Skip to content
2000
image of From Discovery to the Future Medical Applications of Venom-derived Analgesic Peptides for the Treatment of Peripheral Pains

Abstract

Despite the availability of current peripheral pain medications, patients continue to experience acute pain and often need more potent analgesic options. As a result, the discovery of novel molecules is of significant importance. In recent years, the functional properties of peptides have opened new possibilities for pain treatment. This review explores the peptides derived from venoms that target peripheral pain pathways, while briefly investigating the peptides involved in the pathophysiology of peripheral pain. Key peripheral pain receptors include transient receptor potential vanilloid 1 and 2 (TRPV1 and TRPV2), voltage-gated calcium (Ca++), sodium (Na+), and potassium (K+) channels, as well as acid-sensing ion channels (ASICs). Venoms have shown remarkable potential as a source of new therapeutic molecules. Among venomous creatures, cone snails, snakes, sea anemones, tarantulas, scorpions, and spiders are known to possess analgesic peptides. These peptides exert their pain-relieving effects by influencing ion channels and other receptors. Recent studies have investigated the mechanisms of peptides isolated from venoms in various types of pain. These peptides exhibit robust analgesic effects in animal models. This study demonstrates that analgesic peptides derived from venom effectively reduce peripheral pain intensity, presenting promising new molecules for potential medical applications in peripheral pain management.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128368659250805054737
2025-08-26
2025-10-18
Loading full text...

Full text loading...

References

  1. Reddi D. Curran N. Stephens R. An introduction to pain pathways and mechanisms. Br. J. Hosp. Med. 2013 74 Suppl. 12 C188 C191 10.12968/hmed.2013.74.sup12.c188
    [Google Scholar]
  2. Raja S.N. Carr D.B. Cohen M. The revised international association for the study of pain definition of pain: Concepts, challenges, and compromises. Pain 2020 161 9 1976 1982 10.1097/j.pain.0000000000001939 32694387
    [Google Scholar]
  3. Yam M.F. Loh Y.C. Tan C.S. Khadijah Adam S. Abdul Manan N. Basir R. General pathways of pain sensation and the major neurotransmitters involved in pain regulation. Int. J. Mol. Sci. 2018 19 8 2164 10.3390/ijms19082164 30042373
    [Google Scholar]
  4. Feizerfan A. Sheh G. Transition from acute to chronic pain. Contin. Educ. Anaesth. Crit. Care Pain 2015 15 2 98 102 10.1093/bjaceaccp/mku044
    [Google Scholar]
  5. Basbaum A.I. Bautista D.M. Scherrer G. Julius D. Cellular and molecular mechanisms of pain. Cell 2009 139 2 267 284 10.1016/j.cell.2009.09.028 19837031
    [Google Scholar]
  6. Dubin A.E. Patapoutian A. Nociceptors: The sensors of the pain pathway. J. Clin. Invest. 2010 120 11 3760 3772 10.1172/JCI42843 21041958
    [Google Scholar]
  7. McMahon S. Bennett D. Bevan S. Inflammatory mediators and modulators of pain. Textbook of Pain. 5th ed Wall P.D. Melzack R. Edinburgh Elsevier Churchill Livingstone 2006 49 72
    [Google Scholar]
  8. DeMarco G.J. Nunamaker E.A. A review of the effects of pain and analgesia on immune system function and inflammation: Relevance for preclinical studies. Comp. Med. 2019 69 6 520 534 10.30802/AALAS‑CM‑19‑000041 31896389
    [Google Scholar]
  9. Cho H. Yang Y.D. Lee J. The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nat. Neurosci. 2012 15 7 1015 1021 10.1038/nn.3111 22634729
    [Google Scholar]
  10. Julius D. Basbaum A.I. Molecular mechanisms of nociception. Nature 2001 413 6852 203 210 10.1038/35093019 11557989
    [Google Scholar]
  11. Bautista D.M. Siemens J. Glazer J.M. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 2007 448 7150 204 208 10.1038/nature05910 17538622
    [Google Scholar]
  12. Zimmermann K. Leffler A. Babes A. Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature 2007 447 7146 856 859 10.1038/nature05880 17568746
    [Google Scholar]
  13. Coste B. Mathur J. Schmidt M. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 2010 330 6000 55 60 10.1126/science.1193270 20813920
    [Google Scholar]
  14. Abd-Elsayed A. Deer T.R. Different types of pain. Cham Springer International Publishing 2019 10.1007/978‑3‑319‑99124‑5_3
    [Google Scholar]
  15. Schaible H.G. Ebersberger A. Natura G. Update on peripheral mechanisms of pain: Beyond prostaglandins and cytokines. Arthritis Res. Ther. 2011 13 2 210 10.1186/ar3305 21542894
    [Google Scholar]
  16. Koltzenburg M. Neural mechanisms of cutaneous nociceptive pain. Clin. J. Pain 2000 16 3 S131 S138 10.1097/00002508‑200009001‑00004 11014457
    [Google Scholar]
  17. Pethő G. Reeh P.W. Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors. Physiol. Rev. 2012 92 4 1699 1775 10.1152/physrev.00048.2010 23073630
    [Google Scholar]
  18. Mulcahy A.W. Hlávka J.P. Case S.R. Biosimilar cost savings in the United States: Initial experience and future potential. Rand Health Q. 2018 7 4 3 30083415
    [Google Scholar]
  19. Green G.A. Understanding NSAIDs: From aspirin to COX-2. Clin. Cornerstone 2001 3 5 50 59 10.1016/S1098‑3597(01)90069‑9 11464731
    [Google Scholar]
  20. Sinatra R. Role of COX-2 inhibitors in the evolution of acute pain management. J. Pain Symptom Manage. 2002 24 1 S18 S27 10.1016/S0885‑3924(02)00410‑4 12204484
    [Google Scholar]
  21. Congreve M. de Graaf C. Swain N.A. Tate C.G. Impact of GPCR structures on drug discovery. Cell 2020 181 1 81 91 10.1016/j.cell.2020.03.003 32243800
    [Google Scholar]
  22. Bisht T. Adhikari A. Patil S. Dhoundiyal S. Bioconjugation techniques for enhancing stability and targeting efficiency of protein and peptide therapeutics. Curr. Protein Pept. Sci. 2024 25 3 226 243 10.2174/0113892037268777231013154850 37921168
    [Google Scholar]
  23. Gach-Janczak K. Biernat M. Kuczer M. Adamska-Bartłomiejczyk A. Kluczyk A. Analgesic peptides: From natural diversity to rational design. Molecules 2024 29 7 1544 10.3390/molecules29071544 38611824
    [Google Scholar]
  24. Coulter-Parkhill A. McClean S. Gault V.A. Irwin N. Therapeutic potential of peptides derived from animal venoms: Current views and emerging drugs for diabetes. Clin. Med. Insights Endocrinol. Diabetes 2021 14 11795514211006071 10.1177/11795514211006071 34621137
    [Google Scholar]
  25. da Mata É.C.G. Mourão C.B.F. Rangel M. Schwartz E.F. Antiviral activity of animal venom peptides and related compounds. J. Venom. Anim. Toxins Incl. Trop. Dis. 2017 23 1 3 10.1186/s40409‑016‑0089‑0 28074089
    [Google Scholar]
  26. Bordon K.C.F. Cologna C.T. Fornari-Baldo E.C. From animal poisons and venoms to medicines: Achievements, challenges and perspectives in drug discovery. Front. Pharmacol. 2020 11 1132 10.3389/fphar.2020.01132 32848750
    [Google Scholar]
  27. Calvete J.J. Venomics: Integrative venom proteomics and beyond. Biochem. J. 2017 474 5 611 634 10.1042/BCJ20160577 28219972
    [Google Scholar]
  28. Lewis R.J. Garcia M.L. Therapeutic potential of venom peptides. Nat. Rev. Drug Discov. 2003 2 10 790 802 10.1038/nrd1197 14526382
    [Google Scholar]
  29. Craik D.J. Adams D.J. Chemical modification of conotoxins to improve stability and activity. ACS Chem. Biol. 2007 2 7 457 468 10.1021/cb700091j 17649970
    [Google Scholar]
  30. Tesauro D. Accardo A. Diaferia C. Peptide-based drug-delivery systems in biotechnological applications: Recent advances and perspectives. Molecules 2019 24 2 351 10.3390/molecules24020351 30669445
    [Google Scholar]
  31. Tyagi P. Pechenov S. Anand Subramony J. Oral peptide delivery: Translational challenges due to physiological effects. J. Control. Release 2018 287 167 176 10.1016/j.jconrel.2018.08.032 30145135
    [Google Scholar]
  32. Bruno B.J. Miller G.D. Lim C.S. Basics and recent advances in peptide and protein drug delivery. Ther. Deliv. 2013 4 11 1443 1467 10.4155/tde.13.104 24228993
    [Google Scholar]
  33. Zizzari A.T. Pliatsika D. Gall F.M. Fischer T. Riedl R. New perspectives in oral peptide delivery. Drug Discov. Today 2021 26 4 1097 1105 10.1016/j.drudis.2021.01.020 33497830
    [Google Scholar]
  34. Renukuntla J. Vadlapudi A.D. Patel A. Boddu S.H.S. Mitra A.K. Approaches for enhancing oral bioavailability of peptides and proteins. Int. J. Pharm. 2013 447 1-2 75 93 10.1016/j.ijpharm.2013.02.030 23428883
    [Google Scholar]
  35. Chen G. Kang W. Li W. Chen S. Gao Y. Oral delivery of protein and peptide drugs: From non-specific formulation approaches to intestinal cell targeting strategies. Theranostics 2022 12 3 1419 1439 10.7150/thno.61747 35154498
    [Google Scholar]
  36. Wijaya A. Maruf A. Wu W. Wang G. Recent advances in micro- and nano-bubbles for atherosclerosis applications. Biomater. Sci. 2020 8 18 4920 4939 10.1039/D0BM00762E 32931528
    [Google Scholar]
  37. Zhu Q. Chen Z. Paul P.K. Lu Y. Wu W. Qi J. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm. Sin. B 2021 11 8 2416 2448 10.1016/j.apsb.2021.04.001 34522593
    [Google Scholar]
  38. Lee S.H. Bajracharya R. Min J.Y. Han J.W. Park B.J. Han H.K. Strategic approaches for colon targeted drug delivery: An overview of recent advancements. Pharmaceutics 2020 12 1 68 10.3390/pharmaceutics12010068 31952340
    [Google Scholar]
  39. Mehrotra S. Kalyan Bg P. Nayak P.G. Joseph A. Manikkath J. Recent progress in the oral delivery of therapeutic peptides and proteins: Overview of pharmaceutical strategies to overcome absorption hurdles. Adv. Pharm. Bull. 2024 14 1 11 33 38585454
    [Google Scholar]
  40. Aungst B.J. Saitoh H. Burcham D.L. Huang S.M. Mousa S.A. Hussain M.A. Enhancement of the intestinal absorption of peptides and nonpeptides. J. Control. Release 1996 41 1-2 19 31 10.1016/0168‑3659(96)01353‑3
    [Google Scholar]
  41. Nakmode D.D. Singh B. Abdella S. Song Y. Garg S. Long-acting parenteral formulations of hydrophilic drugs, proteins, and peptide therapeutics: Mechanisms, challenges, and therapeutic benefits with a focus on technologies. Drug Deliv. Transl. Res. 2024 1 25 39661312
    [Google Scholar]
  42. Loeser J.D. Treede R.D. The Kyoto protocol of IASP basic pain terminology. Pain 2008 137 3 473 477 10.1016/j.pain.2008.04.025 18583048
    [Google Scholar]
  43. Butler M.S. Natural products to drugs: Natural product derived compounds in clinical trials. Nat. Prod. Rep. 2005 22 2 162 195 10.1039/b402985m 15806196
    [Google Scholar]
  44. Pennington M.W. Czerwinski A. Norton R.S. Peptide therapeutics from venom: Current status and potential. Bioorg. Med. Chem. 2018 26 10 2738 2758 10.1016/j.bmc.2017.09.029 28988749
    [Google Scholar]
  45. v V. Achar R.R. M U H. Venom peptides - A comprehensive translational perspective in pain management. Curr Res Toxicol 2021 2 329 40 10.1016/j.crtox.2021.09.001 34604795
    [Google Scholar]
  46. Konno K. Picolo G. Gutierrez V.P. Crotalphine, a novel potent analgesic peptide from the venom of the South American rattlesnake Crotalus durissus terrificus. Peptides 2008 29 8 1293 1304 10.1016/j.peptides.2008.04.003 18495297
    [Google Scholar]
  47. Machado F.C. Zambelli V.O. Fernandes A.C.O. Heimann A.S. Cury Y. Picolo G. Peripheral interactions between cannabinoid and opioid systems contribute to the antinociceptive effect of crotalphine. Br. J. Pharmacol. 2014 171 4 961 972 10.1111/bph.12488 24460677
    [Google Scholar]
  48. Bressan E. Touska F. Vetter I. Crotalphine desensitizes TRPA1 ion channels to alleviate inflammatory hyperalgesia. Pain 2016 157 11 2504 2516 10.1097/j.pain.0000000000000669 27434506
    [Google Scholar]
  49. Giardini A.C. Evangelista B.G. Sant’Anna M.B. Crotalphine attenuates pain and neuroinflammation induced by experimental autoimmune encephalomyelitis in mice. Toxins 2021 13 11 827 10.3390/toxins13110827 34822611
    [Google Scholar]
  50. Talavera K. Startek J.B. Alvarez-Collazo J. Mammalian transient receptor potential TRPA1 channels: From structure to disease. Physiol. Rev. 2020 100 2 725 803 10.1152/physrev.00005.2019 31670612
    [Google Scholar]
  51. Diochot S. Alloui A. Rodrigues P. Analgesic effects of mambalgin peptide inhibitors of acid-sensing ion channels in inflammatory and neuropathic pain. Pain 2016 157 3 552 559 10.1097/j.pain.0000000000000397 26492527
    [Google Scholar]
  52. Sun D. Yu Y. Xue X. Cryo-EM structure of the ASIC1a–mambalgin-1 complex reveals that the peptide toxin mambalgin-1 inhibits acid-sensing ion channels through an unusual allosteric effect. Cell Discov. 2018 4 1 27 10.1038/s41421‑018‑0026‑1 29872539
    [Google Scholar]
  53. Diochot S. Baron A. Salinas M. Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature 2012 490 7421 552 555 10.1038/nature11494 23034652
    [Google Scholar]
  54. Grishin E.V. Savchenko G.A. Vassilevski A.A. Novel peptide from spider venom inhibits P2X3 receptors and inflammatory pain. Ann. Neurol. 2010 67 5 680 683 10.1002/ana.21949 20437566
    [Google Scholar]
  55. Kabanova N.V. Vassilevski A.A. Rogachevskaja O.A. Modulation of P2X3 receptors by spider toxins. Biochim. Biophys. Acta Biomembr. 2012 1818 11 2868 2875 10.1016/j.bbamem.2012.07.016 22842000
    [Google Scholar]
  56. Diochot S. Pain-related toxins in scorpion and spider venoms: A face to face with ion channels. J. Venom. Anim. Toxins Incl. Trop. Dis. 2021 27 20210026 10.1590/1678‑9199‑jvatitd‑2021‑0026 34925480
    [Google Scholar]
  57. Zhang Y. Peng D. Huang B. Discovery of a novel Nav1.7 inhibitor from Cyriopagopus albostriatus venom with potent analgesic efficacy. Front. Pharmacol. 2018 9 1158 10.3389/fphar.2018.01158 30386239
    [Google Scholar]
  58. Zhang Y. Peng D. Zhang Q. µ-TRTX-Ca1a: A novel neurotoxin from Cyriopagopus albostriatus with analgesic effects. Acta Pharmacol. Sin. 2019 40 7 859 866 10.1038/s41401‑018‑0181‑9 30382183
    [Google Scholar]
  59. Lin W. Zhang W.W. Lyu N. Cao H. Xu W.D. Zhang Y.Q. Growth differentiation factor-15 produces analgesia by inhibiting tetrodotoxin-resistant Nav1.8 sodium channel activity in rat primary sensory neurons. Neurosci. Bull. 2021 37 9 1289 1302 10.1007/s12264‑021‑00709‑5 34076854
    [Google Scholar]
  60. Uchitel O.D. González Inchauspe C. Weissmann C. Synaptic signals mediated by protons and acid‐sensing ion channels. Synapse 2019 73 10 22120 10.1002/syn.22120 31180161
    [Google Scholar]
  61. Er S.Y. Cristofori-Armstrong B. Escoubas P. Rash L.D. Discovery and molecular interaction studies of a highly stable, tarantula peptide modulator of acid-sensing ion channel 1. Neuropharmacology 2017 127 185 195 10.1016/j.neuropharm.2017.03.020 28327374
    [Google Scholar]
  62. Ugawa S. Ueda T. Ishida Y. Nishigaki M. Shibata Y. Shimada S. Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J. Clin. Invest. 2002 110 8 1185 1190 10.1172/JCI0215709 12393854
    [Google Scholar]
  63. Zhong Y. Song B. Mo G. A novel neurotoxin from venom of the spider, Brachypelma albopilosum. PLoS One 2014 9 10 110221 10.1371/journal.pone.0110221 25329070
    [Google Scholar]
  64. Logashina Y.A. Mosharova I.V. Korolkova Y.V. Peptide from sea anemone Metridium senile affects transient receptor potential ankyrin-repeat 1 (TRPA1) function and produces analgesic effect. J. Biol. Chem. 2017 292 7 2992 3004 10.1074/jbc.M116.757369 28077580
    [Google Scholar]
  65. Kalina R.S. Gladkikh I.N. Klimovich A.A. First anti-inflammatory peptide AnmTX Sco 9a-1 from the swimming sea anemone Stomphia coccinea. Biomolecules 2022 12 11 1705 10.3390/biom12111705 36421718
    [Google Scholar]
  66. Maatuf Y. Geron M. Priel A. The role of toxins in the pursuit for novel analgesics. Toxins 2019 11 2 131 10.3390/toxins11020131 30813430
    [Google Scholar]
  67. Dyachenko I.A. Palikov V.A. Palikova Y.A. Single mutation in peptide inhibitor of TRPV1 receptor changes its effect from hypothermic to hyperthermic level in animals. Russ. J. Bioorganic Chem. 2017 43 5 509 516 10.1134/S1068162017050053
    [Google Scholar]
  68. Andreev Y. Kozlov S. Korolkova Y. Polypeptide modulators of TRPV1 produce analgesia without hyperthermia. Mar. Drugs 2013 11 12 5100 5115 10.3390/md11125100 24351908
    [Google Scholar]
  69. Chen C.C. Zimmer A. Sun W.H. Hall J. Brownstein M.J. Zimmer A. A role for ASIC3 in the modulation of high-intensity pain stimuli. Proc. Natl. Acad. Sci. USA 2002 99 13 8992 8997 10.1073/pnas.122245999 12060708
    [Google Scholar]
  70. Kalina R.S. Koshelev S.G. Zelepuga E.A. APETx-like peptides from the sea anemone Heteractis crispa, diverse in their effect on ASIC1a and ASIC3 ion channels. Toxins 2020 12 4 266 10.3390/toxins12040266 32326130
    [Google Scholar]
  71. Song Y. Liu Z. Zhang Q. Investigation of binding modes and functional surface of scorpion toxins ANEP to sodium channels 1.7. Toxins 2017 9 12 387 10.3390/toxins9120387 29186022
    [Google Scholar]
  72. Han T. Ming H. Deng L. A novel expression vector for the improved solubility of recombinant scorpion venom in Escherichia coli. Biochem. Biophys. Res. Commun. 2017 482 1 120 125 10.1016/j.bbrc.2016.09.047 27634220
    [Google Scholar]
  73. Li C.L. Liu X.F. Li G.X. Antinociceptive effects of AGAP, a recombinant neurotoxic polypeptide: Possible involvement of the tetrodotoxin-resistant sodium channels in small dorsal root ganglia neurons. Front. Pharmacol. 2016 7 496 10.3389/fphar.2016.00496 28066245
    [Google Scholar]
  74. Ruan J.P. Mao Q.H. Lu W.G. Inhibition of spinal MAPKs by scorpion venom peptide BmK AGAP produces a sensory-specific analgesic effect. Mol. Pain 2018 14 1744806918761238 10.1177/1744806918761238 29424271
    [Google Scholar]
  75. Xu Y. Meng X. Hou X. A mutant of the Buthus martensii Karsch antitumor-analgesic peptide exhibits reduced inhibition to hNav1.4 and hNav1.5 channels while retaining analgesic activity. J. Biol. Chem. 2017 292 44 18270 18280 10.1074/jbc.M117.792697 28924048
    [Google Scholar]
  76. Deng L. Zhang H.X. Wang Y. Site-directed mutagenesis of BmK AGP-SYPU1: The role of two conserved Tyr (Tyr5 and Tyr42) in analgesic activity. Protein J. 2014 33 2 157 164 10.1007/s10930‑014‑9547‑0 24554422
    [Google Scholar]
  77. Meng X. Xu Y. Zhao M. The functional property changes of muscular Nav1.4 and cardiac Nav1.5 induced by scorpion toxin BmK AGP-SYPU1 mutants Y42F and Y5F. Biochemistry 2015 54 19 2988 2996 10.1021/acs.biochem.5b00067 25919575
    [Google Scholar]
  78. Wang J.H. Zhang H. Gao S.J. Wang J.X. Review on pharmacological activities of the peptides from scorpion Buthus martensii Karsch. J Pharm Drug Dev 2015 3 2 1 6
    [Google Scholar]
  79. Li Z. Hu P. Wu W. Wang Y. Peptides with therapeutic potential in the venom of the scorpion Buthus martensii Karsch. Peptides 2019 115 43 50 10.1016/j.peptides.2019.02.009 30858089
    [Google Scholar]
  80. Xiong Y.M. Lan Z.D. Wang M. Molecular characterization of a new excitatory insect neurotoxin with an analgesic effect on mice from the scorpion Buthus martensi Karsch. Toxicon 1999 37 8 1165 1180 10.1016/S0041‑0101(98)00253‑0 10400300
    [Google Scholar]
  81. Wang C.Y. Tan Z.Y. Chen B. Zhao Z.Q. Ji Y.H. Antihyperalgesia effect of BmK IT2, a depressant insect-selective scorpion toxin in rat by peripheral administration. Brain Res. Bull. 2000 53 3 335 338 10.1016/S0361‑9230(00)00355‑5 11113589
    [Google Scholar]
  82. Guan R.J. Wang C.G. Wang M. Wang D.C. A depressant insect toxin with a novel analgesic effect from scorpion Buthus martensii Karsch. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 2001 1549 1 9 18 10.1016/S0167‑4838(01)00241‑2 11566364
    [Google Scholar]
  83. Cao Z. Wang W. Xiao X. Chen K. Liang X. Yu D. High-level expression and purification of an analgesic peptide from Buthus martensii Karch. Protein Pept. Lett. 2007 14 3 247 251 10.2174/092986607780090883 17346228
    [Google Scholar]
  84. Shao J. Zhao C. Hui C. Zhao R. Ruan X. Molecular cloning and functional identification of analgesic peptides from Buthus martensii Karsch. Turkish J Biochem 2013 38 4 499 505 10.5505/tjb.2013.84429
    [Google Scholar]
  85. Maatoug R. Jebali J. Guieu R. De Waard M. Kharrat R. BotAF, a new Buthus occitanus tunetanus scorpion toxin, produces potent analgesia in rodents. Toxicon 2018 149 72 85 10.1016/j.toxicon.2018.01.003 29337220
    [Google Scholar]
  86. Bagheri-Ziari S. Shahbazzadeh D. Sardari S. Sabatier J.M. Pooshang Bagheri K. Discovery of a new analgesic peptide, leptucin, from the Iranian scorpion, Hemiscorpius lepturus. Molecules 2021 26 9 2580 10.3390/molecules26092580 33925223
    [Google Scholar]
  87. Beihaghi M. Formulation of analgesic and anti-inflammatory ointment containing the leptucin, Mcd and adolapine peptides. WO Patent 2024/042376 2024
  88. Zhu A. Aierken A. Yao Z. A centipede toxin causes rapid desensitization of nociceptor TRPV1 ion channel. Toxicon 2020 178 41 49 10.1016/j.toxicon.2020.02.016 32097697
    [Google Scholar]
  89. Zhang H. Lin J.J. Xie Y.K. Structure-guided peptide engineering of a positive allosteric modulator targeting the outer pore of TRPV1 for long-lasting analgesia. Nat. Commun. 2023 14 1 4 10.1038/s41467‑022‑34817‑1 36596769
    [Google Scholar]
  90. Yang S. Xiao Y. Kang D. Discovery of a selective Na V 1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proc. Natl. Acad. Sci. USA 2013 110 43 17534 17539 10.1073/pnas.1306285110 24082113
    [Google Scholar]
  91. Galante P. Campos G.A.A. Moser J.C.G. Exploring the therapeutic potential of an antinociceptive and anti-inflammatory peptide from wasp venom. Sci. Rep. 2023 13 1 12491 10.1038/s41598‑023‑38828‑w 37528129
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128368659250805054737
Loading
/content/journals/cpd/10.2174/0113816128368659250805054737
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test