Skip to content
2000
image of Nanotechnology-Driven Therapeutic Potential of Raloxifene in Osteoporosis and Cancer: A Recent Review

Abstract

Introduction

Osteoporosis (OP) is a prevalent condition in postmenopausal women, marked by reduced bone density and an increased risk of fractures. Raloxifene (RLX), a selective estrogen receptor modulator (SERM), is the only drug approved for the management of OP in this patient population. RLX works by mimicking estrogen's effects on bone, reducing bone resorption and thereby increasing bone mineral density. However, despite its benefits, conventional oral RLX formulations have significant limitations. Its low bioavailability and poor aqueous solubility are compounded by extensive first-pass metabolism, which significantly reduces the drug's efficacy. Recent research has focused on nanocarriers for RLX to overcome these challenges, with lipid-based nanocarriers emerging as a promising approach to improve solubility, enhance absorption, and bypass first-pass metabolism lymphatic uptake.

Methods

The authors gathered information about RLX from articles published up to 2025 and listed in PubMed, Web of Science, Elsevier, Google Scholar, and similar databases. The keywords used in our search included “Osteoporosis” “Raloxifene” “nanocarriers” .

Results

The review of existing literature reveals substantial progress in developing innovative drug delivery systems for RLX, aimed at overcoming the limitations of conventional oral dosage forms in the treatment of OP and cancer. Several studies underscore the potential of novel formulations, including lipid-based nanocarriers, to improve raloxifene's pharmacokinetic profile, particularly through enhanced solubility, dissolution rate, and bioavailability.

Conclusion

The nanocarriers mediated raloxifene delivery represent promising strategies to enhance its bioavailability and therapeutic efficacy in osteoporosis treatment. By improving solubility and bypassing first-pass metabolism, these novel systems can potentially reduce dose-related side effects, offering safer and more effective long-term options for postmenopausal women with osteoporosis. This approach supports the continued exploration of both oral and non-oral delivery methods to overcome the limitations of conventional raloxifene formulations.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128374654250801180801
2025-08-18
2025-10-19
Loading full text...

Full text loading...

References

  1. Fuchs R.K. Thompson W.R. Warden S.J. Bone biology. In: Bone Repair Biomaterials. Elsevier 2019 15 52 10.1016/B978‑0‑08‑102451‑5.00002‑0
    [Google Scholar]
  2. Föger-Samwald U. Dovjak P. Azizi-Semrad U. Kerschan-Schindl K. Pietschmann P. Osteoporosis: Pathophysiology and therapeutic options. EXCLI J. 2020 19 1017 1037 32788914
    [Google Scholar]
  3. Morgan E.F. Gerstenfeld L.C. The bone organ system: Form and function. In: Marcus and Feldman’s Osteoporosis. Elsevier 2021 15 35
    [Google Scholar]
  4. Lynnerup N. Klaus H.D. Fundamentals of human bone and dental biology: Structure, function, and development. In: Ortner’s Identification of Pathological Conditions in Human Skeletal Remains. Elsevier 2019 35 58 10.1016/B978‑0‑12‑809738‑0.00004‑1
    [Google Scholar]
  5. Zou Z. Liu W. Cao L. Liu Y. He T. Peng S. Shuai C. Advances in the occurrence and biotherapy of osteoporosis. Biochem. Soc. Trans. 2020 48 4 1623 1636 10.1042/BST20200005 32627832
    [Google Scholar]
  6. Patel A.A. Ramanathan R. Kuban J. Willis M.H. Imaging findings and evaluation of metabolic bone disease. Adv. Radiol. 2015 2015 1 21 10.1155/2015/812794
    [Google Scholar]
  7. Kenkre J.S. Bassett J.H.D. The bone remodelling cycle. Ann. Clin. Biochem. 2018 55 3 308 327 10.1177/0004563218759371 29368538
    [Google Scholar]
  8. Khosla S. Oursler M.J. Monroe D.G. Estrogen and the skeleton. Trends Endocrinol. Metab. 2012 23 11 576 581 10.1016/j.tem.2012.03.008 22595550
    [Google Scholar]
  9. Boskey A.L. Bone composition: Relationship to bone fragility and antiosteoporotic drug effects. Bonekey Rep. 2013 2 447 10.1038/bonekey.2013.181 24501681
    [Google Scholar]
  10. Katsimbri P. The biology of normal bone remodelling. Eur. J. Cancer Care 2017 26 6 12740 10.1111/ecc.12740 28786518
    [Google Scholar]
  11. Martin T.J. Seeman E. Bone remodelling: Its local regulation and the emergence of bone fragility. Best Pract. Res. Clin. Endocrinol. Metab. 2008 22 5 701 722 10.1016/j.beem.2008.07.006 19028353
    [Google Scholar]
  12. Allgrove J. Cheung M. The parathyroid and disorders of calcium and bone metabolism. Brook’s. Clin. Pediatr. Endocrinol. 2019 409 479
    [Google Scholar]
  13. Khadilkar A. Mandlik R. Epidemiology and treatment of osteoporosis in women: An Indian perspective. Int. J. Womens Health 2015 7 841 850 10.2147/IJWH.S54623 26527900
    [Google Scholar]
  14. Sivaraju S. Alam M. Gangadharan K. Syamala T.V.S. Gupta N. Caring for Our Elders: Early Responses-India Ageing Report. United Nations Population Fund 2017 1 11
    [Google Scholar]
  15. Kumar S. Prikshat V. Chakraborti J. Patel P. Raina K. Sustainable development goals and ageing: Status, challenges, and strategies for policy implications for India. In: Ageing Asia and the Pacific in Changing Times. Springer 2022 105 126
    [Google Scholar]
  16. Reginster J.Y. Neuprez A. Beaudart C. Lecart M.P. Sarlet N. Bernard D. Disteche S. Bruyere O. Antiresorptive drugs beyond bisphosphonates and selective oestrogen receptor modulators for the management of postmenopausal osteoporosis. Drugs Aging 2014 31 6 413 424 10.1007/s40266‑014‑0179‑z 24797286
    [Google Scholar]
  17. Kulak Júnior J. Kulak C.A.M. Taylor H.S. SERMs in the prevention and treatment of postmenopausal osteoporosis: An update. Arq. Bras. Endocrinol. Metabol 2010 54 2 200 205 10.1590/S0004‑27302010000200016 20485909
    [Google Scholar]
  18. Provinciali N. Suen C. Dunn B.K. DeCensi A. Raloxifene hydrochloride for breast cancer risk reduction in postmenopausal women. Expert Rev. Clin. Pharmacol. 2016 9 10 1263 1272 10.1080/17512433.2016.1231575 27583816
    [Google Scholar]
  19. Dawson-Hughes B. Vitamin D and calcium: Recommended intake for bone health. Osteoporos. Int. 1998 8 S2 S30 S34 Suppl. 2 10.1007/PL00022730 10197180
    [Google Scholar]
  20. Reid I.R. Bristow S.M. Bolland M.J. Calcium supplements: Benefits and risks. J. Intern. Med. 2015 278 4 354 368 10.1111/joim.12394 26174589
    [Google Scholar]
  21. Fleisch H. Bisphosphonates in osteoporosis: An introduction. Osteoporos. Int. 1993 3 S3 3 5 10.1007/BF01623000 8298201
    [Google Scholar]
  22. Zhang N. Zhang Z.K. Yu Y. Zhuo Z. Zhang G. Zhang B.T. Pros and cons of denosumab treatment for osteoporosis and implication for RANKL aptamer therapy. Front. Cell Dev. Biol. 2020 8 325 10.3389/fcell.2020.00325 32478071
    [Google Scholar]
  23. del Real Á. Valero C. Olmos J.M. Hernández J.L. Riancho J.A. Pharmacogenetics of osteoporosis: A pathway analysis of the genetic influence on the effects of antiresorptive drugs. Pharmaceutics 2022 14 4 776 10.3390/pharmaceutics14040776 35456610
    [Google Scholar]
  24. Hayes F.J. Monitoring of testosterone replacement therapy to optimize the benefit-to-risk ratio. Endocrinol. Metab. Clin. North Am. 2022 51 1 99 108 10.1016/j.ecl.2021.11.013 35216723
    [Google Scholar]
  25. Canintika A.F. Dilogo I.H. Teriparatide for treating delayed union and nonunion: A systematic review. J. Clin. Orthop. Trauma 2020 11 S107 S112 Suppl. 1 10.1016/j.jcot.2019.10.009 31992929
    [Google Scholar]
  26. Bernhardsson M. Aspenberg P. Abaloparatide versus teriparatide: A head to head comparison of effects on fracture healing in mouse models. Acta Orthop. 2018 89 6 674 677 10.1080/17453674.2018.1523771 30334479
    [Google Scholar]
  27. Tominaga A. Wada K. Okazaki K. Nishi H. Terayama Y. Kato Y. Early clinical effects, safety, and predictors of the effects of romosozumab treatment in osteoporosis patients: One-year study. Osteoporos. Int. 2021 32 10 1999 2009 10.1007/s00198‑021‑05925‑3 33770201
    [Google Scholar]
  28. Deroo B.J. Korach K.S. Estrogen receptors and human disease. J. Clin. Invest. 2006 116 3 561 570 10.1172/JCI27987 16511588
    [Google Scholar]
  29. Wiik A. Ekman M. Johansson O. Jansson E. Esbjörnsson M. Expression of both oestrogen receptor alpha and beta in human skeletal muscle tissue. Histochem. Cell Biol. 2009 131 2 181 189 10.1007/s00418‑008‑0512‑x 18825402
    [Google Scholar]
  30. Tang Z.R. Zhang R. Lian Z.X. Deng S.L. Yu K. Estrogen-receptor expression and function in female reproductive disease. Cells 2019 8 10 1123 10.3390/cells8101123 31546660
    [Google Scholar]
  31. Yaşar P. Ayaz G. User S.D. Güpür G. Muyan M. Molecular mechanism of estrogen–estrogen receptor signaling. Reprod. Med. Biol. 2017 16 1 4 20 10.1002/rmb2.12006 29259445
    [Google Scholar]
  32. Gennari L. Merlotti D. De Paola V. Calabrò A. Becherini L. Martini G. Nuti R. Estrogen receptor gene polymorphisms and the genetics of osteoporosis: A HuGE review. Am. J. Epidemiol. 2005 161 4 307 320 10.1093/aje/kwi055 15692074
    [Google Scholar]
  33. Soltysik K. Czekaj P. Membrane estrogen receptors - is it an alternative way of estrogen action? J. Physiol. Pharmacol. 2013 64 2 129 142 23756388
    [Google Scholar]
  34. Maggiolini M. Picard D. The unfolding stories of GPR30, a new membrane-bound estrogen receptor. J. Endocrinol. 2010 204 2 105 114 10.1677/JOE‑09‑0242 19767412
    [Google Scholar]
  35. Hadji P. The evolution of selective estrogen receptor modulators in osteoporosis therapy. Climacteric 2012 15 6 513 523 10.3109/13697137.2012.688079 22853318
    [Google Scholar]
  36. Kalervo Väänänen H. Härkönen P.L. Estrogen and bone metabolism. Maturitas 1996 23 S65 S69 10.1016/0378‑5122(96)01015‑8 8865143
    [Google Scholar]
  37. Fuentes N. Silveyra P. Estrogen receptor signaling mechanisms. Adv. Protein Chem. Struct. Biol. 2019 116 135 170 10.1016/bs.apcsb.2019.01.001 31036290
    [Google Scholar]
  38. Ikeda K. Horie-Inoue K. Inoue S. Functions of estrogen and estrogen receptor signaling on skeletal muscle. J. Steroid Biochem. Mol. Biol. 2019 191 105375 10.1016/j.jsbmb.2019.105375 31067490
    [Google Scholar]
  39. Hadji P. Colli E. Regidor P.A. Bone health in estrogen-free contraception. Osteoporos. Int. 2019 30 12 2391 2400 10.1007/s00198‑019‑05103‑6 31446440
    [Google Scholar]
  40. Hong S. Chang J. Jeong K. Lee W. Raloxifene as a treatment option for viral infections. J. Microbiol. 2021 59 2 124 131 10.1007/s12275‑021‑0617‑7 33527314
    [Google Scholar]
  41. Jones S.E. Fulvestrant: An estrogen receptor antagonist that downregulates the estrogen receptor. Semin Oncol 2003 30 5 Suppl 16 14 20 10.1053/j.seminoncol.2003.08.003
    [Google Scholar]
  42. Long X. Nephew K.P. Fulvestrant (ICI 182,780)-dependent interacting proteins mediate immobilization and degradation of estrogen receptor-α. J. Biol. Chem. 2006 281 14 9607 9615 10.1074/jbc.M510809200 16459337
    [Google Scholar]
  43. Kalu D.N. The ovariectomized rat model of postmenopausal bone loss. Bone Miner. 1991 15 3 175 191 10.1016/0169‑6009(91)90124‑I 1773131
    [Google Scholar]
  44. Komm B.S. Chines A.A. An update on selective estrogen receptor modulators for the prevention and treatment of osteoporosis. Maturitas 2012 71 3 221 226 10.1016/j.maturitas.2011.11.018 22196312
    [Google Scholar]
  45. Gennari L. Merlotti D. Nuti R. Selective estrogen receptor modulator (SERM) for the treatment of osteoporosis in postmenopausal women: Focus on lasofoxifene. Clin. Interv. Aging 2010 5 19 29 10.2147/CIA.S6083 20169039
    [Google Scholar]
  46. Maximov P.Y. Lee T.M. Jordan V.C. The discovery and development of selective estrogen receptor modulators (SERMs) for clinical practice. Curr. Clin. Pharmacol. 2013 8 2 135 155 10.2174/1574884711308020006 23062036
    [Google Scholar]
  47. Mirkin S. Pickar J.H. Selective estrogen receptor modulators (SERMs): A review of clinical data. Maturitas 2015 80 1 52 57 10.1016/j.maturitas.2014.10.010 25466304
    [Google Scholar]
  48. Park W. Jordan V.C. Selective estrogen receptor modulators (SERMS) and their roles in breast cancer prevention. Trends Mol. Med. 2002 8 2 82 88 10.1016/S1471‑4914(02)02282‑7 11815274
    [Google Scholar]
  49. Khurana R.K. Jain A. Jain A. Sharma T. Singh B. Kesharwani P. Administration of antioxidants in cancer: Debate of the decade. Drug Discov. Today 2018 23 4 763 770 10.1016/j.drudis.2018.01.021 29317341
    [Google Scholar]
  50. Qiao R. Liu C. Liu M. Hu H. Liu C. Hou Y. Wu K. Lin Y. Liang J. Gao M. Ultrasensitive in vivo detection of primary gastric tumor and lymphatic metastasis using upconversion nanoparticles. ACS Nano 2015 9 2 2120 2129 10.1021/nn507433p 25602117
    [Google Scholar]
  51. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  52. Siegel R.L. Miller K.D. Jemal A. Cancer statistics, 2017. CA Cancer J. Clin. 2017 67 1 7 30 10.3322/caac.21387 28055103
    [Google Scholar]
  53. NICPR Cancer Statistics India. 2018 Available from: http://cancerindia.org.in/cancer-statistics/
  54. Ali I. Wani W.A. Saleem K. Cancer scenario in india with future perspectives. Cancer Ther. 2011 8 56 70
    [Google Scholar]
  55. American Cancer Society Cancer treatment and survivorship: Facts and figures 2019-2021. 2019 Available from: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/cancer-treatment-and-survivorship-facts-and-figures/cancer-treatment-and-survivorship-facts-and-figures-2019-2021.pdf
  56. Weir H.K. Thompson T.D. Soman A. Møller B. Leadbetter S. The past, present, and future of cancer incidence in the United States: 1975 through 2020. Cancer 2015 121 11 1827 1837 10.1002/cncr.29258 25649671
    [Google Scholar]
  57. Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018. 2018 Available from: https://www.iarc.who.int/featured-news/latest-global-cancer-data-cancer-burden-rises-to-18-1-million-new-cases-and-9-6-million-cancer-deaths-in-2018/
  58. Cooper G.M. The cell: A molecular approach. In: The development and causes of cancer. 2nd ed Sinauer Associates Sunderland (MA) 2000
    [Google Scholar]
  59. Seyfried T.N. Huysentruyt L.C. On the origin of cancer metastasis. Crit. Rev. Oncog. 2013 18 1 - 2 43 73 10.1615/CritRevOncog.v18.i1‑2.40 23237552
    [Google Scholar]
  60. Shigdar S. Li Y. Bhattacharya S. O’Connor M. Pu C. Lin J. Wang T. Xiang D. Kong L. Wei M.Q. Zhu Y. Zhou S. Duan W. Inflammation and cancer stem cells. Cancer Lett. 2014 345 2 271 278 10.1016/j.canlet.2013.07.031 23941828
    [Google Scholar]
  61. Anand P. Kunnumakara A.B. Sundaram C. Harikumar K.B. Tharakan S.T. Lai O.S. Sung B. Aggarwal B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 2008 25 9 2097 2116 10.1007/s11095‑008‑9661‑9 18626751
    [Google Scholar]
  62. Maskarinec G. Sen C. Koga K. Conroy S.M. Ethnic differences in breast cancer survival: status and determinants. Womens Health 2011 7 6 677 687 10.2217/WHE.11.67 22040209
    [Google Scholar]
  63. Goh S Goh RSJ Chong B Ng QX Koh GCH Ngiam KY Challenges in implementing artificial intelligence in breast cancer screening programs: Systematic review and framework for safe adoption. J Med Internet Res 2019 27 e62941
    [Google Scholar]
  64. Davis J.D. Lin S-Y. DNA damage and breast cancer. World J. Clin. Oncol. 2011 2 9 329 338 10.5306/wjco.v2.i9.329 21909479
    [Google Scholar]
  65. Baba A.I. Câtoi C. Principles of anticancer thearapy. Comparative Oncology The Publishing House of the Romanian Academy Bucharest 2007
    [Google Scholar]
  66. Learner A. Cell biology and cancer. 2019 Available from: https://www.learner.org/courses/biology/support/8_cancer.pdf
  67. Parsa N. Environmental factors inducing human cancers. Iran. J. Public Health 2012 41 11 1 9 23304670
    [Google Scholar]
  68. Rous P. Kidd J.G. Conditional neoplasms and subthreshold neoplastic states: A study of the tar tumors of rabbits. J. Exp. Med. 1941 73 3 365 390 10.1084/jem.73.3.365 19871084
    [Google Scholar]
  69. Brown C.R. Hambleton I.R. Hercules S.M. Alvarado M. Unwin N. Murphy M.M. Harris E.N. Wilks R. MacLeish M. Sullivan L. Sobers-Grannum N. U.S. Caribbean Alliance for Health Disparities Research Group (USCAHDR) Social determinants of breast cancer in the Caribbean: A systematic review. Int. J. Equity Health 2017 16 1 60 10.1186/s12939‑017‑0540‑z 28381227
    [Google Scholar]
  70. Society. AC. What is breast cancer. 2019 Available from: https://www.cancer.org/cancer/breast-cancer/about/what-is-breast-cancer.html
  71. Sledge G.W. Mamounas E.P. Hortobagyi G.N. Burstein H.J. Goodwin P.J. Wolff A.C. Past, present, and future challenges in breast cancer treatment. J. Clin. Oncol. 2014 32 19 1979 1986 10.1200/JCO.2014.55.4139 24888802
    [Google Scholar]
  72. Leyrer C.M. Berriochoa C.A. Agrawal S. Donaldson A. Calhoun B.C. Shah C. Stewart R. Moore H.C.F. Tendulkar R.D. Predictive factors on outcomes in metaplastic breast cancer. Breast Cancer Res. Treat. 2017 165 3 499 504 10.1007/s10549‑017‑4367‑5 28689362
    [Google Scholar]
  73. Sandhu P.S. Kumar R. Beg S. Jain S. Kushwah V. Katare O.P. Singh B. Natural lipids enriched self-nano-emulsifying systems for effective co-delivery of tamoxifen and naringenin: Systematic approach for improved breast cancer therapeutics. Nanomedicine 2017 13 5 1703 1713 10.1016/j.nano.2017.03.003 28343014
    [Google Scholar]
  74. Nall R. What signs of breast cancer are there other than a lump? Medical News Today 2018
    [Google Scholar]
  75. Seely J.M. Alhassan T. Screening for breast cancer in 2018-what should we be doing today? Curr. Oncol. 2018 25 11 115 124 Suppl. 1 10.3747/co.25.3770 29910654
    [Google Scholar]
  76. Wardle J. Robb K. Vernon S. Waller J. Screening for prevention and early diagnosis of cancer. Am. Psychol. 2015 70 2 119 133 10.1037/a0037357 25730719
    [Google Scholar]
  77. Baba A.I. Câtoi C. Cancer diagonosis. In: Comparative Oncology. XLI. Timisoara Publishing House of the Romanian Academy 2007
    [Google Scholar]
  78. Zhang B-N. Cao X-C. Chen J-Y. Chen J. Fu L. Hu X-C. Jiang Z.F. Li H.Y. Liao N. Liu D.G. Tao O. Shao Z.M. Sun Q. Wang S. Wang Y.S. Xu B.H. Zhang J. Guidelines on the diagnosis and treatment of breast cancer (2011 edition). Gland Surg. 2012 1 1 39 61 25083426
    [Google Scholar]
  79. Abbas Z. Rehman S. An overview of cancer treatment modalities. Neoplasm Naveed Shahzad H.N. IntechOpen 2018 141 157 10.5772/intechopen.76558
    [Google Scholar]
  80. Akram M. Iqbal M. Daniyal M. Khan A.U. Awareness and current knowledge of breast cancer. Biol. Res. 2017 50 1 33 10.1186/s40659‑017‑0140‑9 28969709
    [Google Scholar]
  81. Nurgali K. Jagoe R.T. Abalo R. Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Front. Pharmacol. 2018 9 245 10.3389/fphar.2018.00245 29623040
    [Google Scholar]
  82. Mishra J. Drummond J. Quazi S.H. Karanki S.S. Shaw J.J. Chen B. Kumar N. Prospective of colon cancer treatments and scope for combinatorial approach to enhanced cancer cell apoptosis. Crit. Rev. Oncol. Hematol. 2013 86 3 232 250 10.1016/j.critrevonc.2012.09.014 23098684
    [Google Scholar]
  83. Padma V.V. An overview of targeted cancer therapy. Biomedicine 2015 5 4 19 10.7603/s40681‑015‑0019‑4 26613930
    [Google Scholar]
  84. Sever R. Brugge J.S. Signal transduction in cancer. Cold Spring Harb. Perspect. Med. 2015 5 4 a006098 10.1101/cshperspect.a006098 25833940
    [Google Scholar]
  85. Weigelt B. Peterse J.L. van’t Veer L.J. Breast cancer metastasis: Markers and models. Nat. Rev. Cancer 2005 5 8 591 602 10.1038/nrc1670 16056258
    [Google Scholar]
  86. James N.D. de Bono J.S. Spears M.R. Clarke N.W. Mason M.D. Dearnaley D.P. Ritchie A.W.S. Amos C.L. Gilson C. Jones R.J. Matheson D. Millman R. Attard G. Chowdhury S. Cross W.R. Gillessen S. Parker C.C. Russell J.M. Berthold D.R. Brawley C. Adab F. Aung S. Birtle A.J. Bowen J. Brock S. Chakraborti P. Ferguson C. Gale J. Gray E. Hingorani M. Hoskin P.J. Lester J.F. Malik Z.I. McKinna F. McPhail N. Money-Kyrle J. O’Sullivan J. Parikh O. Protheroe A. Robinson A. Srihari N.N. Thomas C. Wagstaff J. Wylie J. Zarkar A. Parmar M.K.B. Sydes M.R. STAMPEDE Investigators Abiraterone for prostate cancer not previously treated with hormone therapy. N. Engl. J. Med. 2017 377 4 338 351 10.1056/NEJMoa1702900 28578639
    [Google Scholar]
  87. Badowska-Kozakiewicz A.M. Patera J. Sobol M. Przybylski J. The role of oestrogen and progesterone receptors in breast cancer – immunohistochemical evaluation of oestrogen and progesterone receptor expression in invasive breast cancer in women. Contemp. Oncol. 2015 3 3 220 225 10.5114/wo.2015.51826 26557763
    [Google Scholar]
  88. Song M. Yuan G. Ye H. Tian Y. Huang M. Xue J. A molecular combo of zinc (ii) phthalocyanine and tamoxifen derivative for dual targeting photodynamic therapy and hormone therapy. J. Med. Chem. 2017 60 1 40
    [Google Scholar]
  89. Homayun B. Lin X. Choi H.J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 2019 11 3 129 10.3390/pharmaceutics11030129 30893852
    [Google Scholar]
  90. Khurana E. Fu Y. Colonna V. Mu X.J. Kang H.M. Lappalainen T. Sboner A. Lochovsky L. Chen J. Harmanci A. Das J. Abyzov A. Balasubramanian S. Beal K. Chakravarty D. Challis D. Chen Y. Clarke D. Clarke L. Cunningham F. Evani U.S. Flicek P. Fragoza R. Garrison E. Gibbs R. Gümüş Z.H. Herrero J. Kitabayashi N. Kong Y. Lage K. Liluashvili V. Lipkin S.M. MacArthur D.G. Marth G. Muzny D. Pers T.H. Ritchie G.R.S. Rosenfeld J.A. Sisu C. Wei X. Wilson M. Xue Y. Yu F. Dermitzakis E.T. Yu H. Rubin M.A. Tyler-Smith C. Gerstein M. 1000 Genomes Project Consortium Integrative annotation of variants from 1092 humans: Application to cancer genomics. Science 2013 342 6154 1235587 10.1126/science.1235587 24092746
    [Google Scholar]
  91. Pathak K. Raghuvanshi S. Oral bioavailability: issues and solutions via nanoformulations. Clin. Pharmacokinet. 2015 54 4 325 357 10.1007/s40262‑015‑0242‑x 25666353
    [Google Scholar]
  92. Agrawal U. Sharma R. Gupta M. Vyas S.P. Is nanotechnology a boon for oral drug delivery? Drug Discov. Today 2014 19 10 1530 1546 10.1016/j.drudis.2014.04.011 24786464
    [Google Scholar]
  93. Kalepu S. Manthina M. Padavala V. Oral lipid-based drug delivery systems – an overview. Acta Pharm. Sin. B 2013 3 6 361 372 10.1016/j.apsb.2013.10.001
    [Google Scholar]
  94. Findlay J.M. Castro-Giner F. Makino S. Rayner E. Kartsonaki C. Cross W. Kovac M. Ulahannan D. Palles C. Gillies R.S. MacGregor T.P. Church D. Maynard N.D. Buffa F. Cazier J.B. Graham T.A. Wang L.M. Sharma R.A. Middleton M. Tomlinson I. Differential clonal evolution in oesophageal cancers in response to neo-adjuvant chemotherapy. Nat. Commun. 2016 7 1 11111 10.1038/ncomms11111 27045317
    [Google Scholar]
  95. Dressman J.J. Reppas C. Swarbrick J. Oral drug absorption: Prediction and assessment 2nd ed Informa Healthcare USA New York 2010 1 450
    [Google Scholar]
  96. May A.L. Kuklina E.V. Yoon P.W. Prevalence of cardiovascular disease risk factors among US adolescents, 1999-2008. Pediatrics 2012 129 6 1035 1041 10.1542/peds.2011‑1082 22614778
    [Google Scholar]
  97. Tamargo J. Le Heuzey J.Y. Mabo P. Narrow therapeutic index drugs: A clinical pharmacological consideration to flecainide. Eur. J. Clin. Pharmacol. 2015 71 5 549 567 10.1007/s00228‑015‑1832‑0 25870032
    [Google Scholar]
  98. Sharma T. Strategic lipid-based delivery interventions for enhancing oral bioavailability of BCS II / IV drugs. Pharm. Times 2019 51 9 37 41
    [Google Scholar]
  99. Porter C.J.H. Trevaskis N.L. Charman W.N. Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov. 2007 6 3 231 248 10.1038/nrd2197 17330072
    [Google Scholar]
  100. Thörn H.A. Yasin M. Dickinson P.A. Lennernäs H. Extensive intestinal glucuronidation of raloxifene in vivo in pigs and impact for oral drug delivery. Xenobiotica 2012 42 9 917 928 10.3109/00498254.2012.683497 22559211
    [Google Scholar]
  101. Clemett D. Spencer C.M. Raloxifene. Drugs 2000 60 2 379 411 10.2165/00003495‑200060020‑00013 10983739
    [Google Scholar]
  102. Patel V. Patel C. Patel B. Thakkar H. Formulation and evaluation of raloxifene hydrochloride dry emulsion tablet using solid carrier adsorption technique. Ther. Deliv. 2021 12 7 539 552 10.4155/tde‑2021‑0025 34165001
    [Google Scholar]
  103. Beg F.A. Pant A. Negi J.S. Negi V.J. Design and evaluation of novel oro-dispersible sustained release tablets of poly ethylene glycol based solid dispersion of domperidone. Res. J. Pharm. Technol. 2017 10 10 3253 3259 10.5958/0974‑360X.2017.00577.7
    [Google Scholar]
  104. Bikiaris D. Karavelidis V. Karavas E. Effectiveness of various drug carriers in controlled release formulations of raloxifene HCl prepared by melt mixing. Curr. Drug Deliv. 2009 6 5 425 436 10.2174/156720109789941632 19751201
    [Google Scholar]
  105. El Maghraby G.M. Ghanem S.F. Preparation and evaluation of rapidly dissolving tablets of raloxifene hydrochloride by ternary system formation. Int. J. Pharm. Pharm. Sci. 2016 8 127 136
    [Google Scholar]
  106. Patil P.H. Belgamwar V.S. Patil P.R. Surana S.J. Solubility enhancement of raloxifene using inclusion complexes and cogrinding method. J. Pharm. 2013 2013 1 9 10.1155/2013/527380 26555984
    [Google Scholar]
  107. Sameena Y. Sudha N. Chandrasekaran S. Enoch I.V.M.V. The role of encapsulation by β-cyclodextrin in the interaction of raloxifene with macromolecular targets: A study by spectroscopy and molecular modeling. J. Biol. Phys. 2014 40 4 347 367 10.1007/s10867‑014‑9355‑y 25073419
    [Google Scholar]
  108. Lu R. Liu S. Wang Q. Li X. Enhanced bioavailability of raloxifene hydrochloride via dry suspensions prepared from drug/HP-β-cyclodextrin inclusion complexes. Pharmazie 2015 70 12 791 797 26817276
    [Google Scholar]
  109. Puramdas E. Singh C. Kumar V. Bhatt T. Roy S. Enhanced solubility and dissolution rate of raloxifene using cycloencapsulation technique. J. Anal. Pharm. Res. 2016 2 5 00032
    [Google Scholar]
  110. Golmohammadzadeh S. Farhadian N. Biriaee A. Dehghani F. Khameneh B. Preparation, characterization and in vitro evaluation of microemulsion of raloxifene hydrochloride. Drug Dev. Ind. Pharm. 2017 43 10 1619 1625 10.1080/03639045.2017.1328430 28489426
    [Google Scholar]
  111. Shah N. Seth A. Balaraman R. Sailor G. Javia A. Gohil D. Oral bioavailability enhancement of raloxifene by developing microemulsion using D-optimal mixture design: optimization and in-vivo pharmacokinetic study. Drug Dev. Ind. Pharm. 2018 44 4 687 696 10.1080/03639045.2017.1408643 29168671
    [Google Scholar]
  112. Rabiei M. Kashanian S. Samavati S.S. Derakhshankhah H. Jamasb S. McInnes S.J.P. Nanotechnology application in drug delivery to osteoarthritis (OA), rheumatoid arthritis (RA), and osteoporosis (OSP). J. Drug Deliv. Sci. Technol. 2021 61 102011 10.1016/j.jddst.2020.102011
    [Google Scholar]
  113. Yang X. Chen S. Liu X. Yu M. Liu X. Drug delivery based on nanotechnology for target bone disease. Curr. Drug Deliv. 2019 16 9 782 792 10.2174/1567201816666190917123948 31530265
    [Google Scholar]
  114. Zhang X. Koo S. Kim J.H. Huang X. Kong N. Zhang L. Zhou J. Xue J. Harris M.B. Tao W. Kim J.S. Nanoscale materials-based platforms for the treatment of bone-related diseases. Matter 2021 4 9 2727 2764 10.1016/j.matt.2021.05.019
    [Google Scholar]
  115. Prabha J. Kumar M. Kumar D. Chopra S. Bhatia A. Nano-platform strategies of herbal components for the management of rheumatoid arthritis: A review on the battle for next-generation formulations. Curr. Drug Deliv. 2024 21 8 1082 1105 10.2174/1567201821666230825102748 37622715
    [Google Scholar]
  116. Kumar M. Dogra R. Mandal U.K. Novel formulation approaches used for the management of osteoarthritis: A recent review. Curr. Drug Deliv. 2023 20 7 841 856 10.2174/1567201819666220901092832 36056857
    [Google Scholar]
  117. Pandya B.R. Chotai N. Suthar R.M. Patel H.K. Formulation, in-vitro evaluation and optimization of nanoemulsion of raloxifene hydrochloride. Int J Pharm Res 2017 9 2 38 49
    [Google Scholar]
  118. Rabinow B.E. Nanosuspensions in drug delivery. Nat. Rev. Drug Discov. 2004 3 9 785 796 10.1038/nrd1494 15340388
    [Google Scholar]
  119. Han M. Qi X. Bi D. Li Y. Guo Y. Wang X. Feng L. Administration of raloxifene hydrochloride nanosuspensions partially attenuates bone loss in ovariectomized mice. RSC Advances 2018 8 42 23748 23756 10.1039/C8RA02535E 35540259
    [Google Scholar]
  120. Hosny K.M. Bahmdan R.H. Alhakamy N.A. Alfaleh M.A. Ahmed O.A. Elkomy M.H. Physically optimized nano-lipid carriers augment raloxifene and vitamin d oral bioavailability in healthy humans for management of osteoporosis. J. Pharm. Sci. 2020 109 7 2145 2155 10.1016/j.xphs.2020.03.009 32194094
    [Google Scholar]
  121. Burra M. Jukanti R. Janga K.Y. Sunkavalli S. Velpula A. Ampati S. Jayaveera K.N. Enhanced intestinal absorption and bioavailability of raloxifene hydrochloride via lyophilized solid lipid nanoparticles. Adv. Powder Technol. 2013 24 1 393 402 10.1016/j.apt.2012.09.002
    [Google Scholar]
  122. Tran T.H. Ramasamy T. Cho H.J. Kim Y.I.I. Poudel B.K. Choi H.G. Yong C.S. Kim J.O. Formulation and optimization of raloxifene-loaded solid lipid nanoparticles to enhance oral bioavailability. J. Nanosci. Nanotechnol. 2014 14 7 4820 4831 10.1166/jnn.2014.8722 24757949
    [Google Scholar]
  123. Jain A Saini S Kumar R Sharma T Swami R Katare OP Phospholipid-based complex of raloxifene with enhanced biopharmaceutical potential: Synthesis, characterization and preclinical assessment. Int J Pharm 2019 571 118698
    [Google Scholar]
  124. Varshosaz J. Ziaei V. Minaiyan M. Jahanian-Najafabadi A. Sayed-Tabatabaei L. Enhanced solubility, oral bioavailability and anti-osteoporotic effects of raloxifene HCl in ovariectomized rats by Igepal CO-890 nanomicelles. Pharm. Dev. Technol. 2019 24 2 133 144 10.1080/10837450.2018.1428815 29338533
    [Google Scholar]
  125. Babanejad N. Nikjeh M.M.A. Amini M. Dorkoosh F.A. A nanoparticulate raloxifene delivery system based on biodegradable carboxylated polyurethane: Design, optimization, characterization, and in vitro evaluation. J. Appl. Polym. Sci. 2014 131 1 app.39668 10.1002/app.39668
    [Google Scholar]
  126. Du X. Gao N. Song X. Bioadhesive polymer/lipid hybrid nanoparticles as oral delivery system of raloxifene with enhancive intestinal retention and bioavailability. Drug Deliv. 2021 28 1 252 260 10.1080/10717544.2021.1872742 33501870
    [Google Scholar]
  127. Guo Z. Afza R. Moneeb Khan M. Khan S.U. Khan M.W. Ali Z. Batool S. Din F. Investigation of the treatment potential of Raloxifene-loaded polymeric nanoparticles in osteoporosis: In-vitro and in-vivo analyses. Heliyon 2023 9 9 20107 10.1016/j.heliyon.2023.e20107 37810010
    [Google Scholar]
  128. Guo Z. Qi P. Pei D. Zhang X. Raloxifene-loaded solid lipid nanoparticles decorated gel with enhanced treatment potential of osteoporosis. J. Drug Deliv. Sci. Technol. 2022 75 103733 10.1016/j.jddst.2022.103733
    [Google Scholar]
  129. Nagai N. Ogata F. Otake H. Nakazawa Y. Kawasaki N. Design of a transdermal formulation containing raloxifene nanoparticles for osteoporosis treatment. Int. J. Nanomedicine 2018 13 5215 5229 10.2147/IJN.S173216 30233182
    [Google Scholar]
  130. Mahmood S. Mandal U.K. Chatterjee B. Transdermal delivery of raloxifene HCl via ethosomal system: Formulation, advanced characterizations and pharmacokinetic evaluation. Int. J. Pharm. 2018 542 1-2 36 46 10.1016/j.ijpharm.2018.02.044 29501737
    [Google Scholar]
  131. Elkasabgy NA Abdel-Salam FS Mahmoud AA Basalious EB Amer MS Mostafa AA Long lasting in-situ forming implant loaded with raloxifene HCl: An injectable delivery system for treatment of bone injuries. Int J Pharm 2019 571 118703
    [Google Scholar]
  132. Mu C. Hu Y. Huang L. Shen X. Li M. Li L. Gu H. Yu Y. Xia Z. Cai K. Sustained raloxifene release from hyaluronan-alendronate-functionalized titanium nanotube arrays capable of enhancing osseointegration in osteoporotic rabbits. Mater. Sci. Eng. C 2018 82 345 353 10.1016/j.msec.2017.08.056 29025668
    [Google Scholar]
  133. Fernández-García R Lalatsa A Statts L Bolás-Fernández F Ballesteros MP Serrano DR Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. Int J Pharm 2020 573 118817
    [Google Scholar]
  134. Joshi A. Kaur J. Kulkarni R. Chaudhari R. In-vitro and Ex-vivo evaluation of Raloxifene hydrochloride delivery using nano-transfersome based formulations. J. Drug Deliv. Sci. Technol. 2018 45 151 158 10.1016/j.jddst.2018.02.006
    [Google Scholar]
  135. Mahmood S. Chatterjee B. Mandal U.K. Pharmacokinetic evaluation of the synergistic effect of raloxifene loaded transfersomes for transdermal delivery. J. Drug Deliv. Sci. Technol. 2021 63 102545 10.1016/j.jddst.2021.102545
    [Google Scholar]
  136. Murthy A. Ravi P.R. Kathuria H. Vats R. Self-assembled lecithin-chitosan nanoparticles improve the oral bioavailability and alter the pharmacokinetics of raloxifene. Int. J. Pharm. 2020 588 119731 10.1016/j.ijpharm.2020.119731 32763388
    [Google Scholar]
  137. Murthy A. Rao Ravi P. Kathuria H. Malekar S. Oral bioavailability enhancement of raloxifene with nanostructured lipid carriers. Nanomaterials 2020 10 6 1085 10.3390/nano10061085 32486508
    [Google Scholar]
  138. Fontana MC Laureano JV Forgearini B Dos Santos J Pohlmann AR Guterres SS Spray-dried raloxifene submicron particles for pulmonary delivery: Development and in vivo pharmacokinetic evaluation in rats. Int J Pharm 2020 585 119429 10.1016/j.ijpharm.2020.119429
    [Google Scholar]
  139. Li H. Lu S. Luo M. Li X. Liu S. Zhang T. A matrix dispersion based on phospholipid complex system: preparation, lymphatic transport, and pharmacokinetics. Drug Dev. Ind. Pharm. 2020 46 4 557 565 10.1080/03639045.2020.1735408 32126844
    [Google Scholar]
  140. Waheed A. Aqil M. Ahad A. Imam S.S. Moolakkadath T. Iqbal Z. Ali A. Improved bioavailability of raloxifene hydrochloride using limonene containing transdermal nano-sized vesicles. J. Drug Deliv. Sci. Technol. 2019 52 468 476 10.1016/j.jddst.2019.05.019
    [Google Scholar]
  141. Jain A. Kaur R. Beg S. Kushwah V. Jain S. Singh B. Novel cationic supersaturable nanomicellar systems of raloxifene hydrochloride with enhanced biopharmaceutical attributes. Drug Deliv. Transl. Res. 2018 8 3 670 692 10.1007/s13346‑018‑0514‑8 29589250
    [Google Scholar]
  142. Ahmed O.A.A. Badr-Eldin S.M. In situ misemgel as a multifunctional dual-absorption platform for nasal delivery of raloxifene hydrochloride: Formulation, characterization, and in vivo performance. Int. J. Nanomedicine 2018 13 6325 6335 10.2147/IJN.S181587 30349253
    [Google Scholar]
  143. Izgelov D. Cherniakov I. Aldouby Bier G. Domb A.J. Hoffman A. The effect of piperine pro-nano lipospheres on direct intestinal phase II metabolism: The raloxifene paradigm of enhanced oral bioavailability. Mol. Pharm. 2018 15 4 1548 1555 10.1021/acs.molpharmaceut.7b01090 29537855
    [Google Scholar]
  144. Lee J.H. Kim H.H. Cho Y.H. Koo T.S. Lee G.W. Development and evaluation of raloxifene hydrochloride-loaded supersaturatable SMEDDS containing an acidifier. Pharmaceutics 2018 10 3 78 10.3390/pharmaceutics10030078 29966249
    [Google Scholar]
  145. Thakur P.S. Singh N. Sangamwar A.T. Bansal A.K. Investigation of need of natural bioenhancer for a metabolism susceptible drug—raloxifene, in a designed self-emulsifying drug delivery system. AAPS PharmSciTech 2017 18 7 2529 2540 10.1208/s12249‑017‑0732‑2 28224392
    [Google Scholar]
  146. Kanade R. Boche M. Pokharkar V. Self-assembling raloxifene loaded mixed micelles: Formulation optimization, in vitro cytotoxicity and in vivo pharmacokinetics. AAPS PharmSciTech 2018 19 3 1105 1115 10.1208/s12249‑017‑0919‑6 29181706
    [Google Scholar]
  147. Velpula A. Jukanti R. Janga K.Y. Sunkavalli S. Bandari S. Kandadi P. Veerareddy P.R. Proliposome powders for enhanced intestinal absorption and bioavailability of raloxifene hydrochloride: Effect of surface charge. Drug Dev. Ind. Pharm. 2013 39 12 1895 1906 10.3109/03639045.2012.670641 22458264
    [Google Scholar]
  148. Gibson L.L. Hartauer K.J. Stowers J.L. Sweetana S.A. Thakkar A.L. Solid orally administerable raloxifene hydrochloride pharmaceutical formulation. U.S. Patent 5972383A 1999
  149. Arbuthnot G. Dalder B. Hartauer K. Luke W.D. Stratford R. Benzothiophenes, formulations containing same, and methods. U.S. Patent US8030330B2 2005
  150. Bryant H.U. Cullinan G.J. Francis P.C. Magee D.E. Sweetana S.A. Thakkar A.L. Aqueous solution inclusion complexes of benzothiophene compounds with water soluble cyclodextrins, and pharmaceutical formulations and methods thereof. C.N. Patent 1109751A 1997
  151. Buchanan C. Buchanan N. Lambert J. Posey-Dowty J. Cyclodextrin solubilizers for liquid and semi-solid formulations. W.O. Patent 2006052921A3 2006
  152. Alagarsamy A. Rambabu B. Reddy P. Venugopal K. Kumar B. Raloxifene pharmaceutical formulations. U.S. Patent 20110159084A1 1997
  153. Ferrari M Gargani PC Inclusion complex of raloxifene hydrochloride and beta-cyclodextrin. U.S. Patent 2010/0298265 A1 2010
  154. Sun Y. Dong C. Zhidong K. Preparation method of raloxifene cyclodextrin inclusion compound and preparation of raloxifene cyclodextrin inclusion compound. China 2011
    [Google Scholar]
  155. Tianhong Z. Zhonggui H. Huixin L. Qikun J. Sirun L. A kind of raloxifene HCL phosphatide complexes solid dispersions and its preparation. China 2011
    [Google Scholar]
  156. Meiser F. Camarano R. Caruso F. Postma A. Process for the preparation of biologically active compounds in nanoparticulate form. Japan 2020
    [Google Scholar]
  157. Cauley J.A. Norton L. Lippman M.E. Eckert S. Krueger K.A. Purdie D.W. Farrerons J. Karasik A. Mellstrom D. Ng K.W. Stepan J.J. Powles T.J. Morrow M. Costa A. Silfen S.L. Walls E.L. Schmitt H. Muchmore D.B. Jordan V.C. Ste-Marie L.G. Continued breast cancer risk reduction in postmenopausal women treated with raloxifene: 4-year results from the MORE trial. Multiple outcomes of raloxifene evaluation. Breast Cancer Res. Treat. 2001 65 2 125 134 10.1023/A:1006478317173 11261828
    [Google Scholar]
  158. Abd-Rabou A.A. Abdelaziz A.M. Shaker O.G. Ayeldeen G. Hyaluronated nanoparticles deliver raloxifene to CD44-expressed colon cancer cells and regulate lncRNAs/miRNAs epigenetic cascade. Cancer Nanotechnol. 2023 14 1 32 10.1186/s12645‑023‑00183‑w
    [Google Scholar]
  159. Chen C.H. Cheng T.L. Chang C.F. Huang H.T. Lin S.Y. Wu M.H. Kang L. Raloxifene ameliorates glucosamine-induced insulin resistance in ovariectomized rats. Biomedicines 2021 9 9 1114 10.3390/biomedicines9091114 34572301
    [Google Scholar]
  160. Lee J. Lee J.S. Lee J.E. Kim Z. Han S.W. Hur S.M. Choi Y.J. Park S. A nationwide study on the incidence of breast cancer in korean women with osteoporosis receiving raloxifene treatment. J. Breast Cancer 2021 24 3 280 288 10.4048/jbc.2021.24.e28 34128366
    [Google Scholar]
  161. Ma H.Y. Chen S. Lu L.L. Gong W. Zhang A.H. Raloxifene in the treatment of osteoporosis in postmenopausal women with end-stage renal disease: A systematic review and meta-analysis. Horm. Metab. Res. 2021 53 11 730 737 10.1055/a‑1655‑4362 34740274
    [Google Scholar]
  162. Ohta H. Uemura Y. Sone T. Tanaka S. Soen S. Mori S. Hagino H. Fukunaga M. Nakamura T. Orimo H. Shiraki M. Adequate Treatment of Osteoporosis (A-TOP) research group Effect of bone resorption inhibitors on serum cholesterol level and fracture risk in osteoporosis: Randomized comparative study between Minodronic Acid and Raloxifene. Calcif. Tissue Int. 2023 112 4 430 439 10.1007/s00223‑023‑01060‑9 36707436
    [Google Scholar]
  163. Chung Y.S. Lee D.Y. An observational study to assess the safety and efficacy on quality of life and patient satisfaction with raloxifene/cholecalciferol combination therapy in postmenopausal women requiring prevention or treatment for osteoporosis. J. Endocr. Soc. 2021 5 A241 A242 Suppl. 1 10.1210/jendso/bvab048.491
    [Google Scholar]
  164. Desai S.A. Manjappa A. Khulbe P. Drug delivery nanocarriers and recent advances ventured to improve therapeutic efficacy against osteosarcoma: An overview. J. Egypt. Natl. Canc. Inst. 2021 33 1 4 10.1186/s43046‑021‑00059‑3 33555490
    [Google Scholar]
  165. Milewska S. Niemirowicz-Laskowska K. Siemiaszko G. Nowicki P. Wilczewska A.Z. Car H. Current trends and challenges in pharmacoeconomic aspects of nanocarriers as drug delivery systems for cancer treatment. Int. J. Nanomedicine 2021 16 6593 6644 10.2147/IJN.S323831 34611400
    [Google Scholar]
  166. Chambhare N. A comprehensive review on the recent applications and development in nanocarriers. Asian J. Pharm. 2024 18 04 1 8 10.22377/ajp.v18i3.5625
    [Google Scholar]
  167. Sharpe M. Barry J. Kefalas P. Clinical adoption of advanced therapies: Challenges and opportunities. J. Pharm. Sci. 2021 110 5 1877 1884 10.1016/j.xphs.2020.08.027 32918916
    [Google Scholar]
  168. Kardani S.L. Nanocarrier-based formulations: Regulatory challenges, ethical and safety considerations in pharmaceuticals. Asian J. Pharm. 2024 18 2 10.22377/ajp.v18i02.5444
    [Google Scholar]
  169. Oliveira C. Coelho C. Teixeira J.A. Ferreira-Santos P. Botelho C.M. Nanocarriers as active ingredients enhancers in the cosmetic industry—The European and North America regulation challenges. Molecules 2022 27 5 1669 10.3390/molecules27051669 35268769
    [Google Scholar]
  170. Vega-Villa K.R. Takemoto J.K. Yáñez J.A. Remsberg C.M. Forrest M.L. Davies N.M. Clinical toxicities of nanocarrier systems. Adv. Drug Deliv. Rev. 2008 60 8 929 938 10.1016/j.addr.2007.11.007 18313790
    [Google Scholar]
  171. Yang G. Phua S.Z.F. Bindra A.K. Zhao Y. Degradability and clearance of inorganic nanoparticles for biomedical applications. Adv. Mater. 2019 31 10 1805730 10.1002/adma.201805730 30614561
    [Google Scholar]
  172. Ansari M.D. Shafi S. Pandit J. Waheed A. Jahan R.N. khan I. Vohora D. Jain S. Aqil M. Sultana Y. Raloxifene encapsulated spanlastic nanogel for the prevention of bone fracture risk via transdermal administration: Pharmacokinetic and efficacy study in animal model. Drug Deliv. Transl. Res. 2024 14 6 1635 1647 10.1007/s13346‑023‑01480‑y 37996726
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128374654250801180801
Loading
/content/journals/cpd/10.2174/0113816128374654250801180801
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: SERMs ; osteoclasts ; remodeling cycle ; bone density ; Osteoporosis ; Bone disease
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test