Skip to content
2000
image of Development of Novel Approaches for the Treatment of Cutaneous Candidiasis

Abstract

The main culprit behind cutaneous candidiasis, a fungal infection that can lead to major dermatological and systemic health problems, is . Over the past 20 years, cutaneous candidiasis has become more prevalent, especially in hospitalized or immunocompromised patients. Conventional treatment methods employ antifungal drugs like azoles and polyenes, which are effective but have drawbacks because of their high recurrence rates, negative side effects, and growing antifungal resistance. This study highlights recent advancements in novel treatment techniques for cutaneous candidiasis. New antifungal medications that more precisely target specific fungal pathways, including echinocandins and triazole derivatives, are examples of emerging techniques. The most common symptoms are interdigital candidiasis, cheilitis, intertrigo, and diaper dermatitis, but they can occur elsewhere in the body. Other types of may be the reason for infections that occur from person to person, even though is the most frequent culprit. The most typical signs of infections are burning and tingling. Skin symptoms might vary, in any case. The two main signs of candidiasis are bright erythema and skin erosions with satellite pustules. Yeast is the main cause of cutaneous candidiasis. , especially , is characterized by epidermal exposure of the skin, nails, interdigital space, and mucous membranes. This study discusses several species of , and The primary targets of antifungal drugs are the nucleic acids, cell walls, and cell membranes of species.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128379927250807064636
2025-08-27
2025-10-19
Loading full text...

Full text loading...

References

  1. Nami S. Mohammadi R. Vakili M. Khezripour K. Mirzaei H. Morovati H. Fungal vaccines, mechanism of actions and immunology: A comprehensive review. Biomed Pharmacother 2019 109 333 344 10.1016/j.biopha.2018.10.075 30399567
    [Google Scholar]
  2. Barlow G. Irving W.L. Moss P.J. Infectious disease Kumar and Clark’s Clinical Medicine 2020 559 563
    [Google Scholar]
  3. Nakazato G. Lonni A.A. Panagio L.A. de Camargo L.C. Gonçalves M.C. Reis G.F. Miranda-Sapla M.M. Tomiotto-Pellissier F. Kobayashi R.K. Applications of nanometals in cutaneous infections. Nanotechnology in Skin, Soft Tissue, and Bone Infections Cham Springer 2020 71 92
    [Google Scholar]
  4. Kainz K. Bauer M.A. Madeo F. Carmona-Gutierrez D. Fungal infections in humans: The silent crisis. Microb Cell 2020 7 6 143 145 10.15698/mic2020.06.718 32548176
    [Google Scholar]
  5. Fuentefria A.M. Pippi B. Dalla Lana D.F. Donato K.K. de Andrade S.F. Antifungals discovery: An insight into new strategies to combat antifungal resistance. Lett Appl Microbiol 2018 66 1 2 13 10.1111/lam.12820 29112282
    [Google Scholar]
  6. Almeida F. Rodrigues M.L. Coelho C. The still underestimated problem of fungal diseases worldwide. Front Microbiol 2019 10 214 10.3389/fmicb.2019.00214 30809213
    [Google Scholar]
  7. Talapko J. Juzbašić M. Matijević T. Pustijanac E. Bekić S. Kotris I. Škrlec I. Candida albicans—the virulence factors and clinical manifestations of infection. J Fungi 2021 7 2 79 10.3390/jof7020079 33499276
    [Google Scholar]
  8. Chen H. Zhou X. Ren B. Cheng L. The regulation of hyphae growth in Candida albicans. Virulence 2020 11 1 337 348 10.1080/21505594.2020.1748930 32274962
    [Google Scholar]
  9. Basmaciyan L. Bon F. Paradis T. Lapaquette P. Dalle F. Candida albicans interactions with the host: Crossing the intestinal epithelial barrier. Tissue Barriers 2019 7 2 1612661 10.1080/21688370.2019.1612661 31189436
    [Google Scholar]
  10. WHO fungal priority pathogens list to guide research, development and public health action. Available from:https://www.who.int/citations/i/item/9789240060241 2022
  11. Jacobs S.E. Jacobs J.L. Dennis E.K. Taimur S. Rana M. Patel D. Gitman M. Patel G. Schaefer S. Iyer K. Moon J. Adams V. Lerner P. Walsh T.J. Zhu Y. Anower M.R. Vaidya M.M. Chaturvedi S. Chaturvedi V. Candida auris pan-drug-resistant to four classes of antifungal agents. Antimicrob Agents Chemother 2022 66 7 e00053-22 10.1128/aac.00053‑22 35770999
    [Google Scholar]
  12. Robbins N. Cowen L.E. Antifungal discovery. Curr Opin Microbiol 2022 69 102198 10.1016/j.mib.2022.102198 36037637
    [Google Scholar]
  13. Verma S. Utreja P. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy. Asian J Pharm Sci 2019 14 2 117 129 10.1016/j.ajps.2018.05.007 32104444
    [Google Scholar]
  14. Tejashri G Amrita B Darshana J Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharm 2013 63 3 335 358 10.2478/acph‑2013‑0021 24152895
    [Google Scholar]
  15. Singh S. Patil V.M. Paliwal S.K. Masand N. Nanotechnology-based drug delivery of topical antifungal agents. Pharm Nanotechnol 2024 12 3 185 196 10.2174/2211738511666230818125031 37594096
    [Google Scholar]
  16. Sousa F. Ferreira D. Reis S. Costa P. Current insights on antifungal therapy: Novel nanotechnology approaches for drug delivery systems and new drugs from natural sources. Pharmaceuticals 2020 13 9 248 10.3390/ph13090248 32942693
    [Google Scholar]
  17. Singh D.K. Tóth R. Gácser A. Mechanisms of pathogenic Candida species to evade the host complement attack. Front Cell Infect Microbiol 2020 10 94 10.3389/fcimb.2020.00094 32232011
    [Google Scholar]
  18. Middleton E.A. He X.Y. Denorme F. Campbell R.A. Ng D. Salvatore S.P. Mostyka M. Baxter-Stoltzfus A. Borczuk A.C. Loda M. Cody M.J. Manne B.K. Portier I. Harris E.S. Petrey A.C. Beswick E.J. Caulin A.F. Iovino A. Abegglen L.M. Weyrich A.S. Rondina M.T. Egeblad M. Schiffman J.D. Yost C.C. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 2020 136 10 1169 1179 10.1182/blood.2020007008 32597954
    [Google Scholar]
  19. Leung A.K.C. Barankin B. Lam J.M. Leong K.F. Hon K.L. Tinea versicolor: An updated review. Drugs Context 2022 11 1 20 10.7573/dic.2022‑9‑2 36452877
    [Google Scholar]
  20. Permana A.D. Paredes A.J. Volpe-Zanutto F. Anjani Q.K. Utomo E. Donnelly R.F. Dissolving microneedle-mediated dermal delivery of itraconazole nanocrystals for improved treatment of cutaneous candidiasis. Eur J Pharm Biopharm 2020 154 50 61 10.1016/j.ejpb.2020.06.025 32649991
    [Google Scholar]
  21. Gu A.K. Kong X.J. Zhang L.T. Rare case of scrotal candida albicans infection in an elderly man induced by urinary leakage. Indian J Dermatol 2022 67 2 169 170 10.4103/ijd.ijd_881_21 36092221
    [Google Scholar]
  22. Khudhair Z.Y. Jameel Z.J. Ammari A. Molecular effect of pyocyanin on dermatological isolates of Candida albicans. Biochem Cell Arch 2021 21 1 187 190
    [Google Scholar]
  23. Waikhom S.D. Afeke I. Kwawu G.S. Mbroh H.K. Osei G.Y. Louis B. Deku J.G. Kasu E.S. Mensah P. Agede C.Y. Dodoo C. Asiamah E.A. Tampuori J. Korbuvi J. Opintan J.A. Prevalence of vulvovaginal candidiasis among pregnant women in the Ho municipality, Ghana: Species identification and antifungal susceptibility of Candida isolates. BMC Pregnancy Childbirth 2020 20 1 266 10.1186/s12884‑020‑02963‑3 32375724
    [Google Scholar]
  24. Lopes J.P. Lionakis M.S. Pathogenesis and virulence of Candida albicans. Virulence 2022 13 1 89 121 10.1080/21505594.2021.2019950 34964702
    [Google Scholar]
  25. Kord M. Salehi M. Hashemi S.J. Abdollahi A. Alijani N. Maleki A. Mahmoudi S. Ahmadikia K. Parsameher N. Moradi M. Abdorahimi M. Rezaie S. Hashemi Fesharaki S.S. Abbasi K. Alcazar-Fuoli L. Khodavaisy S. Clinical, epidemiological, and mycological features of patients with candidemia: Experience in two tertiary referral centers in Iran. Curr Med Mycol 2022 8 3 9 17 10.18502/cmm.8.3.11207 37051552
    [Google Scholar]
  26. Bedekovic T. Usher J. Is there a relationship between mating and pathogenesis in two human fungal pathogens, Candida albicans and Candida glabrata? Curr Clin Microbiol Rep 2023 10 2 47 54 10.1007/s40588‑023‑00192‑8 37151577
    [Google Scholar]
  27. Parslow B.Y. Thornton C.R. Continuing shifts in epidemiology and antifungal susceptibility highlight the need for improved disease management of invasive candidiasis. Microorganisms 2022 10 6 1208 10.3390/microorganisms10061208 35744725
    [Google Scholar]
  28. Prasath K.G. Tharani H. Kumar M.S. Pandian S.K. Palmitic acid inhibits the virulence factors of Candida tropicalis: Biofilms, cell surface hydrophobicity, ergosterol biosynthesis, and enzymatic activity. Front Microbiol 2020 11 864 10.3389/fmicb.2020.00864 32457728
    [Google Scholar]
  29. Yang Z Song Y Li R. A A ten-year retrospective study of invasive candidiasis in a tertiary hospital in Beijing. Biomed Environ Sci 2021 34 10 773 788 10.3967/bes2021.107 34782044
    [Google Scholar]
  30. Tseng T.Y. Chen T.C. Ho C.M. Lin P.C. Chou C.H. Tsai C.T. Wang J.H. Chi C.Y. Ho M.W. Clinical features, antifungal susceptibility, and outcome of Candida guilliermondii fungemia: An experience in a tertiary hospital in mid-Taiwan. J Microbiol Immunol Infect 2018 51 4 552 558 10.1016/j.jmii.2016.08.015 28625801
    [Google Scholar]
  31. Apsemidou A. Füller M.A. Idelevich E.A. Kurzai O. Tragiannidis A. Groll A.H. Candida lusitaniae breakthrough fungemia in an immuno-compromised adolescent: Case report and review of the literature. J Fungi 2020 6 4 380 10.3390/jof6040380 33371186
    [Google Scholar]
  32. Spiliopoulou A. Kolonitsiou F. Vrioni G. Tsoupra S. Lekkou A. Paliogianni F. Invasive Candida kefyr infection presenting as pyelonephritis in an ICU hospitalized COVID-19 patient: Case report and review of the literature. J Mycol Med 2022 32 2 101236 10.1016/j.mycmed.2021.101236 34974339
    [Google Scholar]
  33. Tamo S.P.B. Candida infections: Clinical features, diagnosis and treatment. Infect Dis Clin Microbiol 2020 2 2 91 102 10.36519/idcm.2020.0006
    [Google Scholar]
  34. Shilpa Shyam M Shammika P. A review of fluconazole loaded transethosomal gel for candidiasis. Int Peer Rev J Pharm Med Sci Res 2021 10.20959/wjpr202110‑21281
    [Google Scholar]
  35. Kuhn D.M. Chandra J. Mukherjee P.K. Ghannoum M.A. Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun 2002 70 2 878 888 10.1128/IAI.70.2.878‑888.2002 11796623
    [Google Scholar]
  36. Kakade P. Sircaik S. Maufrais C. Ene I.V. Bennett R.J. Aneuploidy and gene dosage regulate filamentation and host colonization by Candida albicans. Proc Natl Acad Sci USA 2023 120 11 e2218163120 10.1073/pnas.2218163120 36893271
    [Google Scholar]
  37. King W.R. Acosta-Zaldívar M. Qi W. Cherico N. Cooke L. Köhler J.R. Patton-Vogt J. Glycerophosphocholine provision rescues Candida albicans growth and signaling phenotypes associated with phosphate limitation. MSphere 2023 8 6 e00231-23 10.1128/msphere.00231‑23 37843297
    [Google Scholar]
  38. Chaffin W.L. Candida albicans cell wall proteins. Microbiol Mol Biol Rev 2008 72 3 495 544 10.1128/MMBR.00032‑07 18772287
    [Google Scholar]
  39. Farzeen I Muzammil S Rafique A Noreen R Waseem M Andleeb R Ijaz MU Ashraf A Cutaneous Candidiasis. Candida and Candidiasis IntechOpen 2023 10.5772/intechopen.107900
    [Google Scholar]
  40. Kaur J. Nobile C.J. Antifungal drug-resistance mechanisms in Candida biofilms. Curr Opin Microbiol 2023 71 102237 10.1016/j.mib.2022.102237 36436326
    [Google Scholar]
  41. Logan A. Wolfe A. Williamson J.C. Antifungal resistance and the role of new therapeutic agents. Curr Infect Dis Rep 2022 24 9 105 116 10.1007/s11908‑022‑00782‑5 35812838
    [Google Scholar]
  42. Czajka K.M. Venkataraman K. Brabant-Kirwan D. Santi S.A. Verschoor C. Appanna V.D. Singh R. Saunders D.P. Tharmalingam S. Molecular mechanisms associated with antifungal resistance in pathogenic Candida species. Cells 2023 12 22 2655 10.3390/cells12222655 37998390
    [Google Scholar]
  43. Apolikhina I.A. Gorbunova E.A. Malyshkina D.A. Donnikov A.E. Clinical use of drugs containing sertaconazole in the treatment of vulvovaginal candidiasis. Obstet Gynecol 2021 2 158 167
    [Google Scholar]
  44. Vikram K. A clinical study of efficacy and safety of topical antifungal agents for the treatment of tinea corporis. J Contemp Med Dent 2021 9 1 83 87
    [Google Scholar]
  45. Ksiezopolska E. Gabaldón T. Evolutionary emergence of drug resistance in Candida opportunistic pathogens. Genes 2018 9 9 461 10.3390/genes9090461 30235884
    [Google Scholar]
  46. Kumar V. Praveen N. Kewlani P. Transdermal drug delivery systems. Advanced Drug Delivery: Methods and Applications Singapore Springer Nature Singapore 2023 333 362 10.1007/978‑981‑99‑6564‑9_13
    [Google Scholar]
  47. Saweres-Argüelles C. Ramírez-Novillo I. Vergara-Barberán M. Carrasco-Correa E.J. Lerma-García M.J. Simó-Alfonso E.F. Skin absorption of inorganic nanoparticles and their toxicity: A review. Eur J Pharm Biopharm 2023 182 128 140 10.1016/j.ejpb.2022.12.010 36549398
    [Google Scholar]
  48. Kamel R. Nanotherapeutics as promising approaches to combat fungal infections. Drug Dev Res 2019 80 5 535 545 10.1002/ddr.21533
    [Google Scholar]
  49. Ahuja A. Bajpai M. Nanoformulations insights: A novel paradigm for antifungal therapies and future perspectives. Curr Drug Deliv 2024 21 9 1241 1272 10.2174/0115672018270783231002115728 37859317
    [Google Scholar]
  50. Kaur P. Dua J.S. Prasad D.N. Formulation and evaluation of ketoconazole niosomal gel. Asian J Pharm Res Dev 2018 6 5 71 75 10.22270/ajprd.v6i5.424
    [Google Scholar]
  51. Jadiya R. Development and characterization of nano-sponge based hydrogel of anti-fungal drug treatment for candidiasis. Doctoral dissertation, Institute of Pharmacy, 2021
    [Google Scholar]
  52. Mohammed B.S. Al Gawhari F.J. Transethosomes a novel transdermal drug delivery system for antifungal drugs. Int J Drug Deliv Technol 2021 11 1 238 243
    [Google Scholar]
  53. Goswami S Kumar V Nanomedicines as an alternative strategy for Fungal disease treatment. Advanced Nanomaterials for Point of Care Diagnosis and Therapy Elsevier 2022 493 512 10.1016/B978‑0‑323‑85725‑3.00001‑5
    [Google Scholar]
  54. Javed S. Mangla B. Almoshari Y. Sultan M.H. Ahsan W. Nanostructured lipid carrier system: A compendium of their formulation development approaches, optimization strategies by quality by design, and recent applications in drug delivery. Nanotechnol Rev 2022 11 1 1744 1777 10.1515/ntrev‑2022‑0109
    [Google Scholar]
  55. Garg N.K. Tandel N. Bhadada S.K. Tyagi R.K. Nanostructured lipid carrier–mediated transdermal delivery of aceclofenac hydrogel present an effective therapeutic approach for inflammatory diseases. Front Pharmacol 2021 12 713616 10.3389/fphar.2021.713616 34616297
    [Google Scholar]
  56. Sousa F. Ferreira D. Reis S. Costa P. Overview of nanotherapeutics for fungal infections. In: Nanotherapeutics for Infectious Diseases Jenny Stanford Publishing 2025 287 361 10.1201/9781003566786‑8
    [Google Scholar]
  57. Scomoroscenco C. Teodorescu M. Raducan A. Stan M. Voicu S.N. Trica B. Ninciuleanu C.M. Nistor C.L. Mihaescu C.I. Petcu C. Cinteza L.O. Novel gel microemulsion as topical drug delivery system for curcumin in dermatocosmetics. Pharmaceutics 2021 13 4 505 10.3390/pharmaceutics13040505 33916981
    [Google Scholar]
  58. Samee A. Usman F. Wani T.A. Farooq M. Shah H.S. Javed I. Ahmad H. Khan R. Zargar S. Kausar S. Sulconazole-loaded solid lipid nanoparticles for enhanced antifungal activity: in vitro and in vivo approach. Molecules 2023 28 22 7508 10.3390/molecules28227508 38005230
    [Google Scholar]
  59. Gholami-Shabani M Shams-Ghahfarokhi M Jamzivarl F Razzaghi-Abyaneh M. Fungal biofilms in nanotechnology era diagnosis, drug delivery, and treatment strategies. In: Myconanotechnology CRC Press 2023 129 168
    [Google Scholar]
  60. Hosny K.M. Sindi A.M. Ali S. Alharbi W.S. Hajjaj M.S. Bukhary H.A. Badr M.Y. Mushtaq R.Y. Murshid S.S.A. Almehmady A.M. Bakhaidar R.B. Alfayez E. Kurakula M. Development, optimization, and evaluation of a nanostructured lipid carrier of sesame oil loaded with miconazole for the treatment of oral candidiasis. Drug Deliv 2022 29 1 254 262 10.1080/10717544.2021.2023703 35014929
    [Google Scholar]
  61. Phechkrajang C. Phiphitphibunsuk W. Sukthongchaikool R. Nuchtavorn N. Leanpolchareanchai J. Development of miconazole-loaded microemulsions for enhanced topical delivery and non-destructive analysis by near-infrared spectroscopy. Pharmaceutics 2023 15 6 1637 10.3390/pharmaceutics15061637 37376085
    [Google Scholar]
  62. Sarhan F. ElGogary R. Yassin M. Soliman M. Penetration enhancer containing vesicles for dermal and transdermal drug delivery. A review. Archives of Pharmaceutical Sciences Ain Shams University 2023 0 0 0 10.21608/aps.2023.246357.1141
    [Google Scholar]
  63. Azhar M. A review of nanoemulgel for treatment of fungal infections. Int J Pharm Pharm Sci 2024
    [Google Scholar]
  64. Shirodkar S. Pissurlenkar R. Formulation and characterisation of cilnidipine microsponge loaded hydrogels for antihypertensive activity. Drug Deliv Lett 2023 13 1 48 68 10.2174/2210303113666221207142644
    [Google Scholar]
  65. Dubey A. Furtado R. Bhandary P. Hebbar S. Shetty A. Role of penetration enhancers in the topical delivery of adapalene by transfersomal gel: An in vitro investigation. J Young Pharm 2021 13 3 239 245 10.5530/jyp.2021.13.49
    [Google Scholar]
  66. Nagasa G.D. Belete A. Review on nanomaterials and nano-scaled systems for topical and systemic delivery of antifungal drugs. J Multidiscip Healthc 2022 15 1819 1840 10.2147/JMDH.S359282 36060421
    [Google Scholar]
  67. Prajapati B.G. Paliwal H. Shah P.A. In vitro characterization of self-emulsifying drug delivery system-based lipsticks loaded with ketoconazole. Future J Pharm Sci 2023 9 1 35 10.1186/s43094‑023‑00485‑1
    [Google Scholar]
  68. Shukr M.H. Ismail S. El-Hossary G.G. El-Shazly A.H. Spanlastics nanovesicular ocular insert as a novel ocular delivery of travoprost: Optimization using Box–Behnken design and in vivo evaluation. J Liposome Res 2022 32 4 354 364 10.1080/08982104.2022.2025828 35037560
    [Google Scholar]
  69. Srivastava R. Rawat A.K.S. Mishra M.K. Patel A.K. Advancements in nanotechnology for enhanced antifungal drug delivery: A comprehensive review. Infect Disord Drug Targets 2024 24 2 e021123223053 10.2174/0118715265266257231022134933 38291868
    [Google Scholar]
  70. Ranpise H.A. Gujar K.N. Pawar S.C. Awasthi R. Dua K. Mathure D. Madan J.R. Formulation, optimization, and evaluation of ketoconazole loaded nanostructured lipid carrier gel for topical delivery. Drug Deliv Lett 2020 10 1 61 71 10.2174/2210303109666190717155731
    [Google Scholar]
  71. Nigro F. Cerqueira Pinto C.S. dos Santos E.P. Mansur C.R.E. Niosome-based hydrogel as a potential drug delivery system for topical and transdermal applications. Int J Polym Mater 2022 71 6 444 461 10.1080/00914037.2020.1848833
    [Google Scholar]
  72. Zaman Q. Microemulsion formulation for topical delivery of miconazole nitrate. Int J Pharm Sci Rev Res 2014 24 30 36
    [Google Scholar]
  73. Al-Ameri A.A.F. Al-Gawhari F.J. Formulation development of meloxicam binary ethosomal hydrogel for topical delivery: In Vitro and In Vivo assessment. Pharmaceutics 2024 16 7 898 10.3390/pharmaceutics16070898 39065595
    [Google Scholar]
  74. Sicurella M. Pula W. Musiał K. Cieślik-Boczula K. Sguizzato M. Bondi A. Drechsler M. Montesi L. Esposito E. Marconi P. Ethosomal gel for topical administration of dimethyl fumarate in the treatment of HSV-1 infections. Int J Mol Sci 2023 24 4 4133 10.3390/ijms24044133 36835541
    [Google Scholar]
  75. Bezerra A.A. Evaluation of the toxicity of topical anesthetics for dental use using the chicken embryo chorioallantoic membrane model. Doctoral dissertation 2023
    [Google Scholar]
  76. Ramu B G. A review on sln and nlc for management of fungal infections. JPharmResInt 2021 33 65 81 10.9734/jpri/2021/v33i59A34250
    [Google Scholar]
  77. SUMA R. Formulation and evaluation of tacrolimus loaded transfersomal sublingual films for efficient management of organ rejection: In vitro and in vivo study. Int J App Pharm 2023 15 6 188 205
    [Google Scholar]
  78. Aleanizy F.S. Taha E.I. Salem-Bekhit M.M. Felimban A.M.J. Al-Suwayeh S.A. Al-Joufi F.A. Muharram M.M. Alqahtani F.Y. Shakeel F. Youssof A.M.E. Bayomi M. Abouelela A.E.F. Formulation and in vitro and in vivo evaluation of surfactant-stabilized mucoadhesive nanogels for vaginal delivery of fluconazole. Drug Dev Ind Pharm 2021 47 12 1935 1942 10.1080/03639045.2022.2070760 35537065
    [Google Scholar]
  79. Goyal M.K. Qureshi J. Formulation and evaluation of itraconazole niosomal gel for topical application. J Drug Deliv Ther 2019 9 961 966
    [Google Scholar]
  80. Khan I. Hussein S. Houacine C. Khan Sadozai S. Islam Y. Bnyan R. Elhissi A. Yousaf S. Fabrication, characterization and optimization of nanostructured lipid carrier formulations using Beclomethasone dipropionate for pulmonary drug delivery via medical nebulizers. Int J Pharm 2021 598 120376 10.1016/j.ijpharm.2021.120376 33617949
    [Google Scholar]
  81. Arimoto S. Inagaki K. Todokoro D. Suzuki T. Makimura K. Ishino T. Antifungal efficacy of luliconazole in an experimental rabbit model of fungal keratitis caused by Fusarium solani. Mycopathologia 2023 188 5 775 782 10.1007/s11046‑023‑00783‑5 37603230
    [Google Scholar]
  82. Ren X. Cheng S. Liang Y. Yu X. Sheng J. Wan Y. Li Y. Wan J. Luo Z. Yang X. Mesoporous silica nanospheres as nanocarriers for poorly soluble drug itraconazole with high loading capacity and enhanced bioavailability. Microporous Mesoporous Mater 2020 305 110389 10.1016/j.micromeso.2020.110389
    [Google Scholar]
  83. Adel S. Fahmy R.H. Elsayed I. Mohamed M.I. Ibrahim R.R. Exploiting itraconazole-loaded nanomixed micelles in coated capsules as efficient colon-targeted delivery system for improved antifungal and potential anticancer efficacy. Pharm Dev Technol 2023 28 3-4 333 350 10.1080/10837450.2023.2195486 36987794
    [Google Scholar]
  84. Soliman O.A.E.A. Mohamed E.A. Khatera N.A.A. Enhanced ocular bioavailability of fluconazole from niosomal gels and microemulsions: Formulation, optimization, and in vitro–in vivo evaluation. Pharm Dev Technol 2019 24 1 48 62 10.1080/10837450.2017.1413658 29210317
    [Google Scholar]
  85. El-Housiny S. Shams Eldeen M.A. El-Attar Y.A. Salem H.A. Attia D. Bendas E.R. El-Nabarawi M.A. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: Formulation and clinical study. Drug Deliv 2018 25 1 78 90 10.1080/10717544.2017.1413444 29239242
    [Google Scholar]
  86. Kelidari H.R. Moazeni M. Babaei R. Saeedi M. Akbari J. Parkoohi P.I. Nabili M. Gohar A.A. Morteza-Semnani K. Nokhodchi A. Improved yeast delivery of fluconazole with a nanostructured lipid carrier system. Biomed Pharmacother 2017 89 83 88 10.1016/j.biopha.2017.02.008 28222399
    [Google Scholar]
  87. Mandal S. Km Bhumika B. Kumar M. Hak J. Vishvakarma P. Sharma U.K. A novel approach on micro sponges drug delivery system: Method of preparations, application, and its future prospective. Indian J Pharm Educ Res 2023 58 1 45 63 10.5530/ijper.58.1.5
    [Google Scholar]
  88. El-Hashemy H.A. Design, formulation and optimization of topical ethosomes using full factorial design: In-vitro and ex-vivo characterization. J Liposome Res 2022 32 1 74 82 10.1080/08982104.2021.1955925 34697998
    [Google Scholar]
  89. Samimi M.S. Mahboobian M.M. Mohammadi M. Ocular toxicity assessment of nanoemulsion in-situ gel formulation of fluconazole. Hum Exp Toxicol 2021 40 12 2039 2047 10.1177/09603271211017314 34036827
    [Google Scholar]
  90. Abobakr F.E. Fayez S.M. Elwazzan V.S. Sakran W. Effect of different nail penetration enhancers in solid lipid nanoparticles containing terbinafine hydrochloride for treatment of onychomycosis. AAPS PharmSciTech 2021 22 1 33 10.1208/s12249‑020‑01893‑9 33404930
    [Google Scholar]
  91. Kaur R. Dennison S.R. Burrow A.J. Rudramurthy S.M. Swami R. Gorki V. Katare O.P. Kaushik A. Singh B. Singh K.K. Nebulised surface-active hybrid nanoparticles of voriconazole for pulmonary Aspergillosis demonstrate clathrin-mediated cellular uptake, improved antifungal efficacy and lung retention. J Nanobiotechnology 2021 19 1 19 10.1186/s12951‑020‑00731‑1 33430888
    [Google Scholar]
  92. Mohanty B. Pal K. Quereshi D. Nayak S.K. Rathnam V.S.S. Banerjee I. Anis A. Barik C.S. Sarkar P. Rout S.K. Oleogels based on palmitic acid and safflower oil: Novel formulations for ocular drug delivery of voriconazole. Eur J Lipid Sci Technol 2020 122 4 1900288 10.1002/ejlt.201900288
    [Google Scholar]
  93. Jafari A. Daneshamouz S. Ghasemiyeh P. Mohammadi-Samani S. Ethosomes as dermal/transdermal drug delivery systems: Applications, preparation and characterization. J Liposome Res 2023 33 1 34 52 10.1080/08982104.2022.2085742 35695714
    [Google Scholar]
  94. Faisal W. Soliman G.M. Hamdan A.M. Enhanced skin deposition and delivery of voriconazole using ethosomal preparations. J Liposome Res 2018 28 1 14 21 10.1080/08982104.2016.1239636 27667097
    [Google Scholar]
  95. Mirshekari M. Ghomi A.B. Mehravaran A. Smart terbinafine recent nano-advances in delivery of terbinafine. Nanomed J 2021 8 4 241 254
    [Google Scholar]
  96. Rarokar N.R. Menghani S.S. Kerzare D.R. Khedekar P.B. Bharne A.P. Alamri A.S. Alsanie W.F. Alhomrani M. Sreeharsha N. Asdaq S.M.B. Preparation of terbinafin-encapsulated solid lipid nanoparticles containing antifungal Carbopol® hydrogel with improved efficacy: In vitro, ex vivo and in vivo study. Pharmaceutics 2022 14 7 1393 10.3390/pharmaceutics14071393 35890289
    [Google Scholar]
  97. Lajud S.A. Nagda D.A. Qiao P. Tanaka N. Civantos A. Gu R. Cheng Z. Tsourkas A. O’Malley B.W. Li D. A novel chitosan-hydrogel-based nanoparticle delivery system for local inner ear application. Otol Neurotol 2015 36 2 341 347 10.1097/MAO.0000000000000445 25587675
    [Google Scholar]
  98. Pervaiz F. Mushtaq R. Noreen S. Formulation and optimization of terbinafine HCl loaded chitosan/xanthan gum nanoparticles containing gel: Ex-vivo permeation and in-vivo antifungal studies. J Drug Deliv Sci Technol 2021 66 102935 10.1016/j.jddst.2021.102935
    [Google Scholar]
  99. Puri V. Froelich A. Shah P. Pringle S. Chen K. Michniak-Kohn B. Quality by design guided development of polymeric nanospheres of terbinafine hydrochloride for topical treatment of onychomycosis using a nano-gel formulation. Pharmaceutics 2022 14 10 2170 10.3390/pharmaceutics14102170 36297605
    [Google Scholar]
  100. Akbari J. Saeedi M. Morteza-Semnani K. Hashemi S.M.H. Babaei A. Eghbali M. Mohammadi M. Rostamkalaei S.S. Asare-Addo K. Nokhodchi A. Innovative topical niosomal gel formulation containing diclofenac sodium (niofenac). J Drug Target 2022 30 1 108 117 10.1080/1061186X.2021.1941060 34116599
    [Google Scholar]
  101. Zhang J. Michniak-Kohn B.B. Investigation of microemulsion and microemulsion gel formulations for dermal delivery of clotrimazole. Int J Pharm 2018 536 1 345 352 10.1016/j.ijpharm.2017.11.041 29170117
    [Google Scholar]
  102. Fu X. Zhang C. Lin X. Zheng X. Liu Q. Jin Y. Safety and effectiveness of high-dose liposomal amphotericin b: A systematic review and meta-analysis. Altern Ther Health Med 2023 37971463
    [Google Scholar]
  103. Jansook P. Fülöp Z. Ritthidej G.C. Amphotericin B loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carrier (NLCs): Physicochemical and solid-solution state characterizations. Drug Dev Ind Pharm 2019 45 4 560 567 10.1080/03639045.2019.1569023 30632399
    [Google Scholar]
  104. Butani D. Yewale C. Misra A. Topical Amphotericin B solid lipid nanoparticles: Design and development. Colloids Surf B Biointerfaces 2016 139 17 24 10.1016/j.colsurfb.2015.07.032 26700229
    [Google Scholar]
  105. Iqbal K. Abdalla S.A.O. Anwar A. Iqbal K.M. Shah M.R. Anwar A. Siddiqui R. Khan N.A. Isoniazid conjugated magnetic nanoparticles loaded with Amphotericin B as a potent antiamoebic agent against Acanthamoeba castellanii. Antibiotics 2020 9 5 276 10.3390/antibiotics9050276 32466210
    [Google Scholar]
  106. Joyson N. Pathak A. Jain K. One platform comparison of polymeric and lipidic nanoparticles for the delivery of amphotericin B. AAPS PharmSciTech 2023 24 8 226 10.1208/s12249‑023‑02672‑y 37945925
    [Google Scholar]
  107. Saqib M. Ali Bhatti A.S. Ahmad N.M. Ahmed N. Shahnaz G. Lebaz N. Elaissari A. Amphotericin B loaded polymeric nanoparticles for treatment of leishmania infections. Nanomaterials 2020 10 6 1152 10.3390/nano10061152 32545473
    [Google Scholar]
  108. Nemati Shizari L. Mohammadpour Dounighi N. Bayat M. Mosavari N. A New amphotericin B-loaded trimethyl chitosan nanoparticles as a drug delivery system and antifungal activity on Candida albicans biofilm. Arch Razi Inst 2021 76 3 571 586 34824750
    [Google Scholar]
  109. Shah N. Prajapati R. Gohil D. Aundhia C. Sadhu P. Kardani S. Luliconazole loaded niosomal topical gel: Factorial design, in vitro characterization and antifungal study. Indian J Pharm Educ Res 2023 57 3s s520 s527 10.5530/ijper.57.3s.60
    [Google Scholar]
  110. Lepak A.J. Massey J. Zarnowski R. Olesen T.K. Jones R. Andes D.R. In vivo pharmacodynamic evaluation of the novel nystatin derivative BSG005 in the invasive candidiasis and invasive pulmonary aspergillosis mouse models. Antimicrob Agents Chemother 2024 68 12 e01234-24 10.1128/aac.01234‑24 39470203
    [Google Scholar]
  111. Farooq U. Rasul A. Zafarullah M. Abbas G. Rasool M. Ali F. Ahmed S. Javaid Z. Abid Z. Riaz H. Mahmood Arshad R.K. Maryam S. Amna N. Asif K. Nanoemulsions as novel nanocarrieres for drug delivery across the skin: In-vitro, in-vivo evaluation of miconazole nanoemulsions for treatment of Candidiasis albicans. Des Monomers Polym 2021 24 1 240 258 10.1080/15685551.2021.1965724 34434070
    [Google Scholar]
  112. Sousa F. Nascimento C. Ferreira D. Reis S. Costa P. Reviving the interest in the versatile drug nystatin: A multitude of strategies to increase its potential as an effective and safe antifungal agent. Adv Drug Deliv Rev 2023 199 114969 10.1016/j.addr.2023.114969 37348678
    [Google Scholar]
  113. Kumar R. Nanotechnology based approaches to enhance aqueous solubility and bioavailability of griseofulvin: A literature survey. J Drug Deliv Sci Technol 2019 53 101221 10.1016/j.jddst.2019.101221
    [Google Scholar]
  114. Nami S. Aghebati-Maleki A. Aghebati-Maleki L. Current applications and prospects of nanoparticles for antifungal drug delivery. EXCLI J 2021 20 562 584 33883983
    [Google Scholar]
  115. Gharat SA Momin MM Khan T Introduction to pharmacokinetics and pharmacodynamic studies of novel drug delivery systems. Pharmacokinetics and Pharmacodynamics of Novel Drug Delivery Systems: From Basic Concepts to Applications: A Machine-Generated Literature Overview Singapore Springer Nature Singapore 2024 1 17 10.1007/978‑981‑99‑7858‑8_1
    [Google Scholar]
  116. Jaradat E. Weaver E. Meziane A. Lamprou D.A. Synthesis and characterization of paclitaxel-loaded PEGylated liposomes by the microfluidics method. Mol Pharm 2023 20 12 6184 6196 10.1021/acs.molpharmaceut.3c00596 37931072
    [Google Scholar]
  117. Lam W.Y. Fresco P. Medication adherence measures: An overview. BioMed Res Int 2015 2015 1 217047 26539470
    [Google Scholar]
  118. Su S. M Kang P. Recent advances in nanocarrier-assisted therapeutics delivery systems. Pharmaceutics 2020 12 9 837 10.3390/pharmaceutics12090837 32882875
    [Google Scholar]
  119. Chauhan N. Vasava P. Khan S.L. Siddiqui F.A. Islam F. Chopra H. Emran T.B. Ethosomes: A novel drug carrier. Ann Med Surg 2022 82 104595 10.1016/j.amsu.2022.104595 36124209
    [Google Scholar]
  120. Alyahya E.M. Alwabsi K. Aljohani A.E. Albalawi R. El-Sherbiny M. Ahmed R. Mortagi Y. Qushawy M. Preparation and optimization of itraconazole transferosomes-loaded HPMC hydrogel for enhancing its antifungal activity: 2^ 3 full factorial design. Polymers 2023 15 4 995 10.3390/polym15040995 36850278
    [Google Scholar]
  121. Nagaraj S. Manivannan S. Narayan S. Potent antifungal agents and use of nanocarriers to improve delivery to the infected site: A systematic review. J Basic Microbiol 2021 61 10 849 873 10.1002/jobm.202100204 34351655
    [Google Scholar]
  122. Aghebati-Maleki A. Dolati S. Ahmadi M. Baghbanzhadeh A. Asadi M. Fotouhi A. Yousefi M. Aghebati-Maleki L. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. J Cell Physiol 2020 235 3 1962 1972 10.1002/jcp.29126 31441032
    [Google Scholar]
  123. Galatage ST Hebalkar AS Dhobale SV Mali OR Kumbhar PS Nikade SV Killedar SG Silver nanoparticles: Properties, synthesis, characterization, applications and future trends. In: Silver Micro-Nanoparticles - Properties, Synthesis, Characterization, and Applications IntechOpen 2021 10.5772/intechopen.99173
    [Google Scholar]
  124. Trindade A.C. de Castro P.A.R.R. Pinto B.C.S. Ambrósio J.A.R. de Oliveira Junior B.M. Beltrame Junior M. Gonçalves E.P. Pinto J.G. Ferreira-Strixino J. Simioni A.R. Gelatin nanoparticles via template polymerization for drug delivery system to photoprocess application in cells. J Biomater Sci Polym Ed 2022 33 5 551 568 10.1080/09205063.2021.1998819 34705614
    [Google Scholar]
  125. Bajaj K.J. Parab B.S. Shidhaye S.S. Nano-transethosomes: A novel tool for drug delivery through skin. Indian J Pharm Educ Res 2021 55 1s s1 s10 10.5530/ijper.55.1s.33
    [Google Scholar]
  126. Rabiei M. Kashanian S. Samavati S.S. Jamasb S. McInnes S.J.P. Nanomaterial and advanced technologies in transdermal drug delivery. J Drug Target 2020 28 4 356 367 10.1080/1061186X.2019.1693579 31851847
    [Google Scholar]
  127. Yuan L. Pan M. Shi K. Hu D. Li Y. Chen Y. Qian Z. Nanocarriers for promoting skin delivery of therapeutic agents. Appl Mater Today 2022 27 101438 10.1016/j.apmt.2022.101438
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128379927250807064636
Loading
/content/journals/cpd/10.2174/0113816128379927250807064636
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test