Skip to content
2000
image of Anti-cancer Drugs in Endometriosis Management: Mechanisms and Therapeutic Potential

Abstract

Introduction

Endometriosis is a widespread estrogen-driven condition causing pelvic pain and infertility in women. This disease shares five features with cancer: Intrinsic growth signals, insensitivity to anti-proliferative signals, impaired apoptosis, induction of angiogenesis, and heightened tissue invasion, suggesting common therapeutic targets for both conditions. This article reviews studies investigating the anti-cancer drugs' protective effects and mechanisms in endometriosis treatment, providing essential insights into their efficacy and the relevant pathways in managing the disease.

Methods

A comprehensive review was conducted to assess the potential therapeutic benefits of anti-cancer drugs in endometriosis treatment. This included an extensive search of Google Scholar and PubMed, using relevant keywords without any limitations untilthe end of 2024, to ensure a thorough analysis of existing research in this field.

Results

Many drugs used in treating estrogen-dependent and other cancers have demonstrated significant therapeutic potential for endometriosis, as supported by cellular, animal, and clinical studies.

Discussion

Though these drugs may have significant side effects, more research is necessary to determine their usefulness in endometriosis treatment. By studying various drug dosages and regimens, researchers can aim to achieve effective treatment with minimal side effects. Personalized treatment based on illness severity can be achieved by selecting the right medication and dosage.

Conclusion

Future research can include optimizing dosages in preclinical studies, comparing repurposed drugs to conventional therapies in randomized trials, and conducting longer and larger clinical trials further to assess side effects and effectiveness in endometriosis patients.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128387356250720042300
2025-08-07
2025-10-27
Loading full text...

Full text loading...

References

  1. Fan X. Tong Y. Chen Y. Chen Y. Sunitinib reduced the migration of ectopic endometrial cells via p-VEGFR-PI3K-AKT-YBX1-snail signaling pathway. Anal. Cell. Pathol. 2022 2022 1 1 9 10.1155/2022/6042518 35837295
    [Google Scholar]
  2. Agostinis C. Balduit A. Mangogna A. Immunological basis of the endometriosis: The complement system as a potential therapeutic target. Front. Immunol. 2021 11 599117 10.3389/fimmu.2020.599117 33505394
    [Google Scholar]
  3. Reinecke I. Schultze-Mosgau M.H. Nave R. Schmitz H. Ploeger B.A. Model‐based dose selection for intravaginal ring formulations releasing anastrozole and levonorgestrel intended for the treatment of endometriosis symptoms. J. Clin. Pharmacol. 2017 57 5 640 651 10.1002/jcph.846 27925651
    [Google Scholar]
  4. Sinaii N. Plumb K. Cotton L. Differences in characteristics among 1,000 women with endometriosis based on extent of disease. Fertil. Steril. 2008 89 3 538 545 10.1016/j.fertnstert.2007.03.069 17498711
    [Google Scholar]
  5. Culley L. Law C. Hudson N. The social and psychological impact of endometriosis on women’s lives: A critical narrative review. Hum. Reprod. Update 2013 19 6 625 639 10.1093/humupd/dmt027 23884896
    [Google Scholar]
  6. Rolla E. Endometriosis: Advances and controversies in classification, pathogenesis, diagnosis, and treatment. F1000 Res. 2019 8 529 10.12688/f1000research.14817.1 31069056
    [Google Scholar]
  7. Agarwal N. Subramanian A. Endometriosis – Morphology, clinical presentations and molecular pathology. J. Lab. Physicians 2010 2 1 1 9 10.4103/0974‑2727.66699 21814398
    [Google Scholar]
  8. Li W. Lin A. Qi L. Immunotherapy: A promising novel endometriosis therapy. Front. Immunol. 2023 14 1128301 10.3389/fimmu.2023.1128301 37138868
    [Google Scholar]
  9. Abramiuk M. Grywalska E. Małkowska P. Sierawska O. Hrynkiewicz R. Niedźwiedzka-Rystwej P. The role of the immune system in the development of endometriosis. Cells 2022 11 13 2028 10.3390/cells11132028 35805112
    [Google Scholar]
  10. Guo S.W. Various types of adenomyosis and endometriosis: In search of optimal management. Fertil. Steril. 2023 119 5 711 726 10.1016/j.fertnstert.2023.03.021 36963717
    [Google Scholar]
  11. Gilmour J.A. Huntington A. Wilson H.V. The impact of endometriosis on work and social participation. Int. J. Nurs. Pract. 2008 14 6 443 448 10.1111/j.1440‑172X.2008.00718.x 19126072
    [Google Scholar]
  12. Damario M. Rock J. Classification of endometriosis. Semin. Reprod. Med. 1997 15 3 235 244 10.1055/s‑2008‑1068753 9383832
    [Google Scholar]
  13. Smolarz B. Szyłło K. Romanowicz H. Endometriosis: Epidemiology, classification, pathogenesis, treatment and genetics (review of literature). Int. J. Mol. Sci. 2021 22 19 10554 10.3390/ijms221910554 34638893
    [Google Scholar]
  14. Szamatowicz M. Endometriosis–still an enigmatic disease. What are the causes, how to diagnose it and how to treat successfully? Gynecol. Endocrinol. 2008 24 10 535 536 10.1080/09513590802296062 19012093
    [Google Scholar]
  15. Bougie O. Nwosu I. Warshafsky C. Revisiting the impact of race/ethnicity in endometriosis. Reprod Fertil 2022 3 2 R34 R41 10.1530/RAF‑21‑0106 35514542
    [Google Scholar]
  16. Suszczyk D. Skiba W. Pawłowska-Łachut A. Immune checkpoints in endometriosis—A new insight in the pathogenesis. Int. J. Mol. Sci. 2024 25 11 6266 10.3390/ijms25116266 38892453
    [Google Scholar]
  17. Suszczyk D. Skiba W. Jakubowicz-Gil J. Kotarski J. Wertel I. The role of myeloid-derived suppressor cells (MDSCs) in the development and/or progression of endometriosis-state of the art. Cells 2021 10 3 677 10.3390/cells10030677 33803806
    [Google Scholar]
  18. Nap A.W. Griffioen A.W. Dunselman G.A.J. Antiangiogenesis therapy for endometriosis. J. Clin. Endocrinol. Metab. 2004 89 3 1089 1095 10.1210/jc.2003‑031406 15001592
    [Google Scholar]
  19. Mir O. Ropert S. Morice P. Berveiller P. Clinical activity of sunitinib and regorafenib in endometriosis. Mayo Clin. Proc. 2019 94 12 2591 2593 10.1016/j.mayocp.2019.10.001 31806110
    [Google Scholar]
  20. Genovese T. Siracusa R. D’Amico R. Regulation of inflammatory and proliferative pathways by fotemustine and dexamethasone in endometriosis. Int. J. Mol. Sci. 2021 22 11 5998 10.3390/ijms22115998 34206129
    [Google Scholar]
  21. Jana S. Chatterjee K. Ray A.K. DasMahapatra P. Swarnakar S. Regulation of matrix metalloproteinase-2 activity by COX-2-PGE2-pAKT axis promotes angiogenesis in endometriosis. PLoS One 2016 11 10 e0163540 10.1371/journal.pone.0163540 27695098
    [Google Scholar]
  22. Samimi M. Pourhanifeh M.H. Mehdizadehkashi A. Eftekhar T. Asemi Z. The role of inflammation, oxidative stress, angiogenesis, and apoptosis in the pathophysiology of endometriosis: Basic science and new insights based on gene expression. J. Cell. Physiol. 2019 234 11 19384 19392 10.1002/jcp.28666 31004368
    [Google Scholar]
  23. Maksym R.B. Hoffmann-Młodzianowska M. Skibińska M. Rabijewski M. Mackiewicz A. Kieda C. Immunology and immunotherapy of endometriosis. J. Clin. Med. 2021 10 24 5879 10.3390/jcm10245879 34945174
    [Google Scholar]
  24. Interdonato L. Marino Y. D’Amico R. Modulation of the proliferative pathway, neuroinflammation and pain in endometriosis. Int. J. Mol. Sci. 2023 24 14 11741 10.3390/ijms241411741 37511500
    [Google Scholar]
  25. Barcz E. Kamiński P. Marianowski L. Role of cytokines in pathogenesis of endometriosis. Med. Sci. Monit. 2000 6 5 1042 1046 11208452
    [Google Scholar]
  26. Bedaiwy M.A. Falcone T. Sharma R.K. Prediction of endometriosis with serum and peritoneal fluid markers: A prospective controlled trial. Hum. Reprod. 2002 17 2 426 431 10.1093/humrep/17.2.426 11821289
    [Google Scholar]
  27. Motzer R.J. Escudier B. Gannon A. Figlin R.A. Sunitinib: Ten years of successful clinical use and study in advanced renal cell carcinoma. Oncologist 2017 22 1 41 52 10.1634/theoncologist.2016‑0197 27807302
    [Google Scholar]
  28. Weckbecker G Raulf F Tolcsvai L Bruns C Potentiation of the anti-proliferative effects of anti-cancer drugs by octreotide in vitro and in vivo. Digestion 1996 57 1 22 28 (Suppl. 1) 10.1159/000201388 8813462
    [Google Scholar]
  29. Chu S.W. Badar S. Morris D.L. Pourgholami M.H. Potent inhibition of tubulin polymerisation and proliferation of paclitaxel-resistant 1A9PTX22 human ovarian cancer cells by albendazole. Anticancer Res. 2009 29 10 3791 3796 19846910
    [Google Scholar]
  30. Thun M.J. Henley S.J. Patrono C. Nonsteroidal anti-inflammatory drugs as anticancer agents: Mechanistic, pharmacologic, and clinical issues. J. Natl. Cancer Inst. 2002 94 4 252 266 10.1093/jnci/94.4.252 11854387
    [Google Scholar]
  31. Langman M.J.S. Cheng K.K. Gilman E.A. Lancashire R.J. Effect of anti-inflammatory drugs on overall risk of common cancer: Case-control study in general practice research database. BMJ 2000 320 7250 1642 1646 10.1136/bmj.320.7250.1642 10856067
    [Google Scholar]
  32. Abbas M.A. Disi A.M. Taha M.O. Sunitinib as an anti-endometriotic agent. Eur. J. Pharm. Sci. 2013 49 4 732 736 10.1016/j.ejps.2013.05.021 23747661
    [Google Scholar]
  33. Emond J.P. Caron P. Pušić M. Circulating estradiol and its biologically active metabolites in endometriosis and in relation to pain symptoms. Front. Endocrinol. 2023 13 1034614 10.3389/fendo.2022.1034614 36743927
    [Google Scholar]
  34. Tan Y. Zhang C. Zhang Y. Combination of ferulic acid, ligustrazine and tetrahydropalmatine inhibits invasion and metastasis through MMP/TIMP signaling in endometriosis. PeerJ 2021 9 e11664 10.7717/peerj.11664 34249506
    [Google Scholar]
  35. Herszényi L. Hritz I. Lakatos G. Varga M. Tulassay Z. The behavior of matrix metalloproteinases and their inhibitors in colorectal cancer. Int. J. Mol. Sci. 2012 13 10 13240 13263 10.3390/ijms131013240 23202950
    [Google Scholar]
  36. Kim Y.A. Kim J.Y. Kim M.R. Hwang K.J. Chang D.Y. Jeon M.K. Tumor necrosis factor-alpha-induced cyclooxygenase-2 overexpression in eutopic endometrium of women with endometriosis by stromal cell culture through nuclear factor-kappaB activation. J. Reprod. Med. 2009 54 10 625 630 20677482
    [Google Scholar]
  37. Chen D.B. Yang Z.M. Le S-P. Harper M.J.K. Harper M.J. Stimulation of prostaglandin (PG) F2α and PGE2 release by tumour necrosis factor-α and interleukin-1α in cultured human luteal phase endometrial cells. Hum. Reprod. 1995 10 10 2773 2780 10.1093/oxfordjournals.humrep.a135790 8567812
    [Google Scholar]
  38. Othman E.R. Markeb A.A. Khashbah M.Y. Markers of local and systemic estrogen metabolism in endometriosis. Reprod. Sci. 2021 28 4 1001 1011 10.1007/s43032‑020‑00383‑4 33216295
    [Google Scholar]
  39. McCallion A. Nasirzadeh Y. Lingegowda H. Estrogen mediates inflammatory role of mast cells in endometriosis pathophysiology. Front. Immunol. 2022 13 961599 10.3389/fimmu.2022.961599 36016927
    [Google Scholar]
  40. Yang S. Wang H. Li D. Li M. An estrogen–NK cells regulatory axis in endometriosis, related infertility, and miscarriage. Int. J. Mol. Sci. 2024 25 6 3362 10.3390/ijms25063362 38542336
    [Google Scholar]
  41. Clemenza S. Vannuccini S. Ruotolo A. Capezzuoli T. Petraglia F. Advances in targeting estrogen synthesis and receptors in patients with endometriosis. Expert Opin. Investig. Drugs 2022 31 11 1227 1238 10.1080/13543784.2022.2152325 36529967
    [Google Scholar]
  42. Marquardt R.M. Kim T.H. Shin J.H. Jeong J.W. Progesterone and estrogen signaling in the endometrium: What goes wrong in endometriosis? Int. J. Mol. Sci. 2019 20 15 3822 10.3390/ijms20153822 31387263
    [Google Scholar]
  43. Ścieżyńska A. Komorowski M. Soszyńska M. Malejczyk J. NK cells as potential targets for immunotherapy in endometriosis. J. Clin. Med. 2019 8 9 1468 10.3390/jcm8091468 31540116
    [Google Scholar]
  44. Attia G.R. Zeitoun K. Edwards D. Johns A. Carr B.R. Bulun S.E. Progesterone receptor isoform A but not B is expressed in endometriosis. J. Clin. Endocrinol. Metab. 2000 85 8 2897 2902 10.1210/jc.85.8.2897 10946900
    [Google Scholar]
  45. Bulun S.E. Zeitoun K.M. Takayama K. Sasano H. Estrogen biosynthesis in endometriosis: Molecular basis and clinical relevance. J. Mol. Endocrinol. 2000 25 1 35 42 10.1677/jme.0.0250035 10915216
    [Google Scholar]
  46. Meresman G.F. Vighi S. Buquet R.A. Contreras-Ortiz O. Tesone M. Rumi L.S. Apoptosis and expression of Bcl-2 and Bax in eutopic endometrium from women with endometriosis. Fertil. Steril. 2000 74 4 760 766 10.1016/S0015‑0282(00)01522‑3 11020520
    [Google Scholar]
  47. Gazvani R. Templeton A. Peritoneal environment, cytokines and angiogenesis in the pathophysiology of endometriosis. Reproduction 2002 123 2 217 226 10.1530/rep.0.1230217 11866688
    [Google Scholar]
  48. Borghese B. Mondon F. Noël J.C. Gene expression profile for ectopic versus eutopic endometrium provides new insights into endometriosis oncogenic potential. Mol. Endocrinol. 2008 22 11 2557 2562 10.1210/me.2008‑0322 18818281
    [Google Scholar]
  49. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 2002 29 6 15 18 10.1016/S0093‑7754(02)70065‑1 12516034
    [Google Scholar]
  50. Barros-Oliveira M.C. Costa-Silva D.R. Andrade D.B. Use of anastrozole in the chemoprevention and treatment of breast cancer: A literature review. Rev. Assoc. Med. Bras. 2017 63 4 371 378 10.1590/1806‑9282.63.04.371 28614542
    [Google Scholar]
  51. Amsterdam L.L. Gentry W. Jobanputra S. Wolf M. Rubin S.D. Bulun S.E. Anastrazole and oral contraceptives: A novel treatment for endometriosis. Fertil. Steril. 2005 84 2 300 304 10.1016/j.fertnstert.2005.02.018 16084868
    [Google Scholar]
  52. Goss P.E. Strasser K. Aromatase inhibitors in the treatment and prevention of breast cancer. J. Clin. Oncol. 2001 19 3 881 894 10.1200/JCO.2001.19.3.881 11157042
    [Google Scholar]
  53. Acién P. Velasco I. Acién M. Anastrozole and levonorgrestrel-releasing intrauterine device in the treatment of endometriosis: A randomized clinical trial. BMC Womens Health 2021 21 1 211 10.1186/s12905‑021‑01347‑9 34016111
    [Google Scholar]
  54. Bulun S.E. Zeitoun K.M. Takayama K. Sasano H. Molecular basis for treating endometriosis with aromatase inhibitors. Hum. Reprod. Update 2000 6 5 413 418 10.1093/humupd/6.5.413 11045871
    [Google Scholar]
  55. Acién P. Velasco I. Gutiérrez M. Martínez-Beltrán M. Aromatase expression in endometriotic tissues and its relationship to clinical and analytical findings. Fertil. Steril. 2007 88 1 32 38 10.1016/j.fertnstert.2006.11.188 17336977
    [Google Scholar]
  56. Velasco I. Acién P. Campos A. Acién M.I. Ruiz-Maciá E. Interleukin-6 and other soluble factors in peritoneal fluid and endometriomas and their relation to pain and aromatase expression. J. Reprod. Immunol. 2010 84 2 199 205 10.1016/j.jri.2009.11.004 20074813
    [Google Scholar]
  57. Tariverdian N. Theoharides T.C. Siedentopf F. Gutiérrez G. Jeschke U. Rabinovich G.A. Neuroendocrine-immune disequilibrium and endometriosis: An interdisciplinary approach. Semin. Immunopathol. 2007 29 2 193 210 10.1007/s00281‑007‑0077‑0 17621704
    [Google Scholar]
  58. Leelakanok N. Methaneethorn J. A systematic review and meta-analysis of the adverse effects of levonorgestrel emergency oral contraceptive. Clin. Drug Investig. 2020 40 5 395 420 10.1007/s40261‑020‑00901‑x 32162237
    [Google Scholar]
  59. Hefler L.A. Grimm C. van Trotsenburg M. Nagele F. Role of the vaginally administered aromatase inhibitor anastrozole in women with rectovaginal endometriosis: A pilot study. Fertil. Steril. 2005 84 4 1033 1036 10.1016/j.fertnstert.2005.04.059 16213868
    [Google Scholar]
  60. Altintas D. Kokcu A. Kandemir B. Tosun M. Cetinkaya M.B. Comparison of the effects of raloxifene and anastrozole on experimental endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2010 150 1 84 87 10.1016/j.ejogrb.2010.02.004 20188455
    [Google Scholar]
  61. Ngô C. Nicco C. Leconte M. Chéreau C. Weill B. Batteux F. Antiproliferative effects of anastrozole, methotrexate, and 5-fluorouracil on endometriosis in vitro and in vivo. Fertil. Steril. 2010 94 5 1632 1638 10.1016/j.fertnstert.2009.09.031 20045515
    [Google Scholar]
  62. Dellapasqua S. Colleoni M. Letrozole. Expert Opin. Drug Metab. Toxicol. 2010 6 2 251 259 10.1517/17425250903540246 20095792
    [Google Scholar]
  63. Dixon J.M. Renshaw L. Langridge C. Anastrozole and letrozole: An investigation and comparison of quality of life and tolerability. Breast Cancer Res. Treat. 2011 125 3 741 749 10.1007/s10549‑010‑1091‑9 20821047
    [Google Scholar]
  64. Attar E. Bulun S.E. Aromatase inhibitors: The next generation of therapeutics for endometriosis? Fertil. Steril. 2006 85 5 1307 1318 10.1016/j.fertnstert.2005.09.064 16647373
    [Google Scholar]
  65. Madny E.H. Efficacy of letrozole in treatment of endometriosis-related pain. Middle East Fertil. Soc. J. 2014 19 1 64 68 10.1016/j.mefs.2013.04.007
    [Google Scholar]
  66. Abu Hashim H. El Rakhawy M. Abd Elaal I. Expression of concern: Randomized comparison of superovulation with letrozole vs. clomiphene citrate in an IUI program for women with recently surgically treated minimal to mild endometriosis. Acta Obstet. Gynecol. Scand. 2012 91 3 338 345 10.1111/j.1600‑0412.2011.01346.x 22181973
    [Google Scholar]
  67. Zhou L. Fu J. Liu D. Ovulation induction with clomiphene citrate or letrozole following laparoscopy in infertile women with minimal to mild endometriosis: A prospective randomised controlled trial. J. Obstet. Gynaecol. 2022 42 2 316 321 10.1080/01443615.2021.1904224 34020578
    [Google Scholar]
  68. Ailawadi R.K. Jobanputra S. Kataria M. Gurates B. Bulun S.E. Treatment of endometriosis and chronic pelvic pain with letrozole and norethindrone acetate: A pilot study. Fertil. Steril. 2004 81 2 290 296 10.1016/j.fertnstert.2003.09.029 14967362
    [Google Scholar]
  69. Roghaei M.A. Ghasemi Tehrany H. Taherian A. Koleini N. Effects of letrozole compared with danazol on patients with confirmed endometriosis: A randomized clinical trial. Int. J. Fertil. Steril. 2010 4 2 67 72 10.22074/ijfs.2010.45826
    [Google Scholar]
  70. Almassinokiani F. Almasi A. Akbari P. Saberifard M. Effect of Letrozole on endometriosis-related pelvic pain. Med. J. Islam. Repub. Iran 2014 28 107 25664308
    [Google Scholar]
  71. Mehakar S. More A. Dutta S. Jadhav R. Chaudhari N. Shaikh R. Case Report: Implication of antiangiogenic therapy (bevacizumab) along with dichloroacetate therapy on endometriosis patient seeking infertility treatment. F1000 Res. 2023 12 1169 10.12688/f1000research.141510.1
    [Google Scholar]
  72. Mojtahedi M.F. Moini A. Kashani L. Mirzarahimi T. The effect of letrozole as an adjunct in GnRH-antagonist protocol on IVF/ICSI outcome in women with endometriosis: A randomized clinical trial. Middle East Fertil. Soc. J. 2023 28 1 26 10.1186/s43043‑023‑00153‑7
    [Google Scholar]
  73. Sun S. Zhang H. Zhong P. Xu Z. The effect of letrozole combined with dydrogesterone for endometriosis in China: A meta‐analysis. BioMed Res. Int. 2021 2021 1 9946060 10.1155/2021/9946060 34901283
    [Google Scholar]
  74. Fu J. Song H. Zhou M. Progesterone receptor modulators for endometriosis. Cochrane Database Syst. Rev. 2017 7 7 CD009881 28742263
    [Google Scholar]
  75. Nabieva N. Fehm T. Häberle L. Influence of side-effects on early therapy persistence with letrozole in post-menopausal patients with early breast cancer: Results of the prospective EvAluate-TM study. Eur. J. Cancer 2018 96 82 90 10.1016/j.ejca.2018.03.020 29679775
    [Google Scholar]
  76. Peitsidis P. Tsikouras P. Laganà A.S. Laios A. Gkegkes I.D. Iavazzo C. A systematic review of systematic reviews on the use of aromatase inhibitors for the treatment of endometriosis: The evidence to date. Drug Des. Devel. Ther. 2023 17 1329 1346 10.2147/DDDT.S315726 37168488
    [Google Scholar]
  77. Rody A. Loibl S. von Minckwitz G. Kaufmann M. Use of goserelin in the treatment of breast cancer. Expert Rev. Anticancer Ther. 2005 5 4 591 604 10.1586/14737140.5.4.591 16111461
    [Google Scholar]
  78. Moghissi K.S. Schlaff W.D. Olive D.L. Skinner M.A. Yin H. Goserelin acetate (Zoladex) with or without hormone replacement therapy for the treatment of endometriosis. Fertil. Steril. 1998 69 6 1056 1062 10.1016/S0015‑0282(98)00086‑7 9627292
    [Google Scholar]
  79. Wallach E.E. Surrey E.S. Steroidal and nonsteroidal “add-back” therapy: Extending safety and efficacy of gonadotropin-releasing hormone agonists in the gynecologic patient. Fertil. Steril. 1995 64 4 673 685 10.1016/S0015‑0282(16)57837‑6 7672133
    [Google Scholar]
  80. Soysal S. Soysal M.E. Ozer S. Gul N. Gezgin T. The effects of post-surgical administration of goserelin plus anastrozole compared to goserelin alone in patients with severe endometriosis: A prospective randomized trial. Hum. Reprod. 2004 19 1 160 167 10.1093/humrep/deh035 14688176
    [Google Scholar]
  81. Lang J. Zhou Y. Leng J. Zheng J. Guan Z. Fang X. Efficacy of goserelin for post-operative treatment in Chinese patients with moderate to severe endometriosis: An observational, multicentre, open-label, non-interventional study. Asian J. Pharm. Clin. Res. 2015 8 2 291 295
    [Google Scholar]
  82. Surrey E.S. GnRH agonists in the treatment of symptomatic endometriosis: A review. F S Rep 2023 4 2 40 45 10.1016/j.xfre.2022.11.009 37223763
    [Google Scholar]
  83. Huiling W. Ning M. Lei Q. Jun Y. Zhengfang W. Clinical observation of goserelin combined with estradiol valerate in the treatment of endometriosis in patients of childbearing age after laparoscopic surgery. China Pharmacy 2024 35 14 1748 1752 10.6039/j.issn.1001‑0408.2024.14.13
    [Google Scholar]
  84. Qing X. He L. Ma Y. Zhang Y. Zheng W. Systematic review and meta-analysis on the effect of adjuvant gonadotropin-releasing hormone agonist (GnRH-a) on pregnancy outcomes in women with endometriosis following conservative surgery. BMC Pregnancy Childbirth 2024 24 1 237 10.1186/s12884‑024‑06430‑1 38575880
    [Google Scholar]
  85. Ranjbarvan P. Khazaei F. Chobsaz F. Khazaei M. Comparison of raloxifene effect on the growth and angiogenesis of human endometrium of healthy and endometriosis subjects: An in vitro three-dimensional tissue culture model. J. Endometr. Pelvic Pain Disord. 2021 13 3 178 184 10.1177/22840265211018310
    [Google Scholar]
  86. Kalidas M. Hilsenbeck S. Brown P. Defining the role of raloxifene for the prevention of breast cancer. Oxford University Press 2004 1731 1733
    [Google Scholar]
  87. Fontana A. Delmas P.D. Clinical use of selective estrogen receptor modulators. Curr. Opin. Rheumatol. 2001 13 4 333 339 10.1097/00002281‑200107000‑00016 11555738
    [Google Scholar]
  88. Somigliana E. Chiodini A. Odorizzi M.P. Pompei F. Viganò P. The therapy of endometriosis. New prospects. Minerva Ginecol. 2003 55 1 15 23 12598839
    [Google Scholar]
  89. Goldstein S.R. Siddhanti S. Ciaccia A.V. Plouffe L. A pharmacological review of selective oestrogen receptor modulators. Hum. Reprod. Update 2000 6 3 212 224 10.1093/humupd/6.3.212 10874566
    [Google Scholar]
  90. Grow DR Reece MT The role of selective oestrogen receptor modulators in the treatment of endometrial bleeding in women using long-acting progestin contraception. Hum Reprod 2000 15 30 38.(Suppl. 3) 10.1093/humrep/15.suppl_3.30 11041219
    [Google Scholar]
  91. Stratton P. Sinaii N. Segars J. Return of chronic pelvic pain from endometriosis after raloxifene treatment: A randomized controlled trial. Obstet. Gynecol. 2008 111 1 88 96 10.1097/01.AOG.0000297307.35024.b5 18165396
    [Google Scholar]
  92. Cho Y.H. Um M.J. Kim S.J. Kim S.A. Jung H. Raloxifene administration in women treated with long term gonadotropin-releasing hormone agonist for severe endometriosis: Effects on bone mineral density. J. Menopausal Med. 2016 22 3 174 179 10.6118/jmm.2016.22.3.174 28119898
    [Google Scholar]
  93. Donnez J. Dolmans M.M. GnRH antagonists with or without add-back therapy: A new alternative in the management of endometriosis? Int. J. Mol. Sci. 2021 22 21 11342 10.3390/ijms222111342 34768770
    [Google Scholar]
  94. Rohatgi N. Blau R. Lower E.E. Raloxifene is associated with less side effects than tamoxifen in women with early breast cancer: A questionnaire study from one physician’s practice. J. Womens Health Gend. Based Med. 2002 11 3 291 301 10.1089/152460902753668484 11988138
    [Google Scholar]
  95. Zani A.C.T. Valerio F.P. Meola J. Impact of bevacizumab on experimentally induced endometriotic lesions: angiogenesis, invasion, apoptosis, and cell proliferation. Reprod. Sci. 2020 27 10 1943 1950 10.1007/s43032‑020‑00213‑7 32542537
    [Google Scholar]
  96. Liu S. Xin X. Hua T. Efficacy of anti-VEGF/VEGFR agents on animal models of endometriosis: A systematic review and meta-analysis. PLoS One 2016 11 11 e0166658 10.1371/journal.pone.0166658 27855197
    [Google Scholar]
  97. Bouquet de Joliniere J. Fruscalzo A. Khomsi F. Antiangiogenic therapy as a new strategy in the treatment of endometriosis? The first case report. Front. Surg. 2021 8 791686 10.3389/fsurg.2021.791686 34938768
    [Google Scholar]
  98. Lee S.P. Hsu H.C. Tai Y.J. Bevacizumab dose affects the severity of adverse events in gynecologic malignancies. Front. Pharmacol. 2019 10 426 10.3389/fphar.2019.00426 31105567
    [Google Scholar]
  99. Coleman R.L. Brady M.F. Herzog T.J. Bevacizumab and paclitaxel-carboplatin chemotherapy and secondary cytoreduction in recurrent, platinum-sensitive ovarian cancer (NRG Oncology/] Gynecologic Oncology Group study GOG-0213): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2017 18 6 779 791 10.1016/S1470‑2045(17)30279‑6 28438473
    [Google Scholar]
  100. Shord S.S. Bressler L.R. Tierney L.A. Cuellar S. George A. Understanding and managing the possible adverse effects associated with bevacizumab. Am. J. Health Syst. Pharm. 2009 66 11 999 1013 10.2146/ajhp080455 19451611
    [Google Scholar]
  101. Amano Y. Lee S.W. Allison A.C. Inhibition by glucocorticoids of the formation of interleukin-1 alpha, interleukin-1 beta, and interleukin-6: Mediation by decreased mRNA stability. Mol. Pharmacol. 1993 43 2 176 182 10.1016/S0026‑895X(25)13597‑9 8429822
    [Google Scholar]
  102. Crinelli R. Antonelli A. Bianchi M. Gentilini L. Scaramucci S. Magnani M. Selective inhibition of NF-kB activation and TNF-α production in macrophages by red blood cell-mediated delivery of dexamethasone. Blood Cells Mol. Dis. 2000 26 3 211 222 10.1006/bcmd.2000.0298 10950941
    [Google Scholar]
  103. Portnow J. Suleman S. Grossman S.A. Eller S. Carson K. A cyclooxygenase-2 (COX-2) inhibitor compared with dexamethasone in a survival study of rats with intracerebral 9L gliosarcomas. Neuro-oncol. 2002 4 1 22 25 10.1215/15228517‑4‑1‑22 11772429
    [Google Scholar]
  104. Ozaki T. Habara K. Matsui K. Dexamethasone inhibits the induction of inos gene expression through destabilization of its mRNA in proinflammatory cytokine-stimulated hepatocytes. Shock 2010 33 1 64 69 10.1097/SHK.0b013e3181a7fd74 19373131
    [Google Scholar]
  105. Almawi W.Y. Melemedjian O.K. Molecular mechanisms of glucocorticoid antiproliferative effects: antagonism of transcription factor activity by glucocorticoid receptor. J. Leukoc. Biol. 2002 71 1 9 15 10.1189/jlb.71.1.9 11781376
    [Google Scholar]
  106. Kassel O. Sancono A. Krätzschmar J. Kreft B. Stassen M. Cato A.C. Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1. EMBO J. 2001 20 24 7108 7116 10.1093/emboj/20.24.7108 11742987
    [Google Scholar]
  107. De Rossi A. Rossi L. Laudisi A. Focus on fotemustine. J. Exp. Clin. Cancer Res. 2006 25 4 461 468 17310834
    [Google Scholar]
  108. Paoletti P. Butti G. Knerich R. Gaetani P. Assietti R. Chemotherapy for malignant gliomas of the brain: A review of ten-years experience. Acta Neurochir. 1990 103 1-2 35 46 10.1007/BF01420190 2360465
    [Google Scholar]
  109. Kula M. Tanriverdi G. Oksuz E. Bilir A. Shahzadi A. Yazici Z. Simvastatin and dexamethasone potentiate antitumor activity of fotemustine. Int. J. Pharmacol. 2014 10 5 267 274 10.3923/ijp.2014.267.274
    [Google Scholar]
  110. Khalil Z. Pageot N. Carlander B. Guillot B. Neurological toxicity during metastatic melanoma treatment with fotemustine. Melanoma Res. 2005 15 6 563 564 10.1097/00008390‑200512000‑00014 16314745
    [Google Scholar]
  111. Zhang C. Zhang Y. Pan H. Combination of ferulic acid, ligustrazine and tetrahydropalmatine attenuates epithelial-mesenchymal transformation via Wnt/β-catenin pathway in endometriosis. Int. J. Biol. Sci. 2021 17 10 2449 2460 10.7150/ijbs.60167 34326686
    [Google Scholar]
  112. Zhang X. Lin D. Jiang R. Li H. Wan J. Li H. Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transition. Oncol. Rep. 2016 36 1 271 278 10.3892/or.2016.4804 27177074
    [Google Scholar]
  113. Chen Y. Wei J. Zhang Y. Anti-endometriosis mechanism of Jiawei Foshou San based on network pharmacology. Front. Pharmacol. 2018 9 811 10.3389/fphar.2018.00811 30093862
    [Google Scholar]
  114. Dai X. Wei Q. Guo X. Ferulic acid, ligustrazine, and tetrahydropalmatine display the anti-proliferative effect in endometriosis through regulating Notch pathway. Life Sci. 2023 328 121921 10.1016/j.lfs.2023.121921 37429417
    [Google Scholar]
  115. Barra F. Perrone U. Ferrero S. Gustavino C. Bogliolo S. Izzotti A. Rituximab for endometriosis: Unlikely translatability from oncology due to safety concerns? J. Reprod. Immunol. 2023 158 103967 10.1016/j.jri.2023.103967 37229887
    [Google Scholar]
  116. Dogan A.C. Dogan M. Togrul C. Ozkan N.T. The effects of Rituximab on experimental endometriosis model in rats. J. Reprod. Immunol. 2023 156 103814 10.1016/j.jri.2023.103814 36773495
    [Google Scholar]
  117. Van Der Kolk L.E. Grillo-López A.J. Baars J.W. Hack C.E. Van Oers M.H.J. Complement activation plays a key role in the side‐effects of rituximab treatment. Br. J. Haematol. 2001 115 4 807 811 10.1046/j.1365‑2141.2001.03166.x 11843813
    [Google Scholar]
  118. Leandro M.J. Edwards J.C.W. Cambridge G. Clinical outcome in 22 patients with rheumatoid arthritis treated with B lymphocyte depletion. Ann. Rheum. Dis. 2002 61 10 883 888 10.1136/ard.61.10.883 12228157
    [Google Scholar]
  119. Edwards J.C.W. Cambridge G. Sustained improvement in rheumatoid arthritis following a protocol designed to deplete B lymphocytes. Rheumatology 2001 40 2 205 211 10.1093/rheumatology/40.2.205 11257159
    [Google Scholar]
  120. Edwards J.C.W. Szczepański L. Szechiński J. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 2004 350 25 2572 2581 10.1056/NEJMoa032534 15201414
    [Google Scholar]
  121. Petrović M. Todorović D. Biochemical and molecular mechanisms of action of cisplatin in cancer cells. Med. Biol. 2016 18 1 12 18
    [Google Scholar]
  122. Li Z. Liu H. Lang J. Zhang G. He Z. Effects of cisplatin on surgically induced endometriosis in a rat model. Oncol. Lett. 2018 16 4 5282 5290 10.3892/ol.2018.9275 30250597
    [Google Scholar]
  123. Simpson D. Curran M.P. Perry C.M. Letrozole. Drugs 2004 64 11 1213 1230 10.2165/00003495‑200464110‑00005 15161328
    [Google Scholar]
  124. Li Z. Liu H. He Z. Zhang G. Lang J. Effects of cisplatin and letrozole on surgically induced endometriosis and comparison of the two medications in a rat model. Eur. J. Pharm. Sci. 2016 93 132 140 10.1016/j.ejps.2016.07.018 27481456
    [Google Scholar]
  125. Nematbakhsh M. Ashrafi F. Pezeshki Z. A histopathological study of nephrotoxicity, hepatoxicity or testicular toxicity: Which one is the first observation as side effect of Cisplatin-induced toxicity in animal model? J. Nephropathol. 2012 1 3 190 193 10.5812/nephropathol.8122 24475415
    [Google Scholar]
  126. Cherry S.M. Hunt P.A. Hassold T.J. Cisplatin disrupts mammalian spermatogenesis, but does not affect recombination or chromosome segregation. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2004 564 2 115 128 10.1016/j.mrgentox.2004.08.010 15507376
    [Google Scholar]
  127. Zhang X. Yamamoto N. Soramoto S. Takenaka I. Cisplatin-induced germ cell apoptosis in mouse testes. Arch. Androl. 2001 46 1 43 49 10.1080/01485010150211146 11204616
    [Google Scholar]
  128. Huddart R.A. Titley J. Robertson D. Williams G.T. Horwich A. Cooper C.S. Programmed cell death in response to chemotherapeutic agents in human germ cell tumour lines. Eur. J. Cancer 1995 31 5 739 746 10.1016/0959‑8049(95)00047‑M 7640048
    [Google Scholar]
  129. Pont J. Albrecht W. Fertility after chemotherapy for testicular germ cell cancer. Fertil. Steril. 1997 68 1 1 5 10.1016/S0015‑0282(97)81465‑3 9207575
    [Google Scholar]
  130. Sawhney P. Giammona C.J. Meistrich M.L. Richburg J.H. Cisplatin-induced long-term failure of spermatogenesis in adult C57/Bl/6J mice. J. Androl. 2005 26 1 136 145 10.1002/j.1939‑4640.2005.tb02883.x 15611578
    [Google Scholar]
  131. Martins N.M. Santos N.A.G. Curti C. Bianchi M.L.P. Santos A.C. Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver. J. Appl. Toxicol. 2008 28 3 337 344 10.1002/jat.1284 17604343
    [Google Scholar]
  132. Nematbakhsh M. Ashrafi F. Safari T. Administration of vitamin E and losartan as prophylaxes in cisplatin-induced nephrotoxicity model in rats. J. Nephrol. 2012 25 3 410 417 10.5301/jn.5000018 21928232
    [Google Scholar]
  133. Liu X. Li J. Li Q. Ai Y. Zhang L. Protective effects of ligustrazine on cisplatin-induced oxidative stress, apoptosis and nephrotoxicity in rats. Environ. Toxicol. Pharmacol. 2008 26 1 49 55 10.1016/j.etap.2008.01.006 21783887
    [Google Scholar]
  134. Santos N.A.G. Bezerra C.S.C. Martins N.M. Curti C. Bianchi M.L.P. Santos A.C. Hydroxyl radical scavenger ameliorates cisplatin-induced nephrotoxicity by preventing oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Cancer Chemother. Pharmacol. 2007 61 1 145 155 10.1007/s00280‑007‑0459‑y 17396264
    [Google Scholar]
  135. Santos N.A.G. Catão C.S. Martins N.M. Curti C. Bianchi M.L.P. Santos A.C. Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Arch. Toxicol. 2007 81 7 495 504 10.1007/s00204‑006‑0173‑2 17216432
    [Google Scholar]
  136. Oun R. Moussa Y.E. Wheate N.J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans. 2018 47 19 6645 6653 10.1039/C8DT00838H 29632935
    [Google Scholar]
  137. He Y. Hung S.W. Liang B. Receptor tyrosine kinase inhibitor sunitinib as novel immunotherapy to inhibit myeloid-derived suppressor cells for treatment of endometriosis. Front. Immunol. 2021 12 641206 10.3389/fimmu.2021.641206 34367125
    [Google Scholar]
  138. Pala H.G. Erbas O. Pala E.E. The effects of sunitinib on endometriosis. J. Obstet. Gynaecol. 2015 35 2 183 187 10.3109/01443615.2014.941345 25093747
    [Google Scholar]
  139. Faivre S. Demetri G. Sargent W. Raymond E. Molecular basis for sunitinib efficacy and future clinical development. Nat. Rev. Drug Discov. 2007 6 9 734 745 10.1038/nrd2380 17690708
    [Google Scholar]
  140. Li J. Abudula M. Fan X. Wang F. Chen Y. Liu L. Sunitinib induces primary ectopic endometrial cell apoptosis through up‐regulation of STAT1 in vitro. J. Clin. Lab. Anal. 2020 34 11 e23482 10.1002/jcla.23482 32761670
    [Google Scholar]
  141. Wang C.C. Xu H. Man G.C.W. Prodrug of green tea epigallocatechin-3-gallate (Pro-EGCG) as a potent anti-angiogenesis agent for endometriosis in mice. Angiogenesis 2013 16 1 59 69 10.1007/s10456‑012‑9299‑4 22948799
    [Google Scholar]
  142. Wang H.B. Leng J.H. Zhu L. Liu Z.F. Sun D.W. Lang J.H. The chick embryo chorioallantioc membrane as a model for in vivo research on anti-angiogenesis in endometriosis. Zhonghua Fu Chan Ke Za Zhi 2007 42 1 43 47 17331421
    [Google Scholar]
  143. Xu Z. Zhao F. Lin F. Chen J. Huang Y. Lipoxin A4 inhibits the development of endometriosis in mice: The role of anti-inflammation and anti-angiogenesis. Am. J. Reprod. Immunol. 2012 67 6 491 497 10.1111/j.1600‑0897.2011.01101.x 22229383
    [Google Scholar]
  144. Song W.W. Lu H. Hou W.J. Expression of vascular endothelial growth factor C and anti-angiogenesis therapy in endometriosis. Int. J. Clin. Exp. Pathol. 2014 7 11 7752 7759 25550812
    [Google Scholar]
  145. Yildiz C. Kacan T. Akkar O.B. Effects of pazopanib, sunitinib, and sorafenib, anti-vegf agents, on the growth of experimental endometriosis in rats. Reprod. Sci. 2015 22 11 1445 1451 10.1177/1933719115584448 25963915
    [Google Scholar]
  146. Aparicio-Gallego G. Blanco M. Figueroa A. New insights into molecular mechanisms of sunitinib-associated side effects. Mol. Cancer Ther. 2011 10 12 2215 2223 10.1158/1535‑7163.MCT‑10‑1124 22161785
    [Google Scholar]
  147. Ozer H. Boztosun A. Açmaz G. Atılgan R. Akkar O.B. Kosar M.I. The efficacy of bevacizumab, sorafenib, and retinoic acid on rat endometriosis model. Reprod. Sci. 2013 20 1 26 32 10.1177/1933719112452941 22895024
    [Google Scholar]
  148. Zhang H. Ding S. Xia L. Ligustrazine inhibits the proliferation and migration of ovarian cancer cells via regulating miR-211. Biosci. Rep. 2021 41 1 BSR20200199 10.1042/BSR20200199 33245099
    [Google Scholar]
  149. Jiang G-Q. Pan J. Shang J-F. Yang Z.X. Ligustrazine induces apoptosis of breast cancer cells in vitro and in vivo. J. Cancer Res. Ther. 2015 11 2 454 458 10.4103/0973‑1482.147378 26148617
    [Google Scholar]
  150. Xie H.J. Zhao J. Zhuo-Ma D. Zhan-Dui N. Er-Bu A. Tsering T. Inhibiting tumour metastasis by DQA modified paclitaxel plus ligustrazine micelles in treatment of non-small-cell lung cancer. Artif. Cells Nanomed. Biotechnol. 2019 47 1 3465 3477 10.1080/21691401.2019.1653900 31432702
    [Google Scholar]
  151. Zou Y. Zhao D. Yan C. Novel ligustrazine-based analogs of piperlongumine potently suppress proliferation and metastasis of colorectal cancer cells in vitro and in vivo. J. Med. Chem. 2018 61 5 1821 1832 10.1021/acs.jmedchem.7b01096 29424539
    [Google Scholar]
  152. Cheng L. Ma H. Shao M. Synthesis of folate-chitosan nanoparticles loaded with ligustrazine to target folate receptor positive cancer cells. Mol. Med. Rep. 2017 16 2 1101 1108 10.3892/mmr.2017.6740 28627615
    [Google Scholar]
  153. Chen J. Wang W. Wang H. Liu X. Guo X. Combination treatment of ligustrazine piperazine derivate DLJ14 and adriamycin inhibits progression of resistant breast cancer through inhibition of the EGFR/PI3K/Akt survival pathway and induction of apoptosis. Drug Discov. Ther. 2014 8 1 33 41 10.5582/ddt.8.33 24647156
    [Google Scholar]
  154. Zha G.F. Qin H.L. Youssif B.G.M. Discovery of potential anticancer multi-targeted ligustrazine based cyclohexanone and oxime analogs overcoming the cancer multidrug resistance. Eur. J. Med. Chem. 2017 135 34 48 10.1016/j.ejmech.2017.04.025 28431353
    [Google Scholar]
  155. Ai Y. Zhu B. Ren C. Discovery of new monocarbonyl ligustrazine-curcumin hybrids for intervention of drug-sensitive and drug-resistant lung cancer. J. Med. Chem. 2016 59 5 1747 1760 10.1021/acs.jmedchem.5b01203 26891099
    [Google Scholar]
  156. Hu Y. Wang A. Chen J. Chen H. Ligustrazine: A review of its role and mechanism in the treatment of obstetrical and gynecological diseases. Clin. Exp. Obstet. Gynecol. 2023 50 8 164 10.31083/j.ceog5008164
    [Google Scholar]
  157. Feng Y. Dong H. Zheng L. Ligustrazine inhibits inflammatory response of human endometrial stromal cells through the STAT3/IGF2BP1/RELA axis. Pharm. Biol. 2023 61 1 666 673 10.1080/13880209.2023.2195883 37095705
    [Google Scholar]
  158. Yu T. Guo X. Zhang Z. Meta‐analysis of the clinical effectiveness and safety of ligustrazine in cerebral infarction. Evid. Based Complement. Alternat. Med. 2016 2016 1 3595946 10.1155/2016/3595946 27738442
    [Google Scholar]
  159. Olusegun S.J. Souza G.O. Sutuła S. Methotrexate anti-cancer drug removal using Gd-doped Fe3O4: Adsorption mechanism, thermal desorption and reusability. Groundw. Sustain. Dev. 2024 25 101103 10.1016/j.gsd.2024.101103
    [Google Scholar]
  160. Saland J. Leavey P. Bash R. Hansch E. Arbus G. Quigley R. Effective removal of methotrexate by high-flux hemodialysis. Pediatr. Nephrol. 2002 17 10 825 829 10.1007/s00467‑002‑0946‑7 12376811
    [Google Scholar]
  161. Ahmadijokani F. Tajahmadi S. Rezakazemi M. Aluminum-based metal-organic frameworks for adsorptive removal of anti-cancer (methotrexate) drug from aqueous solutions. J. Environ. Manage. 2021 277 111448 10.1016/j.jenvman.2020.111448 33254841
    [Google Scholar]
  162. Lutterbeck C.A. Baginska E. Machado Ê.L. Kümmerer K. Removal of the anti-cancer drug methotrexate from water by advanced oxidation processes: Aerobic biodegradation and toxicity studies after treatment. Chemosphere 2015 141 290 296 10.1016/j.chemosphere.2015.07.069 26298026
    [Google Scholar]
  163. Avila-Tavares R. Gibran L. Brito L.G.O. Pilot study of treatment of patients with deep infiltrative endometriosis with methotrexate carried in lipid nanoparticles. Arch. Gynecol. Obstet. 2023 309 2 659 667 10.1007/s00404‑023‑07246‑8 37987824
    [Google Scholar]
  164. Griffiths C.E. Clark C.M. Chalmers R.J. Williams, Williams HC. A systematic review of treatments for severe psoriasis. Health Technol. Assess. 2000 4 40 1 125 10.3310/hta4400 11207450
    [Google Scholar]
  165. Ameen M. Taylor D.A. Williams I.P. Wells A.U. Barker J.N.W.N. Pneumonitis complicating methotrexate therapy for pustular psoriasis. J. Eur. Acad. Dermatol. Venereol. 2001 15 3 247 249 10.1046/j.1468‑3083.2001.t01‑1‑00223.x 11683290
    [Google Scholar]
  166. Zonneveld I.M. Bakker W.K. Dijkstra P.F. Bos J.D. van Soesbergen R.M. Dinant H.J. Methotrexate osteopathy in long-term, low-dose methotrexate treatment for psoriasis and rheumatoid arthritis. Arch. Dermatol. 1996 132 2 184 187 10.1001/archderm.1996.03890260086013 8629827
    [Google Scholar]
  167. Bottomley W.W. Goodfield M. Methotrexate for the treatment of severe mucocutaneous lupus erythematosus. Br. J. Dermatol. 1995 133 2 311 314 10.1111/j.1365‑2133.1995.tb02637.x 7547406
    [Google Scholar]
  168. Hamed K.M. Dighriri I.M. Baomar A.F. Overview of methotrexate toxicity: A comprehensive literature review. Cureus 2022 14 9 e29518 10.7759/cureus.29518 36312688
    [Google Scholar]
  169. Roenigk H.H. Auerbach R. Maibach H.I. Weinstein G.D. Methotrexate in psoriasis: Revised guidelines. J. Am. Acad. Dermatol. 1988 19 1 145 156 10.1016/S0190‑9622(88)80237‑8 3042816
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128387356250720042300
Loading
/content/journals/cpd/10.2174/0113816128387356250720042300
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Endometriosis ; tumor ; infertility ; malignancy ; estrogen ; proliferation ; pelvic pain
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test