- and peptide-based DDSs present valuable solutions to address these challenges, ultimately improving drug stability, delivery accuracy, and therapeutic efficacy. Researchers are actively working on creating innovative carrier technologies to further enhance the effectiveness and precision of these therapeutics. This review examines the wide-ranging applications of protein- and peptide-based therapeutics, explores advanced drug delivery techniques, and highlights various administration routes aimed at overcoming existing obstacles. In conclusion, this review offers a comprehensive understanding of protein- and peptide-based therapeutics as a viable alternative to conventional drug delivery systems, harnessing the power of cutting-edge biotechnological advancements.
-
-
-
Current Role of the Zebrafish Experimental Model in Pharmacological Evaluations of Drugs: Current and Future Perspectives
Available online: 22 September 2025More LessIntroductionThe zebrafish (Danio rerio), which lives in tropical freshwater, is thought to be one of the best animal models for studying drugs and their effects. This model is unique for its fast growth, clear embryos, genetic similarity to humans, and low cost for experiments. Literature-based data were gathered and shared so that future researchers in the field of pharmacology could get an idea of what kind of work could be done.
MethodsJournal sources like Scopus, Springer, MDPI, and PubMed were used. Seventy-four research papers from 2000 to 2025 were reviewed, but some from before 2020 were added because they were more scientifically sound. Articles about fish that aren't zebrafish were left out.
ResultsIn order to perform preclinical investigations of several ailments, including diabetes, cancer, cardiovascular disease, and neurological disorders, researchers are using zebrafish as an animal model. The reason behind its use is its similar genetic pattern, similar physiology, rapid development, and optical transparency.
DiscussionResearchers have found heart-healthy phospholipids, antitumor peptides, and anti-diabetic chemicals in zebrafish models, which makes them a great way to study human pathophysiology. In vivo studies using zebrafish are also easy to expand and cost-effective.
ConclusionThe emerging zebrafish model is indispensable for translational investigation. This model works as a bridge connecting in vitro assays to mammalian models. The present article is an attempt to showcase the current perspective on the pharmacological model in view of drug discovery involving zebrafish.
-
-
-
Network Pharmacology Integrated Molecular Docking Analysis Identifies Potential Phytochemicals in Stachys lavandulifolia against Polycystic Ovary Syndrome
Available online: 22 September 2025More LessIntroductionPolycystic ovarian syndrome (PCOS) is a hormonal condition that affects women of reproductive age. The purpose of this study was to identify the undiscovered molecular mechanisms by which Stachys lavandulifolia treats PCOS. Although Stachys lavandulifolia has been used to treat PCOS, its exact biological mechanism of action remains unknown.
MethodsWe used a multifaceted strategy that included network pharmacology, molecular docking, and molecular dynamics simulations.
ResultsNetwork pharmacology discovered 68 gene targets shared by Stachys lavandulifolia bioactive chemicals and PCOS-associated genes. Subsequent KEGG and Reactome analysis identified 18 enhanced pathways, including steroid hormone production, glucose homeostasis, and insulin resistance. Key genes involved in ovarian steroidogenesis and the hypothalamic-pituitary-ovarian axis (CYP19A1, Kiss1, human androgen receptor, oestrogen receptor alpha, and HSD17B1) were chosen for molecular docking.
DiscussionMolecular docking indicated that bioactive substances Myrsen, Agnol, Alpha Pyogenin, and Gamma Morolen have high binding affinities for the identified target proteins. Notably, the CYP19A1-Myrsen complex has the highest binding affinity at -9.0 kcal/mol. Additional molecular dynamics simulations indicated that the CYP19A1-Myrsen complex had increased flexibility and mobility, indicating a stable and effective association.
ConclusionOur findings identify potential gene pathways and interactions through which Stachys lavandulifolia bioactive chemicals exert their therapeutic benefits in PCOS. This study establishes a solid platform for future research into Stachys lavandulifolia as a potential PCOS therapy.
-