Skip to content
2000
image of Ibrutinib Loaded Nanostructured Lipid Carriers for the Management of Chronic Lymphocytic Leukemia: Synchronizing In Silico, In Vitro, and In Vivo Studies

Abstract

Introduction

Ibrutinib is a selective tyrosine kinase inhibitor used to treat chronic lymphocytic leukemia (CLL). However, it has low oral bioavailability (2.9%), which is attributed to low solubility (0.002 mg/mL) and a first-pass effect. Ibrutinib-loaded nanostructured lipid carriers (IBR-NLCs) were prepared and investigated in this study to overcome the solubility and presystemic metabolism issues. The goal of the current study was to formulate IBR-NLCs for enhanced bioavailability. IBR-NLCs were optimized using a 32 factorial design and evaluated using various and parameters.

Methods

IBR interaction with solid lipid (Glyceryl monostearate) and liquid lipid (oleic acid) was studied using molecular docking. The hot-melt ultrasonication method was used to formulate IBR-NLCs, and a 32 factorial design was used for optimization. Particle size, PDI, zeta potential, entrapment efficiency, DSC, XRD, FTIR, SEM, and study were used to evaluate the NLCs. HepG2 cell lines were used to study the cytotoxicity of IBR-NLCs and IBR suspension. IBR-NLCs were administered to male Wistar rats in the presence and absence of cycloheximide (CXI) to compare pharmacokinetic parameters.

Results and Discussion

Molecular docking confirmed good interaction between IBR-GMS and IBR-oleic acid. The optimized IBR-NLCs exhibited particle sizes, PDI, zeta potentials, and %EE of 154.5 ± 0.7 nm, 0.2 ± 0.0, -25.8 ± 1.1 mV, and 84.0 ± 1.2%, respectively. Differential Scanning Calorimetry (DSC) reveals the development of molecular dispersion of IBR in the melted lipid matrix, and X-Ray Diffraction (XRD) studies show a decline in the crystalline drug peaks in the formulation's diffractogram. SEM images showed uniformity distributed spherical-shaped particles. According to an investigation, IBR-NLCs exhibited a sustained release pattern of 98.0 ± 0.5% with a Korsmeyer-Peppas model mechanism (R2 = 0.9615). The IC values of IBR suspension and IBR-NLCs were 4.155 µg/mL and 3.03 µg/mL. The AUC of IBR-NLCs administered in the absence of CXI was 1.60 times higher than the AUC values in the presence of CXI, indicating lymphatic transport.

Conclusion

IBR-NLCs appear to be promising as a novel innovative nanocarrier for the management of CLL.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128378420250804145740
2025-08-26
2025-10-18
Loading full text...

Full text loading...

References

  1. Chapla U. Chapalamadugu U. Ojochenemi D.A. Chatakonda R. Leukemia - Brief review on recent advancements in therapy and management. Int Conf Drug Deliv 2015 3 12 26
    [Google Scholar]
  2. Young R.M. Staudt L.M. Ibrutinib treatment of CLL: The cancer fights back. Cancer Cell 2014 26 1 11 13 10.1016/j.ccr.2014.06.023 25026208
    [Google Scholar]
  3. Rajabi B. Sweetenham J.W. Mantle cell lymphoma: Observation to transplantation. Ther. Adv. Hematol. 2015 6 1 37 48 10.1177/2040620714561579 25642314
    [Google Scholar]
  4. Tam C. Pinilla-Ibarz J. Castillo C.G. Results of VOICE: A global survey of disease-specific knowledge and perspectives of real-world patients with CLL. Blood Adv. 2023 7 22 6819 6828 10.1182/bloodadvances.2023010879 37722356
    [Google Scholar]
  5. Drugs Approved for Leukemia National Cancer Institue. 2025 Available from: [https://www.cancer.gov/about-cancer/treatment/ drugs/leukemia#6
    [Google Scholar]
  6. Patel V. Balakrishnan K. Bibikova E. Comparison of acalabrutinib, a selective bruton tyrosine kinase inhibitor, with ibrutinib in chronic lymphocytic leukemia cells. Clin. Cancer Res. 2017 23 14 3734 3743 10.1158/1078‑0432.CCR‑16‑1446 28034907
    [Google Scholar]
  7. Burger J.A. Bruton’s tyrosine kinase (BTK) inhibitors in clinical trials. Curr. Hematol. Malig. Rep. 2014 9 1 44 49 10.1007/s11899‑013‑0188‑8 24357428
    [Google Scholar]
  8. Kokhaei P. Jadidi-Niaragh F. Jahromi A.S. Osterborg A. Mellstedt H. Hojjat-Farsangi M. Ibrutinib-A double-edge sword in cancer and autoimmune disorders. J. Drug Target. 2016 24 5 373 385 10.3109/1061186X.2015.1086357 26362595
    [Google Scholar]
  9. Smith M.R. Ibrutinib in B lymphoid malignancies. Expert Opin. Pharmacother. 2015 16 12 1879 1887 10.1517/14656566.2015.1067302 26165513
    [Google Scholar]
  10. Center for drug evaluation and research 2017 Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210563Orig1s000,210563Orig2s000ChemR.pdf
  11. Qiu Q. Lu M. Li C. Novel self-assembled ibrutinib-phospholipid complex for potently peroral delivery of poorly soluble drugs with pH-dependent solubility. AAPS PharmSciTech 2018 19 8 3571 3583 10.1208/s12249‑018‑1147‑4 30209789
    [Google Scholar]
  12. Massó-Vallés D. Jauset T. Soucek L. Ibrutinib repurposing: From B-cell malignancies to solid tumors. Oncoscience 2016 3 5-6 147 148 10.18632/oncoscience.310 27489860
    [Google Scholar]
  13. Haura E.B. Rix U. Deploying ibrutinib to lung cancer: Another step in the quest towards drug repurposing. J. Natl. Cancer Inst. 2014 106 9 dju250 10.1093/jnci/dju250 25214562
    [Google Scholar]
  14. Zhang W. Deng X. Wang L. Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chin. Chem. Lett. 2024 35 9 109422 10.1016/j.cclet.2023.109422
    [Google Scholar]
  15. Zhang L. Lei L. Zhao Z. Enhanced venetoclax delivery using L-phenylalanine nanocarriers in acute myeloid leukemia treatment. Chin. Chem. Lett. 2025 36 6 110316 10.1016/j.cclet.2024.110316
    [Google Scholar]
  16. Chueahongthong F. Tima S. Chiampanichayakul S. Doxorubicin-loaded polymeric micelles conjugated with CKR- and EVQ-FLT3 peptides for cytotoxicity in leukemic stem cells. Pharmaceutics 2022 14 10 2115 10.3390/pharmaceutics14102115 36297550
    [Google Scholar]
  17. Dai Y. Huang J. Xiang B. Zhu H. He C. Antiproliferative and apoptosis triggering potential of paclitaxel-based targeted-lipid nanoparticles with enhanced cellular internalization by transferrin receptors - A study in leukemia cells. Nanoscale Res. Lett. 2018 13 1 271 10.1186/s11671‑018‑2688‑x 30191515
    [Google Scholar]
  18. Liu X. Wang Z. Feng R. Hu Y. Huang G. A novel approach for systematic delivery of a hydrophobic anti-leukemia agent tamibarotene mediated by nanostructured lipid carrier. J. Biomed. Nanotechnol. 2013 9 9 1586 1593 10.1166/jbn.2013.1656 23980506
    [Google Scholar]
  19. Jan N. Madni A. Rahim M.A. In vitro anti-leukemic assessment and sustained release behaviour of cytarabine loaded biodegradable polymer based nanoparticles. Life Sci. 2021 267 118971 10.1016/j.lfs.2020.118971 33385406
    [Google Scholar]
  20. Ichihara H. Ueno J. Umebayashi M. Matsumoto Y. Ueoka R. Chemotherapy with hybrid liposomes for acute lymphatic leukemia leading to apoptosis in vivo. Int. J. Pharm. 2011 406 1-2 173 178 10.1016/j.ijpharm.2010.12.041 21219998
    [Google Scholar]
  21. Heikal L.A. El-Habashy S.E. El-Kamel A.H. Mehanna R.A. Ashour A.A. Bioactive baicalin rhamno-nanocapsules as phytotherapeutic platform for treatment of acute myeloid leukemia. Int. J. Pharm. 2024 661 124458 10.1016/j.ijpharm.2024.124458 38996823
    [Google Scholar]
  22. Rangaraj N. Pailla S.R. Chowta P. Sampathi S. Fabrication of ibrutinib nanosuspension by quality by design approach: Intended for enhanced oral bioavailability and diminished fast fed variability. AAPS PharmSciTech 2019 20 8 326 10.1208/s12249‑019‑1524‑7 31659558
    [Google Scholar]
  23. Alshetaili A.S. Ansari M.J. Anwer M.K. Enhanced oral bioavailability of ibrutinib encapsulated poly (Lactic-co- glycolic acid) nanoparticles: Pharmacokinetic evaluation in rats. Curr. Pharm. Anal. 2019 15 6 661 668 10.2174/1573412915666190314124932
    [Google Scholar]
  24. Famta P. Shah S. Vambhurkar G. Quality by design endorsed fabrication of ibrutinib-loaded human serum albumin nanoparticles for the management of leukemia. Eur. J. Pharm. Biopharm. 2023 190 94 106 10.1016/j.ejpb.2023.07.008 37467865
    [Google Scholar]
  25. Zhao L. Tang B. Tang P. Chitosan/sulfobutylether-β-cyclodextrin nanoparticles for ibrutinib delivery: A potential nanoformulation of novel kinase inhibitor. J. Pharm. Sci. 2020 109 2 1136 1144 10.1016/j.xphs.2019.10.007 31606544
    [Google Scholar]
  26. Ponnaganti M. Babu A.K. Preparation, characterization and evaluation of chitosan nanobubbles for the targeted delivery of ibrutinib. Nat Vol Essent Oil 2021 8 5017 5037
    [Google Scholar]
  27. Kalepu S. Manthina M. Padavala V. Oral lipid-based drug delivery systems - An overview. Acta Pharm. Sin. B 2013 3 6 361 372 10.1016/j.apsb.2013.10.001
    [Google Scholar]
  28. Liao R. Sun Z.C. Wang L. Inhalable and bioactive lipid-nanomedicine based on bergapten for targeted acute lung injury therapy via orchestrating macrophage polarization. Bioact. Mater. 2025 43 406 422 10.1016/j.bioactmat.2024.09.020 39411684
    [Google Scholar]
  29. Saw P.E. Xu X. Zhang M. Cao S. Farokhzad O.C. Wu J. Nanostructure engineering by simple tuning of lipid combinations. Angew. Chem. Int. Ed. 2020 59 15 6249 6252 10.1002/anie.201916574 32017368
    [Google Scholar]
  30. Schudel A. Francis D.M. Thomas S.N. Material design for lymph node drug delivery. Nat. Rev. Mater. 2019 4 6 415 428 10.1038/s41578‑019‑0110‑7 32523780
    [Google Scholar]
  31. zur Mühlen A. Schwarz C. Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery - Drug release and release mechanism. Eur. J. Pharm. Biopharm. 1998 45 2 149 155 10.1016/S0939‑6411(97)00150‑1 9704911
    [Google Scholar]
  32. Sanjula B. Shah F.M. Javed A. Alka A. Effect of poloxamer 188 on lymphatic uptake of carvedilol-loaded solid lipid nanoparticles for bioavailability enhancement. J. Drug Target. 2009 17 3 249 256 10.1080/10611860902718672 19255893
    [Google Scholar]
  33. Nasirizadeh S. Malaekeh-Nikouei B. Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. J. Drug Deliv. Sci. Technol. 2020 55 101458 10.1016/j.jddst.2019.101458
    [Google Scholar]
  34. Kumar S. Narayan R. Ahammed V. Nayak Y. Naha A. Nayak U.Y. Development of ritonavir solid lipid nanoparticles by Box Behnken design for intestinal lymphatic targeting. J. Drug Deliv. Sci. Technol. 2018 44 181 189 10.1016/j.jddst.2017.12.014
    [Google Scholar]
  35. Ashar F. Hani U. Osmani R.A.M. Kazim S.M. Selvamuthukumar S. Preparation and optimization of ibrutinib-loaded nanoliposomes using response surface methodology. Polymers 2022 14 18 3886 10.3390/polym14183886 36146030
    [Google Scholar]
  36. Rangaraj N. Pailla S.R. Shah S. Prajapati S. Sampathi S. QbD aided development of ibrutinib-loaded nanostructured lipid carriers aimed for lymphatic targeting: Evaluation using chylomicron flow blocking approach. Drug Deliv. Transl. Res. 2020 10 5 1476 1494 10.1007/s13346‑020‑00803‑7 32519202
    [Google Scholar]
  37. Patel N. Desai A. Vyas B. Integration of synchronizing in silico, in vitro, and in vivo strategies for the development of antipsoriatic apremilast-loaded nanostructured lipid carrier embedded in hydrogel. AAPS PharmSciTech 2025 26 5 115 10.1208/s12249‑025‑03103‑w 40281236
    [Google Scholar]
  38. Borderwala K. Rathod S. Yadav S. Vyas B. Shah P. Eudragit S-100 surface engineered nanostructured lipid carriers for colon targeting of 5-fluorouracil: Optimization and in vitro and in vivo characterization. AAPS PharmSciTech 2021 22 6 216 10.1208/s12249‑021‑02099‑3 34386888
    [Google Scholar]
  39. Kim M.H. Kim K.T. Sohn S.Y. Formulation and evaluation of nanostructured lipid carriers (NLCs) of 20(s)-protopanaxadiol (PPD) by box-behnken design. Int. J. Nanomedicine 2019 14 8509 8520 10.2147/IJN.S215835 31749618
    [Google Scholar]
  40. Prajapati P. Patel A. Desai A. Shah P. Shakar Pulusu V. Shah S. Comprehensive strategy of white analytical chemistry and analytical quality by design to sensitive spectrofluorimetric method for in-vitro drug release kinetic study of Ibrutinib-loaded nanostructured lipid carriers for leukemia via lymphatic targeting. Microchem. J. 2024 198 110147 10.1016/j.microc.2024.110147
    [Google Scholar]
  41. Prajapati P. Patel A. Desai A. In-vivo pharmacokinetic study of ibrutinib-loaded nanostructured lipid carriers in rat plasma by sensitive spectrofluorimetric method using harmonized approach of quality by design and white analytical chemistry. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024 321 124731 10.1016/j.saa.2024.124731 38955074
    [Google Scholar]
  42. Ahmad I. Shaikh M. Surana S. Ghosh A. Patel H. p38α MAP kinase inhibitors to overcome EGFR tertiary C797S point mutation associated with osimertinib in non-small cell lung cancer (NSCLC): Emergence of fourth-generation EGFR inhibitor. J. Biomol. Struct. Dyn. 2022 40 7 3046 3059 10.1080/07391102.2020.1844801 33174519
    [Google Scholar]
  43. Ahmad I. Pawara R.H. Girase R.T. Synthesis, molecular modeling study, and quantum-chemical-based investigations of isoindoline-1,3-diones as antimycobacterial agents. ACS Omega 2022 7 25 21820 21844 10.1021/acsomega.2c01981 35785272
    [Google Scholar]
  44. Ahmad I. Pawara R. Patel H. In silico toxicity investigation of Methaqualone’s conjunctival, retinal, and gastrointestinal hemorrhage by molecular modelling approach. Mol. Simul. 2022 48 18 1639 1649 10.1080/08927022.2022.2113412
    [Google Scholar]
  45. Girase R. Ahmad I. Pawara R. Patel H. Optimizing cardio, hepato and phospholipidosis toxicity of the bedaquiline by chemoinformatics and molecular modelling approach. SAR QSAR Environ. Res. 2022 33 3 215 235 10.1080/1062936X.2022.2041724 35225110
    [Google Scholar]
  46. Doktorovova S. Souto E.B. Nanostructured lipid carrier-based hydrogel formulations for drug delivery: A comprehensive review. Expert Opin. Drug Deliv. 2009 6 2 165 176 10.1517/17425240802712590 19239388
    [Google Scholar]
  47. Baek J.S. Pham C.V. Myung C.S. Cho C.W. Tadalafil-loaded nanostructured lipid carriers using permeation enhancers. Int. J. Pharm. 2015 495 2 701 709 10.1016/j.ijpharm.2015.09.054 26423175
    [Google Scholar]
  48. Kumar V.P. Gupta N.V. A review on quality by design approach (QBD) for pharmaceuticals. Int J Drug Dev Res 2015 7 1 52 60
    [Google Scholar]
  49. Pandey A.P. Karande K.P. Sonawane R.O. Deshmukh P.K. Applying quality by design (QbD) concept for fabrication of chitosan coated nanoliposomes. J. Liposome Res. 2014 24 1 37 52 10.3109/08982104.2013.826243 23941613
    [Google Scholar]
  50. Shete H. Patravale V. Long chain lipid based tamoxifen NLC. Part I: Preformulation studies, formulation development and physicochemical characterization. Int. J. Pharm. 2013 454 1 573 583 10.1016/j.ijpharm.2013.03.034 23535345
    [Google Scholar]
  51. Das S. Ng W.K. Kanaujia P. Kim S. Tan R.B.H. Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: Effects of process variables. Colloids Surf. B Biointerfaces 2011 88 1 483 489 10.1016/j.colsurfb.2011.07.036 21831615
    [Google Scholar]
  52. Gurumukhi V.C. Bari S.B. Quality by design (QbD)-based fabrication of atazanavir-loaded nanostructured lipid carriers for lymph targeting: Bioavailability enhancement using chylomicron flow block model and toxicity studies. Drug Deliv. Transl. Res. 2022 12 5 1230 1252 10.1007/s13346‑021‑01014‑4 34110597
    [Google Scholar]
  53. Velmurugan R. Selvamuthukumar S. Development and optimization of ifosfamide nanostructured lipid carriers for oral delivery using response surface methodology. Appl. Nanosci. 2016 6 2 159 173 10.1007/s13204‑015‑0434‑6
    [Google Scholar]
  54. Dissolution methods. U.S. Food and Drug Administration 2022 Available from:https://www.accessdata.fda.gov/scripts/cder/dissolution/index.cfm
  55. Shah P. Chavda K. Vyas B. Patel S. Formulation development of linagliptin solid lipid nanoparticles for oral bioavailability enhancement: Role of P-gp inhibition. Drug Deliv. Transl. Res. 2021 11 3 1166 1185 10.1007/s13346‑020‑00839‑9 32804301
    [Google Scholar]
  56. Nooli M. Chella N. Kulhari H. Shastri N.R. Sistla R. Solid lipid nanoparticles as vesicles for oral delivery of olmesartan medoxomil: Formulation, optimization and in vivo evaluation. Drug Dev. Ind. Pharm. 2017 43 4 611 617 10.1080/03639045.2016.1275666 28005442
    [Google Scholar]
  57. Zhuang C.Y. Li N. Wang M. Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int. J. Pharm. 2010 394 1-2 179 185 10.1016/j.ijpharm.2010.05.005 20471464
    [Google Scholar]
  58. Joshi G. Kumar A. Sawant K. Bioavailability enhancement, Caco-2 cells uptake and intestinal transport of orally administered lopinavir-loaded PLGA nanoparticles. Drug Deliv. 2016 23 9 3492 3504 10.1080/10717544.2016.1199605 27297453
    [Google Scholar]
  59. Shakeel F. Iqbal M. Ezzeldin E. Bioavailability enhancement and pharmacokinetic profile of an anticancer drug ibrutinib by self-nanoemulsifying drug delivery system. J. Pharm. Pharmacol. 2016 68 6 772 780 10.1111/jphp.12550 27018771
    [Google Scholar]
  60. Makwana V. Jain R. Patel K. Nivsarkar M. Joshi A. Solid lipid nanoparticles (SLN) of Efavirenz as lymph targeting drug delivery system: Elucidation of mechanism of uptake using chylomicron flow blocking approach. Int. J. Pharm. 2015 495 1 439 446 10.1016/j.ijpharm.2015.09.014 26367780
    [Google Scholar]
  61. Bhalekar M.R. Upadhaya P.G. Madgulkar A.R. Kshirsagar S.J. Dube A. Bartakke U.S. In-vivo bioavailability and lymphatic uptake evaluation of lipid nanoparticulates of darunavir. Drug Deliv. 2016 23 7 2581 2586 10.3109/10717544.2015.1037969 25996834
    [Google Scholar]
  62. Dahan A. Hoffman A. Evaluation of a chylomicron flow blocking approach to investigate the intestinal lymphatic transport of lipophilic drugs. Eur. J. Pharm. Sci. 2005 24 4 381 388 10.1016/j.ejps.2004.12.006 15734305
    [Google Scholar]
  63. Lee K.W.Y. Porter C.J.H. Boyd B.J. A simple quantitative approach for the determination of long and medium chain lipids in bio-relevant matrices by high performance liquid chromatography with refractive index detection. AAPS PharmSciTech 2013 14 3 927 934 10.1208/s12249‑013‑9976‑7 23733513
    [Google Scholar]
  64. Kar N. Chakraborty S. De A.K. Ghosh S. Bera T. Development and evaluation of a cedrol-loaded nanostructured lipid carrier system for in vitro and in vivo susceptibilities of wild and drug resistant Leishmania donovani amastigotes. Eur. J. Pharm. Sci. 2017 104 196 211 10.1016/j.ejps.2017.03.046 28400285
    [Google Scholar]
  65. Bali V. Ali M. Ali J. Study of surfactant combinations and development of a novel nanoemulsion for minimising variations in bioavailability of ezetimibe. Colloids Surf. B Biointerfaces 2010 76 2 410 420 10.1016/j.colsurfb.2009.11.021 20042320
    [Google Scholar]
  66. Emami J. Rezazadeh M. Varshosaz J. Tabbakhian M. Aslani A. Formulation of LDL targeted nanostructured lipid carriers loaded with paclitaxel: A detailed study of preparation, freeze drying condition, and in vitro cytotoxicity. J. Nanomater. 2012 2012 1 358782 10.1155/2012/358782
    [Google Scholar]
  67. Chen C.C. Tsai T.H. Huang Z.R. Fang J.Y. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: Physicochemical characterization and pharmacokinetics. Eur. J. Pharm. Biopharm. 2010 74 3 474 482 10.1016/j.ejpb.2009.12.008 20060469
    [Google Scholar]
  68. Mandpe L. Pokharkar V. Quality by design approach to understand the process of optimization of iloperidone nanostructured lipid carriers for oral bioavailability enhancement. Pharm. Dev. Technol. 2015 20 3 320 329 10.3109/10837450.2013.867445 24328553
    [Google Scholar]
  69. Thakkar H. Desai J. Parmar M. Application of Box-Behnken design for optimization of formulation parameters for nanostructured lipid carriers of candesartan cilexetil. Asian J. Pharm. 2014 8 2 81 89 10.4103/0973‑8398.134921
    [Google Scholar]
  70. Han F. Li S. Yin R. Liu H. Xu L. Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: Nanostructured lipid carriers. Colloids Surf. A Physicochem. Eng. Asp. 2008 315 1-3 210 216 10.1016/j.colsurfa.2007.08.005
    [Google Scholar]
  71. Shah R. Eldridge D. Palombo E. Harding I. Lipid Nanoparticles: Production, characterization and stability. Cham Springer 2015 10.1007/978‑3‑319‑107110
    [Google Scholar]
  72. Sahu A.K. Kumar T. Jain V. Formulation optimization of erythromycin solid lipid nanocarrier using response surface methodology. BioMed Res. Int. 2014 2014 1 8 10.1155/2014/689391 25045692
    [Google Scholar]
  73. Patel M. Sawant K. A quality by design concept on lipid based nanoformulation containing antipsychotic drug: Screening design and optimization using response surface methodology. J. Text. Sci. Eng. 2017 8 3 1 1 10.4172/2157‑7439.1000442
    [Google Scholar]
  74. Singh A. Neupane Y.R. Panda B.P. Kohli K. Lipid Based nanoformulation of lycopene improves oral delivery: Formulation optimization, ex vivo assessment and its efficacy against breast cancer. J. Microencapsul. 2017 34 4 416 429 10.1080/02652048.2017.1340355 28595495
    [Google Scholar]
  75. Nahak P. Karmakar G. Chettri P. Influence of lipid core material on physicochemical characteristics of an ursolic acid-loaded nanostructured lipid carrier: An attempt to enhance anticancer activity. Langmuir 2016 32 38 9816 9825 10.1021/acs.langmuir.6b02402 27588340
    [Google Scholar]
  76. Tummala S. Satish Kumar M.N. Prakash A. Formulation and characterization of 5-Fluorouracil enteric coated nanoparticles for sustained and localized release in treating colorectal cancer. Saudi Pharm. J. 2015 23 3 308 314 10.1016/j.jsps.2014.11.010 26106279
    [Google Scholar]
  77. Madane R.G. Mahajan H.S. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: Design, characterization, and in vivo study. Drug Deliv. 2016 23 4 1326 1334 10.3109/10717544.2014.975382 25367836
    [Google Scholar]
  78. Xing Q. Song J. You X. Microemulsions containing long-chain oil ethyl oleate improve the oral bioavailability of piroxicam by increasing drug solubility and lymphatic transportation simultaneously. Int. J. Pharm. 2016 511 2 709 718 10.1016/j.ijpharm.2016.07.061 27473280
    [Google Scholar]
  79. Fang G. Tang B. Chao Y. Zhang Y. Xu H. Tang X. Improved oral bioavailability of docetaxel by nanostructured lipid carriers: In vitro characteristics, in vivo evaluation and intestinal transport studies. RSC Advances 2015 5 117 96437 96447 10.1039/C5RA14588K
    [Google Scholar]
  80. Shrivastava S. Gidwani B. Kaur C.D. Development of mebendazole loaded nanostructured lipid carriers for lymphatic targeting: Optimization, characterization, in-vitro and in-vivo evaluation. Particul. Sci. Technol. 2021 39 3 380 390 10.1080/02726351.2020.1750515
    [Google Scholar]
  81. Makoni P.A. Wa Kasongo K. Walker R.B. Short term stability testing of efavirenz-loaded solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) dispersions. Pharmaceutics 2019 11 8 397 10.3390/pharmaceutics11080397 31398820
    [Google Scholar]
  82. Ashwini M. Sudheer P. Sogali B.S. Preparation and stability study of glibenclamide encapsulated nanostructured lipid carrier. RGUHS J. Pharm. Sci. 2022 12 40 46
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128378420250804145740
Loading
/content/journals/cpd/10.2174/0113816128378420250804145740
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test