Skip to content
2000
image of Organic Fluorophores Conjugated with Pyridinium Acceptor: A Review on Design, Synthesis, and Application in Mitochondrial Imaging

Abstract

Mitochondria are known as the powerhouse of eukaryotic cells. They play a crucial role in several biological processes and maintain cellular health. The ideal condition of mitochondria depends not only on their morphology but also on various micro-environmental factors, including pH, polarity, and temperature. Changes in these factors or malfunctions of mitochondrial species, such as Reactive Oxygen Species (ROS), active nitrogen species, metal cations, anions, and protons, can lead to several diseases in humans, including heart failure, kidney disorders, diabetes, Alzheimer’s disease, and Parkinson's disease. Therefore, monitoring Reactive Small Molecules (RSMs), maintaining micro-environmental factors, and estimating ROS levels in mitochondria are essential for understanding physiological behaviour and the pathogenesis of related diseases. Irregularities in mitochondrial function are closely linked to a range of clinical conditions, highlighting the importance of targeting mitochondria for therapeutic benefits. Over the last decade, numerous studies have focused on the development of small organic conjugated systems for mitochondrial imaging, utilizing optical signal transduction pathways. In this review, the design and synthetic strategies for small organic fluorophores conjugated with a pyridinium acceptor, their applications in mitochondrial imaging, and the detection of RSMs in mitochondria have been discussed. Studies have revealed that small-molecule fluorescent probes are being widely used for the detection and imaging of RSMs located in mitochondria. Moreover, this review covers the mechanistic insights, photophysical properties, biological characteristics of fluorophores, and therapeutic strategies targeting the mitochondria of human cells.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128395084250708080830
2025-08-21
2025-10-19
Loading full text...

Full text loading...

References

  1. Vakifahmetoglu-Norberg H. Ouchida A.T. Norberg E. The role of mitochondria in metabolism and cell death. Biochem. Biophys. Res. Commun. 2017 482 3 426 431 10.1016/j.bbrc.2016.11.088 28212726
    [Google Scholar]
  2. Shami G.J. Cheng D. Verhaegh P. Koek G. Wisse E. Braet F. Three-dimensional ultrastructure of giant mitochondria in human non-alcoholic fatty liver disease. Sci. Rep. 2021 11 1 3319 10.1038/s41598‑021‑82884‑z 33558594
    [Google Scholar]
  3. Wiemerslage L. Lee D. Quantification of mitochondrial morphology in neurites of dopaminergic neurons using multiple parameters. J. Neurosci. Methods 2016 262 56 65 10.1016/j.jneumeth.2016.01.008 26777473
    [Google Scholar]
  4. Logan D.C. Mitochondrial fusion, division and positioning in plants. Biochem. Soc. Trans. 2010 38 3 789 795 10.1042/BST0380789 20491666
    [Google Scholar]
  5. Mannella C.A. The ‘ins’ and ‘outs’ of mitochondrial membrane channels. Trends Biochem. Sci. 1992 17 8 315 320 10.1016/0968‑0004(92)90444‑E 1384178
    [Google Scholar]
  6. Daems W.T. Wisse E. Shape and attachment of the cristae mitochondriales in mouse hepatic cell mitochondria. J. Ultrastruct. Res. 1966 16 1-2 123 140 10.1016/S0022‑5320(66)80027‑8 5956751
    [Google Scholar]
  7. Nemoto S. Takeda K. Yu Z.X. Ferrans V.J. Finkel T. Role for mitochondrial oxidants as regulators of cellular metabolism. Mol. Cell. Biol. 2000 20 19 7311 7318 10.1128/MCB.20.19.7311‑7318.2000 10982848
    [Google Scholar]
  8. Liu Y. Zhang C. Wei Y. De Novo-Designed landmine warfare strategy luminophore for super-resolution imaging reveal ONOO - evolution in living cells. Chem. Eng. J. 2021 422 130151 10.1016/j.cej.2021.130151
    [Google Scholar]
  9. Henze K. Martin W. Essence of mitochondria. Nature 2003 426 6963 127 128 10.1038/426127a 14614484
    [Google Scholar]
  10. Moreira P.I. Zhu X. Wang X. Mitochondria: A therapeutic target in neurodegeneration. Biochim. Biophys. Acta Mol. Basis Dis. 2010 1802 1 212 220 10.1016/j.bbadis.2009.10.007 19853657
    [Google Scholar]
  11. Lawless C. Greaves L. Reeve A.K. Turnbull D.M. Vincent A.E. The rise and rise of mitochondrial DNA mutations. Open Biol. 2020 10 5 200061 10.1098/rsob.200061 32428418
    [Google Scholar]
  12. Liu Z. Zhou T. Ziegler A.C. Dimitrion P. Zuo L. Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications. Oxid. Med. Cell. Longev. 2017 2017 1 2525967 10.1155/2017/2525967 28785371
    [Google Scholar]
  13. Bhat A.H. Dar K.B. Anees S. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; A mechanistic insight. Biomed. Pharmacother. 2015 74 101 110 10.1016/j.biopha.2015.07.025 26349970
    [Google Scholar]
  14. Wang J. Xiong S. Xie C. Markesbery W.R. Lovell M.A. Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer’s disease. J. Neurochem. 2005 93 4 953 962 10.1111/j.1471‑4159.2005.03053.x 15857398
    [Google Scholar]
  15. Bhatti J.S. Bhatti G.K. Reddy P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria-based therapeutic strategies. Biochim. Biophys. Acta Mol. Basis Dis. 2017 1863 5 1066 1077 10.1016/j.bbadis.2016.11.010 27836629
    [Google Scholar]
  16. Liesa M. Palacín M. Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol. Rev. 2009 89 3 799 845 10.1152/physrev.00030.2008 19584314
    [Google Scholar]
  17. Nixon R.A. Cataldo A.M. Mathews P.M. The endosomal-lysosomal system of neurons in Alzheimer’s disease pathogenesis: A review. Neurochem. Res. 2000 25 9/10 1161 1172 10.1023/A:1007675508413 11059790
    [Google Scholar]
  18. Sevlever D. Jiang P. Yen S.H.C. Cathepsin D. Cathepsin D is the main lysosomal enzyme involved in the degradation of α-synuclein and generation of its carboxy-terminally truncated species. Biochemistry 2008 47 36 9678 9687 10.1021/bi800699v 18702517
    [Google Scholar]
  19. Chen H. Yu Z. Ren S. Qiu Y. Fluorescent probes design strategies for imaging mitochondria and lysosomes. Front. Pharmacol. 2022 13 915609 10.3389/fphar.2022.915609 35928260
    [Google Scholar]
  20. Roopa R. Kumar N. Bhalla V. Kumar M. Development and sensing applications of fluorescent motifs within the mitochondrial environment. Chem. Commun. 2015 51 86 15614 15628 10.1039/C5CC07098H 26759839
    [Google Scholar]
  21. Zhang C. Long L. Shi C. Mitochondria‐targeting IR‐780 Dye and Its derivatives: Synthesis, mechanisms of action, and theranostic applications. Adv. Ther. 2018 1 7 1800069 10.1002/adtp.201800069
    [Google Scholar]
  22. Rotstein B.H. Liang S.H. Placzek M.S. 11C=O bonds made easily for positron emission tomography radiopharmaceuticals. Chem. Soc. Rev. 2016 45 17 4708 4726 10.1039/C6CS00310A 27276357
    [Google Scholar]
  23. Wu D. Sedgwick A.C. Gunnlaugsson T. Akkaya E.U. Yoon J. James T.D. Fluorescent chemosensors: The past, present and future. Chem. Soc. Rev. 2017 46 23 7105 7123 10.1039/C7CS00240H 29019488
    [Google Scholar]
  24. Arms L. Smith D.W. Flynn J. Advantages and limitations of current techniques for analyzing the biodistribution of nanoparticles. Front. Pharmacol. 2018 9 802 10.3389/fphar.2018.00802 30154715
    [Google Scholar]
  25. Wang Y. Yu H. Zhang Y. Jia C. Ji M. Development and application of several fluorescent probes in near infrared region. Dyes Pigments 2021 190 109284 10.1016/j.dyepig.2021.109284
    [Google Scholar]
  26. Lakowicz J.R. Principles of fluorescence spectroscopy. Springer 2006 10.1007/978‑0‑387‑46312‑4
    [Google Scholar]
  27. Kim H.N. Ren W.X. Kim J.S. Yoon J. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem. Soc. Rev. 2012 41 8 3210 3244 10.1039/C1CS15245A 22184584
    [Google Scholar]
  28. Chen Q. Fang H. Shao X. A dual-labeling probe to track functional mitochondria-lysosome interactions in live cells. Nat. Commun. 2020 11 1 6290 10.1038/s41467‑020‑20067‑6 33293545
    [Google Scholar]
  29. Chen Q. Shao X. Tian Z. Nanoscale monitoring of mitochondria and lysosome interactions for drug screening and discovery. Nano Res. 2019 12 5 1009 1015 10.1007/s12274‑019‑2331‑x
    [Google Scholar]
  30. Kühlbrandt W. Structure and function of mitochondrial membrane protein complexes. BMC Biol. 2015 13 1 89 10.1186/s12915‑015‑0201‑x 26515107
    [Google Scholar]
  31. Perkins G.A. Frey T.G. Recent structural insight into mitochondria gained by microscopy. Micron 2000 31 1 97 111 10.1016/S0968‑4328(99)00065‑7 10568232
    [Google Scholar]
  32. Hoppins S. Lackner L. Nunnari J. The machines that divide and fuse mitochondria. Annu. Rev. Biochem. 2007 76 1 751 780 10.1146/annurev.biochem.76.071905.090048 17362197
    [Google Scholar]
  33. Schmidt O. Pfanner N. Meisinger C. Mitochondrial protein import: From proteomics to functional mechanisms. Nat. Rev. Mol. Cell Biol. 2010 11 9 655 667 10.1038/nrm2959 20729931
    [Google Scholar]
  34. Gao P. Pan W. Li N. Tang B. Fluorescent probes for organelle-targeted bioactive species imaging. Chem. Sci. 2019 10 24 6035 6071 10.1039/C9SC01652J 31360411
    [Google Scholar]
  35. Lemasters J.J. Ramshesh V.K. Methods in Cell Biol. Academic Press 2007 283 295
    [Google Scholar]
  36. Zielonka J. Joseph J. Sikora A. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem. Rev. 2017 117 15 10043 10120 10.1021/acs.chemrev.7b00042 28654243
    [Google Scholar]
  37. Crawford H. Dimitriadi M. Bassin J. Cook M.T. Abelha T.F. Calvo-Castro J. Mitochondrial targeting and imaging with small organic conjugated fluorophores: A review. Chemistry 2022 28 72 e202202366 10.1002/chem.202202366 36121738
    [Google Scholar]
  38. K.V. Balakin Y.A. Ivanenkov In silico estimation of DMSO solubility of organic compounds for bioscreening. J. Biomol. Screen. 2004 9 1 22 31 10.1177/1087057103260006 15006145
    [Google Scholar]
  39. Yan C. Zhu Z. Yao Y. Wang Q. Guo Z. Zhu W.H. Engineering near-infrared fluorescent probes based on modulation of molecular excited states. Acc Mater Res 2024 5 1 64 75 10.1021/accountsmr.3c00196
    [Google Scholar]
  40. Chen Y. Xue L. Zhu Q. Feng Y. Wu M. Recent advances in second near-infrared region (NIR-II) fluorophores and biomedical applications. Front Chem. 2021 9 9 750404 10.3389/fchem.2021.750404 34733821
    [Google Scholar]
  41. Alamudi S.H. Lee Y.A. Design strategies for organelle-selective fluorescent probes: Where to start? RSC Advances 2025 15 3 2115 2131 10.1039/D4RA08032G 39845114
    [Google Scholar]
  42. Wei Y. Kong L. Chen H. Liu Y. Xu Y. Wang H. Super-resolution image-based tracking of drug distribution in mitochondria of a label-free naturally derived drug molecules. Chem. Eng. J. 2022 429 132134 10.1016/j.cej.2021.132134
    [Google Scholar]
  43. Tian M. Zhan J. Lin W. Single fluorescent probes enabling simultaneous visualization of duple organelles: Design principles, mechanisms, and applications. Coord. Chem. Rev. 2022 451 214266 10.1016/j.ccr.2021.214266
    [Google Scholar]
  44. Shim S.H. Xia C. Zhong G. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc. Natl. Acad. Sci. USA 2012 109 35 13978 13983 10.1073/pnas.1201882109 22891300
    [Google Scholar]
  45. Gayathri T. Karnewar S. Kotamraju S. Singh S.P. High affinity neutral bodipy fluorophores for mitochondrial tracking. ACS Med. Chem. Lett. 2018 9 7 618 622 10.1021/acsmedchemlett.8b00022 30034589
    [Google Scholar]
  46. Abelha T.F. Morris G. Lima S.M. Development of a neutral diketopyrrolopyrrole phosphine oxide for the selective bioimaging of mitochondria at the nanomolar level. Chemistry 2020 26 14 3173 3180 10.1002/chem.201905634 32083355
    [Google Scholar]
  47. Qiu J. Zhong C. Liu M. Xiong X. Gao Y. Zhu H. A tunable pH probe scaffold based on sulfonamide rhodamine and its application in mitochondrial pH research. Sens. Actuators B Chem. 2022 371 132606 10.1016/j.snb.2022.132606
    [Google Scholar]
  48. Peng F. Ai X. Sun J. Yang L. Gao B. Recent advances in FRET probes for mitochondrial imaging and sensing. Chem. Commun. 2024 60 22 2994 3007 10.1039/D4CC00018H 38381520
    [Google Scholar]
  49. Hu F. Zhu F. Yang L. Wang X. Zhang S. A multifunctional fluorescent probe: Selective visualization of mitochondria and tumor cells with viscosity/polarity responsiveness. Sens. Actuators B Chem. 2025 435 137644 10.1016/j.snb.2025.137644
    [Google Scholar]
  50. Zhao J.Y. Zhang G. Hao H.C. Sun R. Xu Y.J. Ge J.F. Fluorescent probes based on quinoline and naphthidine derivatives with NIR and AIE properties for real-time monitoring mitochondrial viscosity during mitophagy. Sens. Actuators B Chem. 2024 401 135010 10.1016/j.snb.2023.135010
    [Google Scholar]
  51. Wei M Yang R Viscosity-sensitive mitochondrial fluorescent probes and their bio-applications. Ann Adv Chem 2022 6 1 038 42 10.29328/journal.aac.1001029
    [Google Scholar]
  52. Li X. Zhao Y. Yin J. Lin W. Organic fluorescent probes for detecting mitochondrial membrane potential. Coord. Chem. Rev. 2020 420 213419 10.1016/j.ccr.2020.213419
    [Google Scholar]
  53. Zhu Y.W. Ngowi E.E. Tang A.Q. Fluorescent probes for detecting and imaging mitochondrial hydrogen sulfide. Chem. Biol. Interact. 2025 407 111328 10.1016/j.cbi.2024.111328 39638224
    [Google Scholar]
  54. Liu H. Yuan M. Wang Y. Wang M. Liu H. Xu K. A coumarin-based near infrared fluorescent probe for the detection of hydrogen sulfide/sulfur dioxide and mitochondrial viscosity. Sens. Actuators B Chem. 2024 418 136243 10.1016/j.snb.2024.136243
    [Google Scholar]
  55. Zorova L.D. Popkov V.A. Plotnikov E.Y. Mitochondrial membrane potential. Anal. Biochem. 2018 552 50 59 10.1016/j.ab.2017.07.009 28711444
    [Google Scholar]
  56. Gu X. Zhao E. Zhao T. A mitochondrion-specific photoactivatable fluorescence turn-on AIE-based bioprobe for localization super resolution microscope. Adv. Mater. 2016 28 25 5064 5071 10.1002/adma.201505906 27135807
    [Google Scholar]
  57. Park H. Niu G. Wu C. Precise and long-term tracking of mitochondria in neurons using a bioconjugatable and photostable AIE luminogen. Chem. Sci. 2022 13 10 2965 2970 10.1039/D1SC06336G 35382465
    [Google Scholar]
  58. Rovira A. Pujals M. Gandioso A. Modulating photostability and mitochondria selectivity in Far-Red/NIR emitting coumarin fluorophores through replacement of pyridinium by pyrimidinium. J. Org. Chem. 2020 85 9 6086 6097 10.1021/acs.joc.0c00570 32239937
    [Google Scholar]
  59. Shen Y. Zhang X. Zhang Y. A mitochondria-targeted colorimetric and ratiometric fluorescent probe for hydrogen peroxide with a large emission shift and bio-imaging in living cells. Sens. Actuators B Chem. 2018 255 42 48 10.1016/j.snb.2017.08.020
    [Google Scholar]
  60. Shen Y. Zhang X. Zhang Y. Li H. Chen Y. An ICT-Modulated strategy to construct colorimetric and ratiometric fluorescent sensor for mitochondria-targeted fluoride ion in cell living. Sens. Actuators B Chem. 2018 258 544 549 10.1016/j.snb.2017.11.124
    [Google Scholar]
  61. Wang K.N. Zhu Y. Xing M. Two-photon fluorescence probes for mitochondria imaging and detection of sulfite/bisulfite in living cells. Sens. Actuators B Chem. 2019 295 215 222 10.1016/j.snb.2019.05.077
    [Google Scholar]
  62. Zhong X. Yang Q. Chen Y. Jiang Y. Wang B. Shen J. A mitochondria-targeted fluorescent probe based on coumarin-pyridine derivatives for hypochlorite imaging in living cells and zebrafish. J. Mater. Chem. B Mater. Biol. Med. 2019 7 46 7332 7337 10.1039/C9TB01948K 31690905
    [Google Scholar]
  63. Liu F. Zhang L. Li F. A noteworthy interface-targeting fluorescent probe for long-term tracking mitochondria and visualizing mitophagy. Biosens. Bioelectron. 2020 168 168 112526 10.1016/j.bios.2020.112526 32862093
    [Google Scholar]
  64. Guo X. Wei X.R. Sun R. Xu Y.J. Chen Y. Ge J.F. The optical properties of 9-amino-9H-xanthene derivatives in different pH and their application for biomarkers in lysosome and mitochondria. Sens. Actuators B Chem. 2019 296 126621 10.1016/j.snb.2019.05.098
    [Google Scholar]
  65. Yang X.Z. Wei X.R. Sun R. Xu Y.J. Ge J.F. A novel xanthylene-based effective mitochondria-targeting ratiometric cysteine probe and its bioimaging in living cells. Talanta 2020 209 120580 10.1016/j.talanta.2019.120580 31892055
    [Google Scholar]
  66. Murale D.P. Haque M.M. Hong S.C. Development of a bifunctional BODIPY probe for mitochondria imaging and in situ photo-crosslinking in live cell. Dyes Pigments 2021 196 109830 10.1016/j.dyepig.2021.109830
    [Google Scholar]
  67. OwYong TC, Ding S, Wu N, et al. Optimising molecular rotors to AIE fluorophores for mitochondria uptake and retention. Chem. Commun. 2020 56 94 14853 14856 10.1039/D0CC06411D
    [Google Scholar]
  68. Narayanan N. Patonay G. A new method for the synthesis of heptamethine cyanine dyes: Synthesis of new near-infrared fluorescent labels. J. Org. Chem. 1995 60 8 2391 2395 10.1021/jo00113a018
    [Google Scholar]
  69. Mishra A. Behera R.K. Behera P.K. Mishra B.K. Behera G.B. Cyanines during the 1990s: A review. Chem. Rev. 2000 100 6 1973 2012 10.1021/cr990402t 11749281
    [Google Scholar]
  70. Abeywickrama C.S. Wijesinghe K.J. Stahelin R.V. Pang Y. Bright red-emitting highly reliable styryl probe with large stokes shift for visualizing mitochondria in live cells under wash-free conditions. Sens. Actuators B Chem. 2019 285 76 83 10.1016/j.snb.2019.01.041 31762582
    [Google Scholar]
  71. Xing Q. Wang X. Yan X. Multifunctional butterfly-shaped cyanine dyes: Aggregation-induced emission, high-contrast mechanochromic luminescence, mitochondrial-specific staining and tumor imaging. Dyes Pigments 2021 188 109232 10.1016/j.dyepig.2021.109232
    [Google Scholar]
  72. Grzybowski M. Gryko D.T. Diketopyrrolopyrroles: Synthesis, reactivity, and optical properties. Adv. Opt. Mater. 2015 3 3 280 320 10.1002/adom.201400559
    [Google Scholar]
  73. Du C. Fu S. Ren X. A diketopyrrolopyrrole-based fluorescent probe for investigating mitochondrial zinc ions. New J. Chem. 2018 42 5 3493 3502 10.1039/C7NJ04940D
    [Google Scholar]
  74. Xie X. Wang J. Yan Y. A new mitochondria-targeted ratiometric fluorescent probe based on diketopyrrolopyrrole for imaging endogenous HOCl in living cells. Analyst 2018 143 23 5736 5743 10.1039/C8AN01469H 30325363
    [Google Scholar]
  75. Xu W. Wang J. Xu C. Hua J. Wang Y. A diketopyrrolopyrrole-based ratiometric fluorescent probe for endogenous leucine aminopeptidase detecting and imaging with specific phototoxicity in tumor cells. J. Mater. Chem. B Mater. Biol. Med. 2021 9 42 8842 8850 10.1039/D1TB01480C 34647119
    [Google Scholar]
  76. Wang K. Ma W. Xu Y. Design of a novel mitochondria targetable turn-on fluorescence probe for hydrogen peroxide and its two-photon bioimaging applications. Chin. Chem. Lett. 2020 31 12 3149 3152 10.1016/j.cclet.2020.08.039
    [Google Scholar]
  77. Chen Q. Cheng K. Wang W. A pyrene-based ratiometric fluorescent probe with a large Stokes shift for selective detection of hydrogen peroxide in living cells. J. Pharm. Anal. 2020 10 5 490 497 10.1016/j.jpha.2020.07.003 33133733
    [Google Scholar]
  78. Seki H. Onishi S. Asamura N. Bright and two-photon active red fluorescent dyes that selectively move back and forth between the mitochondria and nucleus upon changing the mitochondrial membrane potential. J. Mater. Chem. B Mater. Biol. Med. 2018 6 45 7396 7401 10.1039/C8TB02415D 32254740
    [Google Scholar]
  79. Chen H. Wang H. Wei Y. Super-resolution imaging reveals the subcellular distribution of dextran at the nanoscale in living cells. Chin. Chem. Lett. 2022 33 4 1865 1869 10.1016/j.cclet.2021.10.025
    [Google Scholar]
  80. Huang S. Han R. Zhuang Q. New photostable naphthalimide-based fluorescent probe for mitochondrial imaging and tracking. Biosens. Bioelectron. 2015 71 313 321 10.1016/j.bios.2015.04.056 25930001
    [Google Scholar]
  81. Squadrito G.L. Pryor W.A. Oxidative chemistry of nitric oxide: The roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic. Biol. Med. 1998 25 4-5 392 403 10.1016/S0891‑5849(98)00095‑1 9741578
    [Google Scholar]
  82. Radi R. Peroxynitrite, a stealthy biological oxidant. J. Biol. Chem. 2013 288 37 26464 26472 10.1074/jbc.R113.472936 23861390
    [Google Scholar]
  83. Szabó C. Ischiropoulos H. Radi R. Peroxynitrite: Biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 2007 6 8 662 680 10.1038/nrd2222 17667957
    [Google Scholar]
  84. Radi R. Rodriguez M. Castro L. Telleri R. Inhibition of mitochondrial electron transport by peroxynitrite. Arch. Biochem. Biophys. 1994 308 1 89 95 10.1006/abbi.1994.1013 8311480
    [Google Scholar]
  85. Bringold U. Ghafourifar P. Richter C. Peroxynitrite formed by mitochondrial NO synthase promotes mitochondrial Ca2+ release. Free Radic. Biol. Med. 2000 29 3-4 343 348 10.1016/S0891‑5849(00)00318‑X 11035263
    [Google Scholar]
  86. Li M. Huang Y. Song S. Shuang S. Dong C. A bifunctional fluorescence probe for dual-channel detecting of mitochondrial viscosity and endogenous/exogenous peroxynitrite. Bioorg. Chem. 2022 119 105484 10.1016/j.bioorg.2021.105484 34836642
    [Google Scholar]
  87. Shen Y. Dai L. Zhang Y. Li H. Chen Y. Zhang C. A novel pyridinium-based fluorescent probe for ratiometric detection of peroxynitrite in mitochondria. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020 228 117762 10.1016/j.saa.2019.117762 31708458
    [Google Scholar]
  88. Vally H. Misso N.L.A. Madan V. Clinical effects of sulphite additives. Clin. Exp. Allergy 2009 39 11 1643 1651 10.1111/j.1365‑2222.2009.03362.x 19775253
    [Google Scholar]
  89. Meng Z. Yang Z. Li J. Zhang Q. The vasorelaxant effect and its mechanisms of sodium bisulfite as a sulfur dioxide donor. Chemosphere 2012 89 5 579 584 10.1016/j.chemosphere.2012.05.056 22763331
    [Google Scholar]
  90. Wang X.B. Huang X.M. Ochs T. Effect of sulfur dioxide preconditioning on rat myocardial ischemia/reperfusion injury by inducing endoplasmic reticulum stress. Basic Res. Cardiol. 2011 106 5 865 878 10.1007/s00395‑011‑0176‑x 21468766
    [Google Scholar]
  91. Zhang S. Du J. Jin H. Endogenous sulfur dioxide aggravates myocardial injury in isolated rat heart with ischemia and reperfusion. Transplantation 2009 87 4 517 524 10.1097/TP.0b013e318195fe82 19307787
    [Google Scholar]
  92. Finkel T. Holbrook N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000 408 6809 239 247 10.1038/35041687 11089981
    [Google Scholar]
  93. Gao C. Tian Y. Zhang R. Jing J. Zhang X. Mitochondrial directed ratiometric fluorescent probe for quantitive detection of sulfur dioxide derivatives. New J. Chem. 2019 43 13 5255 5259 10.1039/C8NJ05951A
    [Google Scholar]
  94. Song G. Liu A. Jiang H. Ji R. Dong J. Ge Y. A FRET-based ratiometric fluorescent probe for detection of intrinsically generated SO2 derivatives in mitochondria. Anal. Chim. Acta 2019 1053 148 154 10.1016/j.aca.2018.11.052 30712560
    [Google Scholar]
  95. Yang X. Yang Y. Zhou T. A mitochondria-targeted ratiometric fluorescent probe for detection of SO2 derivatives in living cells and in vivo. J. Photochem. Photobiol. Chem. 2019 372 212 217 10.1016/j.jphotochem.2018.12.020
    [Google Scholar]
  96. Li T. Yin C. Chao J. Zhang W. Huo F. An ultra-fast, NIR, mitochondria-targeted fluorescent probe for sulfur dioxide based on benzopyrylium and its imaging of in living cells. Sens. Actuators B Chem. 2020 305 127336 10.1016/j.snb.2019.127336
    [Google Scholar]
  97. Xiang K. Chang S. Feng J. A colorimetric and ratiometric fluorescence probe for rapid detection of SO 2 derivatives bisulfite and sulfite. Dyes Pigments 2016 134 190 197 10.1016/j.dyepig.2016.07.001
    [Google Scholar]
  98. Li J. Li R. Meng Z. Sulfur dioxide upregulates the aortic nitric oxide pathway in rats. Eur. J. Pharmacol. 2010 645 1-3 143 150 10.1016/j.ejphar.2010.07.034 20674563
    [Google Scholar]
  99. Iwasawa S. Kikuchi Y. Nishiwaki Y. Effects of SO2 on respiratory system of adult Miyakejima resident 2 years after returning to the island. J. Occup. Health 2009 51 1 38 47 10.1539/joh.L8075 18987426
    [Google Scholar]
  100. Sang N. Yun Y. Li H. Hou L. Han M. Li G. SO 2 inhalation contributes to the development and progression of ischemic stroke in the brain. Toxicol. Sci. 2010 114 2 226 236 10.1093/toxsci/kfq010 20083630
    [Google Scholar]
  101. Hart J.L. Role of sulfur-containing gaseous substances in the cardiovascular system. Front. Biosci. 2011 E3 2 736 749 10.2741/e282 21196347
    [Google Scholar]
  102. Yang J. Huo F. Yue Y. Zhang Y. Yin C. ESIPT silent and mitochondrial-targeted rapid response for SO2 regulated by pyridinium and its real-time detection in living cells. New J. Chem. 2021 45 47 22461 22465 10.1039/D1NJ04077D
    [Google Scholar]
  103. Sun W.X. Li N. Li Z.Y. A mitochondria-targeted ratiometric fluorescence probe for detection of SO2 derivatives in living cells. Dyes Pigments 2020 182 108658 10.1016/j.dyepig.2020.108658
    [Google Scholar]
  104. Jiao S. Zhai J. Yang S. Meng X. A highly responsive, sensitive NIR fluorescent probe for imaging of superoxide anion in mitochondria of oral cancer cells. Talanta 2021 222 121566 10.1016/j.talanta.2020.121566 33167262
    [Google Scholar]
  105. Nogueira V. Hay N. Molecular pathways: Reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin. Cancer Res. 2013 19 16 4309 4314 10.1158/1078‑0432.CCR‑12‑1424 23719265
    [Google Scholar]
  106. Wang Y. Wang X. Zhang L. A ratiometric fluorescent probe for endogenous biological signaling molecule superoxide anion detection and bioimaging during tumor treatment. J. Mater. Chem. B Mater. Biol. Med. 2020 8 1017 1025 10.1039/C9TB02453K 31934713
    [Google Scholar]
  107. Wang J. Liu L. Xu W. Mitochondria-targeted ratiometric fluorescent probe based on diketopyrrolopyrrole for detecting and imaging of endogenous superoxide anion in vitro and in vivo. Anal. Chem. 2019 91 9 5786 5793 10.1021/acs.analchem.9b00014 30938143
    [Google Scholar]
  108. Xu C. Xu W. Yang Z. Li S. Wang Y. Hua J. A turn-on mitochondria-targeted near-infrared fluorescent probe with a large Stokes shift for detecting and imaging endogenous superoxide anion in cells. J. Photochem. Photobiol. Chem. 2021 415 113304 10.1016/j.jphotochem.2021.113304
    [Google Scholar]
  109. Wang T. Shah I. Yang Z. Incorporating thiourea into fluorescent probes: A reliable strategy for mitochondrion-targeted imaging and superoxide anion tracking in living cells. Anal. Chem. 2020 92 3 2824 2829 10.1021/acs.analchem.9b05320 31957439
    [Google Scholar]
  110. Xu J. Wang C. Ma Q. Novel mitochondria-targeting and naphthalimide-based fluorescent probe for detecting HClO in living cells. ACS Omega 2021 6 22 14399 14409 10.1021/acsomega.1c01271 34124462
    [Google Scholar]
  111. Farley J.R. Wergedal J.E. Baylink D.J. Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells. Science 1983 222 4621 330 332 10.1126/science.6623079 6623079
    [Google Scholar]
  112. Wergedal J.E. Lau K.H.W. Baylink D.J. Fluoride and bovine bone extract influence cell proliferation and phosphatase activities in human bone cell cultures. Clin. Orthop. Relat. Res. 1988 233 274 282 10.1097/00003086‑198808000‑00034 3402130
    [Google Scholar]
  113. Zuo H. Chen L. Kong M. Toxic effects of fluoride on organisms. Life Sci. 2018 198 18 24 10.1016/j.lfs.2018.02.001 29432760
    [Google Scholar]
  114. Zhang S. Fan J. Zhang S. Lighting up fluoride ions in cellular mitochondria using a highly selective and sensitive fluorescent probe. Chem. Commun. 2014 50 90 14021 14024 10.1039/C4CC05094K 25268252
    [Google Scholar]
  115. Han J. Zhang J. Gao M. Hao H. Xu X. Recent advances in chromo-fluorogenic probes for fluoride detection. Dyes Pigments 2019 162 412 439 10.1016/j.dyepig.2018.10.047
    [Google Scholar]
  116. Dhiman S. Kour R. Kaur S. Singh P. Kumar S. Mitochondria targeted dual-fluorescent probe for bio-imaging viscosity and F − with different fluorescence signals. Bioorg. Chem. 2022 129 106169 10.1016/j.bioorg.2022.106169 36174442
    [Google Scholar]
  117. Liu X. Shen X. Gu B. A simple water-soluble ESIPT fluorescent probe for fluoride ion with large Stokes shift in living cells. ACS Omega 2020 5 34 21684 21688 10.1021/acsomega.0c02589 32905448
    [Google Scholar]
  118. Xu J. Sun S. Li Q. Yue Y. Li Y. Shao S. A novel “Turn-On” fluorescent probe for F− detection in aqueous solution and its application in live-cell imaging. Anal. Chim. Acta 2014 849 36 42 10.1016/j.aca.2014.08.014 25300215
    [Google Scholar]
  119. Xu X. Chen W. Yang M. Mitochondrial-targeted near-infrared fluorescence probe for selective detection of fluoride ions in living cells. Talanta 2019 204 655 662 10.1016/j.talanta.2019.06.028 31357349
    [Google Scholar]
  120. Fu D. Mitra K. Sengupta P. Jarnik M. Lippincott-Schwartz J. Arias I.M. Coordinated elevation of mitochondrial oxidative phosphorylation and autophagy help drive hepatocyte polarization. Proc. Natl. Acad. Sci. USA 2013 110 18 7288 7293 10.1073/pnas.1304285110
    [Google Scholar]
  121. Crompton M. Heid I. The cycling of calcium, sodium, and protons across the inner membrane of cardiac mitochondria. Eur. J. Biochem. 1978 91 2 599 608 10.1111/j.1432‑1033.1978.tb12713.x 32035
    [Google Scholar]
  122. Fu G. Yin G. Niu T. A novel ratiometric fluorescent probe for the detection of mitochondrial pH dynamics during cell damage. Analyst 2021 146 2 620 627 10.1039/D0AN01240H 33188671
    [Google Scholar]
  123. Li X. Li X. Ma H. A near-infrared fluorescent probe reveals decreased mitochondrial polarity during mitophagy. Chem. Sci. 2020 11 6 1617 1622 10.1039/C9SC05505C 34084390
    [Google Scholar]
  124. Munan S. Ali M. Yadav R. Mapa K. Samanta A. PET- and ICT-based ratiometric probe: An unusual phenomenon of morpholine-conjugated fluorophore for mitochondrial pH mapping during mitophagy. Anal. Chem. 2022 94 33 11633 11642 10.1021/acs.analchem.2c02177 35968673
    [Google Scholar]
  125. Guo L. Liu H. Jin X. Zhang Z. Su J. Yu X. Development of reaction-free and mitochondrion-immobilized fluorescent probe for monitoring pH change. Sens. Actuators B Chem. 2021 341 129962 10.1016/j.snb.2021.129962
    [Google Scholar]
  126. Hu L. Fang B. Hu L. A small molecule emitting in the near infrared region with pH sensitivity for visualization mitochondria under super-resolution microscopy. Talanta 2019 199 140 146 10.1016/j.talanta.2019.02.042 30952238
    [Google Scholar]
  127. Song Y. Zheng Y. Zhang S. Always-on and water-soluble rhodamine amide designed by positive charge effect and application in mitochondrion-targetable imaging of living cells. Sens. Actuators B Chem. 2019 286 32 38 10.1016/j.snb.2019.01.107
    [Google Scholar]
  128. Fang B. Zhang B. Zhai R. Two-photon fluorescence imaging of mitochondrial viscosity with water-soluble pyridinium inner salts. New J. Chem. 2022 46 5 2487 2494 10.1039/D1NJ05020F
    [Google Scholar]
  129. Wang S. Zhou B. Wang N. Mitochondria-targeted fluorescent probe based on vibration-induced emission for real-time monitoring mitophagy-specific viscosity dynamic. Chin. Chem. Lett. 2020 31 11 2897 2902 10.1016/j.cclet.2020.03.037
    [Google Scholar]
  130. Zhang Y. Wang S. Wang X. Monitoring of the decreased mitochondrial viscosity during heat stroke with a mitochondrial AIE probe. Anal. Bioanal. Chem. 2021 413 14 3823 3831 10.1007/s00216‑021‑03335‑2 33934190
    [Google Scholar]
  131. Wang X. Fan L. Wang S. Real-time monitoring mitochondrial viscosity during mitophagy using a mitochondria-immobilized near-infrared aggregation-induced emission probe. Anal. Chem. 2021 93 6 3241 3249 10.1021/acs.analchem.0c04826 33539094
    [Google Scholar]
  132. Wang X. Tang H. Huang X. Water-soluble fluorescent probes for bisulfite and viscosity imaging in living cells: Pyrene vs. anthracene. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021 260 119902 10.1016/j.saa.2021.119902 33993021
    [Google Scholar]
  133. Hou M.X. Liu L.Y. Wang K.N. Chao X.J. Liu R.X. Mao Z.W. A molecular rotor sensor for detecting mitochondrial viscosity in apoptotic cells by two-photon fluorescence lifetime imaging. New J. Chem. 2020 44 26 11342 11348 10.1039/D0NJ02108C
    [Google Scholar]
  134. Zhang Y. Zhou Q. Bu Y. Real-time imaging mitochondrial viscosity dynamic during mitophagy mediated by photodynamic therapy. Anal. Chim. Acta 2021 1178 338847 10.1016/j.aca.2021.338847 34482880
    [Google Scholar]
  135. Aebisher D. Rogóż K. Myśliwiec A. The use of photodynamic therapy in medical practice. Front. Oncol. 2024 14 1373263 10.3389/fonc.2024.1373263 38803535
    [Google Scholar]
  136. Jiang W. Liang M. Lei Q. Li G. Wu S. The current status of photodynamic therapy in cancer treatment. Cancers 2023 15 3 585 10.3390/cancers15030585 36765543
    [Google Scholar]
  137. Zhang Y. Wang L. Rao Q. Tuning the hydrophobicity of pyridinium-based probes to realize the mitochondria-targeted photodynamic therapy and mitophagy tracking. Sens. Actuators B Chem. 2020 321 128460 10.1016/j.snb.2020.128460
    [Google Scholar]
  138. Wang C. Zhao X. Jiang H. Transporting mitochondrion-targeting photosensitizers into cancer cells by low-density lipoproteins for fluorescence-feedback photodynamic therapy. Nanoscale 2021 13 1195 1205 10.1039/d0nr07342c
    [Google Scholar]
  139. Yu K. Pan J. Tian M. Unusual electron donor-acceptor sequenced NIR AIEgen for highly efficient mitochondria-targeted cancer cell photodynamic therapy. Chem. Asian J. 2022 17 17 e202200571 10.1002/asia.202200571 35789116
    [Google Scholar]
  140. Zhou Y. Xia W. Liu C. Ye S. Wang L. Liu R.A. DNA and mitochondria dual-targeted photosensitizer for two-photon-excited bioimaging and photodynamic therapy. Biomater. Sci. 2022 10 7 1742 1751 10.1039/D1BM01969D 35188147
    [Google Scholar]
  141. Zhang T. Zhang J. Wang F.B. Mitochondria‐targeting phototheranostics by aggregation‐induced NIR‐II emission luminogens: Modulating intramolecular motion by electron acceptor engineering for multi‐modal synergistic therapy. Adv. Funct. Mater. 2022 32 16 2110526 10.1002/adfm.202110526
    [Google Scholar]
  142. Zhang H. Zhang Z. Wang S. Qiu T. Xu T. Shu Y. Apoptotic induction of mitochondria-anchored aggregation-induced emission luminogens through the intrinsic mitochondrial pathway. ACS Omega 2022 7 51 47912 47922 10.1021/acsomega.2c05761 36591127
    [Google Scholar]
  143. Hasrat K. Wang X. Li Y. Qi Z. A viscosity-sensitive and mitochondria-targeted AIEgen effectuated fatty liver imaging and cancer photodynamic therapy. Sens. Actuators B Chem. 2023 392 134053 10.1016/j.snb.2023.134053
    [Google Scholar]
  144. Wang X. Yang L. Li Y. Wang X. Qi Z. A long‐retention cell membrane‐targeting AIEgen for boosting tumor theranostics. Chem. Asian J. 2024 19 12 e202400305 10.1002/asia.202400305 38651630
    [Google Scholar]
  145. Tang Y. Bisoyi H.K. Chen X.M. Pyroptosis‐mediated synergistic photodynamic and photothermal immunotherapy enabled by a tumor‐membrane‐targeted photosensitive dimer. Adv. Mater. 2023 35 25 2300232 10.1002/adma.202300232 36921347
    [Google Scholar]
  146. Wang X. Tang Y. Li Y. Qi Z. A pyroptosis‐inducing arsenic(III) nanomicelle platform for synergistic cancer immunotherapy. Adv. Healthc. Mater. 2024 13 30 2401904 10.1002/adhm.202401904 39101289
    [Google Scholar]
  147. Yang Q. Wang S. Li D. Yuan J. Xu J. Shao S. A mitochondria-targeting nitroreductase fluorescent probe with large Stokes shift and long-wavelength emission for imaging hypoxic status in tumor cells. Anal. Chim. Acta 2020 1103 202 211 10.1016/j.aca.2019.12.063 32081185
    [Google Scholar]
  148. Dahal D. Ojha K.R. Pokhrel S. NIR-emitting styryl dyes with large Stokes’ shifts for imaging application: From cellular plasma membrane, mitochondria to zebrafish neuromast. Dyes Pigments 2021 194 109629 10.1016/j.dyepig.2021.109629 34366501
    [Google Scholar]
  149. Yang Y.P. Qi F.J. Zheng Y.L. Fast imaging of mitochondrial thioredoxin reductase using a styrylpyridinium-based two-photon ratiometric fluorescent probe. Anal. Chem. 2022 94 12 4970 4978 10.1021/acs.analchem.1c04637 35297621
    [Google Scholar]
  150. Bak D.W. Weerapana E. Cysteine-mediated redox signalling in the mitochondria. Mol. Biosyst. 2015 11 3 678 697 10.1039/C4MB00571F 25519845
    [Google Scholar]
  151. Zhang X. He N. Huang Y. Mitochondria-targeting near-infrared ratiometric fluorescent probe for selective imaging of cysteine in orthotopic lung cancer mice. Sens. Actuators B Chem. 2019 282 69 77 10.1016/j.snb.2018.11.056
    [Google Scholar]
  152. Zhang R. Yong J. Yuan J. Ping Xu Z. Recent advances in the development of responsive probes for selective detection of cysteine. Coord. Chem. Rev. 2020 408 213182 10.1016/j.ccr.2020.213182
    [Google Scholar]
  153. Ji X. Wang N. Zhang J. Xu S. Si Y. Zhao W. Meso-pyridinium substituted BODIPY dyes as mitochondria-targeted probes for the detection of cysteine in living cells and in vivo. Dyes Pigments 2021 187 109089 10.1016/j.dyepig.2020.109089
    [Google Scholar]
  154. Yang Y.P. Qi F.J. Qian Y.P. Developing Push-Pull Hydroxylphenylpolyenylpyridinium Chromophores as Ratiometric Two-Photon Fluorescent Probes for Cellular and Intravital Imaging of Mitochondrial NQO1. Anal. Chem. 2021 93 4 2385 2393 10.1021/acs.analchem.0c04279 33439630
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128395084250708080830
Loading
/content/journals/cpd/10.2174/0113816128395084250708080830
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test