Skip to content
2000
image of Nutraceutical Rumex nervosus as a Natural Drug Candidate; its Metabolite Profiling and Pharmacological Estimation for Health Applications

Abstract

Background

Vahl is a phenomenal plant from Arabian Peninsula and East African areas. It potentially contains massive therapeutic phytochemicals, including Omeprazole, sitosterols, fatty acids, flavonoids and carotenes. Omeprazole (a commercial drug) is used to treat stomach ulcers, gastroesophageal reflux and cardiac disorders. Beta-sitosterol (commercial drug) reduces cholesterol levels and body swelling. It is also known to manage rheumatoid arthritis.

Methodology

The present study evaluated the pharmacological potential and metabolite profiling of through various extracts. The extraction was performed using different solvents (Petroleum ether, Chloroform, n-Hexane, Butanol, Methanol, and distilled water) through soxhlet extraction method. Serial dilutions of (100-3.125 mg/mL) were prepared. The biological activities, antimicrobial, anti-diabetic, Hemolytic, anti-inflammatory, and antioxidant (DPPH radical Scavenging, Total anti-oxidant and total phenolic content assays) were performed. Statistical analysis of experimental data was carried out by using SPSS Version 20 and Origin 6.0. Data was represented as mean ± standard deviation (n=3). Differences among mean values were determined using Two-way ANOVA and Tukey’s test. The level of statistical significance was set at ≤ 0.05. The potential extracts were further analyzed for phytochemicals through GC-MS and Network pharmacology ( approach).

Results

The plant exhibited the best antioxidant activity (86.7% ± 1.92) at 100 mg/mL with distilled water extract. The highest anti-inflammatory activity (90.64 ± 2.34) (88.31 ± 2.37) was given by n-butanol and distilled water extracts at 100 mg/mL. The optimum anti-diabetic activity (92.78 ± 1.89) was observed at 100 mg/mL with n-butanol.

Discussion

The maximum zone of inhibition was measured with n-butanol extract against (36.67 ± 0.32) at 100 mg/mL, and in the case of again n-butanol extract showed maximum zone of inhibition (30.47 ± 0.32) at 100 mg/mL. The maximum fungal zone of inhibition (22.33 ± 0.40) was noticed with n-butanol extract against at 100 mg/mL, and in the case of maximum fungal zone of inhibition was measured with n-butanol extract (16.20 ± 0.25) at 100 mg/mL. Hemolysis activity was highest (4.12 ± 0.01) with the methanol extract at 3.125 mg/mL. displayed the best activities with n-butanol and distilled water extract. GCMS and network pharmacology combined approach identified seven phytochemicals associated with oxidative stress and infectious diseases (1-Tetradecanol, Stigmast-5-ene, Phthalic acid 2-ethylhexyl isohexyl ester, A-Norcholestan-3-one, 5-ethenyl-, (5.beta.), 16-Heptadecenal, gamma-Sitosterol, Omeprazole). Degree score method selected 10 top hub genes, including AKT1, TNF, and EGFR, as potential targets for the identified phytochemicals. Omeprazole and 1-Tetradecanol are currently being used as medicines for treating gastric problems and inflammation.

Conclusion

has been confirmed as a potential source of these compounds through a multifaceted approach, hence it could thus be considered a safe, significant therapeutic source.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128360594250725110421
2025-08-22
2025-10-27
Loading full text...

Full text loading...

References

  1. Raina A. Laskar R.A. Wani M.R. Khan S. Plant breeding strategies for abiotic stress tolerance in cereals. Advanced Crop Improvement, 2022 Springer 151 177 10.1007/978‑981‑19‑0140‑9_8
    [Google Scholar]
  2. Chaughule R.S. Barve R.S. Role of herbal medicines in the treatment of infectious diseases. Vegetos 2023 37 1 41 51 10.1007/s42535‑022‑00549‑2 36687385
    [Google Scholar]
  3. Ai C. Zou Y. Liu H. Yang Z. Xi J. Traditional Chinese herbal medicine for allergic diseases: A review. Am. J. Chin. Med. 2023 51 4 779 806 10.1142/S0192415X23500374 37060193
    [Google Scholar]
  4. Saggar S. Mir P.A. Kumar N. Chawla A. Uppal J. Shilpa S. Kaur A. Traditional and herbal medicines: Opportunities and challenges. Pharmacognosy Res. 2022 14 2 107 114 10.5530/pres.14.2.15
    [Google Scholar]
  5. More B. Overview of medicine-its importance and impact. Int. J. Med. Res. 2016 1 1 1 8 10.18831/djmed.org/2016011001
    [Google Scholar]
  6. Vetriselvan Subramaniyan Saminathan Kayarohanam Vinoth Kumarasamy Kumarasamy V. Ashok Kumar J Impact of herbal drugs and its clinical application. Int. J. Pharm. Sci. Res. 2019 10 2 1340 1345 10.26452/ijrps.v10i2.537
    [Google Scholar]
  7. Banerjee J. Das A. Sinha M. Saha S. Biological efficacy of medicinal plant extracts in preventing oxidative damage. Hindawi 2018 2108 10.1155/2018/7904349
    [Google Scholar]
  8. Msomi N.Z. Simelane M.B. Herbal medicine. Rijeka, Croatia InTech 2019 215 227
    [Google Scholar]
  9. Anand U. Jacobo-Herrera N. Altemimi A. Lakhssassi N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites 2019 9 11 258 10.3390/metabo9110258 31683833
    [Google Scholar]
  10. Alvin A. Miller K.I. Neilan B.A. Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol. Res. 2014 169 7-8 483 495 10.1016/j.micres.2013.12.009 24582778
    [Google Scholar]
  11. Süntar I. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochem. Rev. 2020 19 5 1199 1209 10.1007/s11101‑019‑09629‑9
    [Google Scholar]
  12. Al-Aklabi A. Al-Khulaidi A.W. Hussain A. Al-Sagheer N. Main vegetation types and plant species diversity along an altitudinal gradient of Al Baha region, Saudi Arabia. Saudi J. Biol. Sci. 2016 23 6 687 697 10.1016/j.sjbs.2016.02.007 27872563
    [Google Scholar]
  13. Al Yahya N.A. Alrumman S.A. Moustafa M.F. Phytochemicals and antimicrobial activities of Rumex nervosus natural populations grown in Sarawat Mountains, Kingdom of Saudi Arabia. Arab. J. Sci. Eng. 2018 43 7 3465 3476 10.1007/s13369‑018‑3136‑z
    [Google Scholar]
  14. Desta K.T. Kim G.S. Hong G.E. Kim Y.H. Lee W.S. Lee S.J. Jin J.S. Abd El-Aty A.M. Shin H.C. Shim J.H. Shin S.C. Dietary-flavonoid-rich flowers of Rumex nervosus Vahl: Liquid chromatography with electrospray ionization tandem mass spectrometry profiling and In vitro anti-inflammatory effects. J. Sep. Sci. 2015 38 19 3345 3353 10.1002/jssc.201500737 26223370
    [Google Scholar]
  15. Al-Sunafi S. Pharmacognostical Study of Rumex nervosus Vahl. Family (Polygonaceae) growing in Yemen. Cairo University Theses 2016
    [Google Scholar]
  16. Ghebremariam YS Demoz MS Fissehaye NA Phytochemical screening and antimicrobial potential of Lepidium sativium and Rumex nervosus in Eritrea. J. adv. med. pharm. 2018 1 8 10.9734/JAMPS/2018/45664
    [Google Scholar]
  17. Quradha M.M. Khan R. Rehman M. Abohajeb A. Chemical composition and in vitro anticancer, antimicrobial and antioxidant activities of essential oil and methanol extract from Rumex nervosus. Nat. Prod. Res. 2019 33 17 2554 2559 10.1080/14786419.2018.1452009 29553812
    [Google Scholar]
  18. Al- Nowihi M. Faisal A. Al- Asbahi G. Antimicrobial activity of Rumex nervosus extract collected from Yemen against local selected isolates pathogens. J. Microbiol. Exp. 2020 8 3 93 96 10.15406/jmen.2020.08.00291
    [Google Scholar]
  19. Gemechu W. Woldekidan S. Teka F. Mohammed J. Ashebir R. Sisay B. Abebe A. Meresa A. Ethnomedicinal uses, phytochemisty and pharmacological activities of Rumex nervosus. J. Anal. Pharm. Res. 2021 10 2 65 69 10.15406/japlr.2021.10.00367
    [Google Scholar]
  20. Jiao X. Jin X. Ma Y. Yang Y. Li J. Liang L. Liu R. Li Z. A comprehensive application: Molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in component-based Chinese medicine. Comput. Biol. Chem. 2021 90 107402 10.1016/j.compbiolchem.2020.107402 33338839
    [Google Scholar]
  21. Simorangkir M. Hutabarat W. Nainggolan B. Silaban S. Antioxidant and antibacterial activities of nonpolar to polar solvent extracts of Sarang Banua (Clerodenrumfragrans Vent Willd) leaves. Rasayan J. Chem. 2019 12 2 959 965 10.31788/RJC.2019.1225095
    [Google Scholar]
  22. Rajesh Y. Khan N.M. Raziq Shaikh A. Mane V.S. Daware G. Dabhade G. Investigation of geranium oil extraction performance by using soxhlet extraction. Mater. Today Proc. 2023 72 2610 2617 10.1016/j.matpr.2022.07.276
    [Google Scholar]
  23. Hatano T. Edamatsu R. Hiramatsu M. Mori A. Fujita Y. Yasuhara T. Yoshida T. Okuda T. Effects of the interaction of tannins with Co-existing substances. VI. Effects of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. (Tokyo) 1989 37 8 2016 2021 10.1248/cpb.37.2016 2480850
    [Google Scholar]
  24. Chen X. Liang L. Han C. Borate suppresses the scavenging activity of gallic acid and plant polyphenol extracts on DPPH radical: A potential interference to DPPH assay. Lebensm. Wiss. Technol. 2020 131 109769 10.1016/j.lwt.2020.109769
    [Google Scholar]
  25. Lee Y.H. Choo C. Watawana M.I. Jayawardena N. Waisundara V.Y. An appraisal of eighteen commonly consumed edible plants as functional food based on their antioxidant and starch hydrolase inhibitory activities. J. Sci. Food Agric. 2015 95 14 2956 2964 10.1002/jsfa.7039 25491037
    [Google Scholar]
  26. Nurcholis W. Sya’bani Putri D.N. Husnawati H. Aisyah S.I. Priosoeryanto B.P. Total flavonoid content and antioxidant activity of ethanol and ethyl acetate extracts from accessions of Amomum compactum fruits. Ann. Agric. Sci. 2021 66 1 58 62 10.1016/j.aoas.2021.04.001
    [Google Scholar]
  27. Agbo M.O. Uzor P.F. Akazie Nneji U.N. Eze Odurukwe C.U. Ogbatue U.B. Mbaoji E.C. Antioxidant, total phenolic and flavonoid content of selected Nigerian medicinal plants. Dhaka Univ. J. Pharm. Sci. 2015 14 1 35 41 10.3329/dujps.v14i1.23733
    [Google Scholar]
  28. Phuyal N. Jha P.K. Raturi P.P. Rajbhandary S. Total phenolic, flavonoid contents, and antioxidant activities of fruit, seed, and bark extracts of Zanthoxylum armatum DC. Scientific World J. 2020 2020 1 8780704 32256249
    [Google Scholar]
  29. Ajaib M. Shafi F. Iqbal S. Bhatti K.H. Siddiqui M.F. Antimicrobial and antioxidant potential of leaves, bark And infloresence of Ipomea Eriocarpa. FUUAST J. Biol. 2021 11 1 1 8
    [Google Scholar]
  30. Aftab A. Yousaf Z. Javaid A. Riaz N. Younas A. Rashid M. Chahel A. A. Antifungal activity of vegetative methanolic extracts of Nigella sativa against Fusarium oxysporum and Macrophomina phaseolina and its phytochemical profiling by GC-MS analysis. Int J Agric Biol 2019 21 3 569 576 10.17957/IJAB/15.0930
    [Google Scholar]
  31. Kumarasinghe N. Dharmadeva S. Galgamuwa L.S. Prasadinie C. In vitro anti-inflammatory activity of Ficus racemosa L. bark using albumin denaturation method. Ayu 2018 39 4 239 242 10.4103/ayu.AYU_27_18 31367147
    [Google Scholar]
  32. Wickramaratne M.N. Punchihewa J.C. Wickramaratne D.B.M. In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC Complement. Altern. Med. 2016 16 1 466 10.1186/s12906‑016‑1452‑y 27846876
    [Google Scholar]
  33. Jaber S.A. In vitro alpha-amylase and alpha-glucosidase inhibitory activity and in vivo antidiabetic activity of Quercus coccifera (Oak tree) leaves extracts. Saudi J. Biol. Sci. 2023 30 7 103688 10.1016/j.sjbs.2023.103688 37292253
    [Google Scholar]
  34. Sharma P. Sharma J.D. In vitro hemolysis of human erythrocytes — by plant extracts with antiplasmodial activity. J. Ethnopharmacol. 2001 74 3 239 243 10.1016/S0378‑8741(00)00370‑6 11274824
    [Google Scholar]
  35. Hussain S. Javed W. Tajammal A. Khalid M. Rasool N. Riaz M. Shahid M. Ahmad I. Muhammad R. Shah S.A.A. Synergistic antibacterial screening of Cymbopogon citratus and Azadirachta indica: phytochemical profiling and antioxidant and hemolytic activities. ACS Omega 2023 8 19 16600 16611 10.1021/acsomega.2c06785 37214690
    [Google Scholar]
  36. Khan I.H. Javaid A. Antifungal activity and GC-MS analysis of n-butanol extract of quinoa (Chenopodium quinoa Willd.) leaves. Bangladesh J. Bot. 2020 49 4 1045 1051 10.3329/bjb.v49i4.52537
    [Google Scholar]
  37. Zhang Z. Li B. Huang J. Huang S. He D. Peng W. Zhang S. A network pharmacology analysis of the active components of the traditional Chinese medicine Zuojinwan in patients with gastric cancer. Med. Sci. Monit. 2020 26 e923327 10.12659/MSM.923327 32866138
    [Google Scholar]
  38. Haido M.H. Matti A.H. Taher S.M. Optimization of extraction conditions of bioactive compounds from Kurdistan species Urtica dioica. Cureus 2024 16 5 e61146 10.7759/cureus.61146 38933631
    [Google Scholar]
  39. Truong D.H. Nguyen D.H. Ta N.T.A. Bui A.V. Do T.H. Nguyen H.C. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti‐inflammatory activities of Severinia buxifolia. J. Food Qual. 2019 2019 1 1 9 10.1155/2019/8178294
    [Google Scholar]
  40. Awang M.A. Aziz R. Sarmidi M.R. Abdullah L. Yong P. Musa N. Comparison of different solvents on the extraction of Melastoma malabathricum leaves using soxhlet extraction method. Pharm. Lett. 2017 8 4 153 157
    [Google Scholar]
  41. Rasul M.G. Conventional extraction methods use in medicinal plants, their advantages and disadvantages. Int. J. Basic Sci. Appl. Comput 2018 2 10 14
    [Google Scholar]
  42. Azwanida N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med. Aromat. Plants 2015 4 196 2167 0412 10.4172/2167‑0412.1000196
    [Google Scholar]
  43. Mir S.A. Manickavasagan A. Shah M.A. Plant Extracts: Applications in the Food Industry. Academic Press 2021
    [Google Scholar]
  44. Nonglang F.P. Khale A. Bhan S. Phytochemical characterization of the ethanolic extract of Kaempferia galanga rhizome for anti-oxidant activities by HPTLC and GCMS. Futur. J. Pharm. Sci. 2022 8 1 9 10.1186/s43094‑021‑00394‑1
    [Google Scholar]
  45. Gulcin I. Buyukokuroglu M.E. Oktay M. Kufrevioglu O.I. On the in vitro antioxidative properties of melatonin. J. Pineal Res. 2002 33 3 167 171 10.1034/j.1600‑079X.2002.20920.x 12220332
    [Google Scholar]
  46. Yıldırım A. Mavi A. Kara A.A. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J. Agric. Food Chem. 2001 49 8 4083 4089 10.1021/jf0103572 11513714
    [Google Scholar]
  47. Calleja L.F. Yoval-Sánchez B. Hernández-Esquivel L. Gallardo-Pérez J.C. Sosa-Garrocho M. Marín-Hernández Á. Jasso-Chávez R. Macías-Silva M. Salud Rodríguez-Zavala J. Activation of ALDH1A1 by omeprazole reduces cell oxidative stress damage. FEBS J. 2021 288 13 4064 4080 10.1111/febs.15698 33400378
    [Google Scholar]
  48. Rudra D.S. Pal U. Chowdhury N. Maiti N.C. Bagchi A. Swarnakar S. Omeprazole prevents stress induced gastric ulcer by direct inhibition of MMP-2/TIMP-3 interactions. Free Radic. Biol. Med. 2022 181 221 234 10.1016/j.freeradbiomed.2022.02.007 35150824
    [Google Scholar]
  49. Mueller M. Hobiger S. Jungbauer A. Anti-inflammatory activity of extracts from fruits, herbs and spices. Food Chem. 2010 122 4 987 996 10.1016/j.foodchem.2010.03.041
    [Google Scholar]
  50. Yesmin S. Paul A. Naz T. Rahman A.B.M.A. Akhter S.F. Wahed M.I.I. Emran T.B. Siddiqui S.A. Membrane stabilization as a mechanism of the anti-inflammatory activity of ethanolic root extract of Choi (Piper chaba). Clinical Phytoscience 2020 6 1 59 10.1186/s40816‑020‑00207‑7
    [Google Scholar]
  51. Hasturk H. Jones V.L. Andry C. Kantarci A. 1-Tetradecanol complex reduces progression of Porphyromonas gingivalis-induced experimental periodontitis in rabbits. J. Periodontol. 2007 78 5 924 932 10.1902/jop.2007.060293 17470028
    [Google Scholar]
  52. Kobayashi T. Ohta Y. Inui K. Yoshino J. Nakazawa S. Protective effect of omeprazole against acute gastric mucosal lesions induced by compound 48/80, a mast cell degranulator, in rats. Pharmacol. Res. 2002 46 1 75 84 10.1016/S1043‑6618(02)00034‑8 12208124
    [Google Scholar]
  53. Hamsalakshmi Joghee S. Kalarikkal S.P. Sundaram G.M. Durai Ananda Kumar T. Chidambaram S.B. Chemical profiling and in-vitro anti-inflammatory activity of bioactive fraction(s) from Trichodesma indicum (L.) R.Br. against LPS induced inflammation in RAW 264.7 murine macrophage cells. J. Ethnopharmacol. 2021 279 114235 10.1016/j.jep.2021.114235 34044081
    [Google Scholar]
  54. Vo Van L. Pham E.C. Nguyen C.V. Duong N.T.N. Vi Le Thi T. Truong T.N. In vitro and in vivo antidiabetic activity, isolation of flavonoids, and in silico molecular docking of stem extract of Merremia tridentata (L.). Biomed. Pharmacother. 2022 146 112611 10.1016/j.biopha.2021.112611 35062075
    [Google Scholar]
  55. Elbermawi A. Darwish M.S. El-Awady A.A. Zaki A.A. Qiu L. Samra R.M. Isolation and biological activities of compounds from Rumex vesicarius L. and their use as a component of a synbiotic preparation. Food Chem. X 2022 14 100306 10.1016/j.fochx.2022.100306 35492253
    [Google Scholar]
  56. Sujatha S. Anand S. Sangeetha K.N. Shilpa K. Lakshmi J. Balakrishnan A. Lakshmi B.S. Biological evaluation of (3β)-STIGMAST-5-EN-3-OL as potent anti-diabetic agent in regulating glucose transport using in vitro model. Int. J. Diabetes Mellit. 2010 2 2 101 109 10.1016/j.ijdm.2009.12.013
    [Google Scholar]
  57. Ahmed S.N. Kalaivani P. Amudha P. Usharani B. Identification of bioactive phytocomponents of hydroalcoholic extract of enhalus acoroides by gas chromatography- Mass spectrometry analysis. Res J Pharm Technol 2021 14 12 6511 6515 10.52711/0974‑360X.2021.01126
    [Google Scholar]
  58. Hatami A. Phytochemical profiling and antibacterial activities of Ziziphora tenuior root extracts: A molecular docking against VanA of vancomycin-resistant enterococci. Biotech 2024 14 9 217 10.1007/s13205‑024‑04056‑w.
    [Google Scholar]
  59. Silva D.H.A.D. Barbosa H.M. Silva J.F.D. Moura C.A. Gomes D.A. Almeida J.R.G.S. Lira E.C. Antidiabetic properties of oral treatment of hexane and chloroform fractions of Morus nigra leaves in streptozotocin-induced rats. An. Acad. Bras. Cienc. 2021 93 Suppl. 4 e20210744 10.1590/0001‑3765202120210744 34909830
    [Google Scholar]
  60. Qadri H. Haseeb Shah A. Mudasir Ahmad S. Alshehri B. Almilaibary A. Ahmad Mir M. Natural products and their semi-synthetic derivatives against antimicrobial-resistant human pathogenic bacteria and fungi. Saudi J. Biol. Sci. 2022 29 9 103376 10.1016/j.sjbs.2022.103376 35874656
    [Google Scholar]
  61. Castillo S.L. Heredia N. Contreras J.F. García S. Extracts of edible and medicinal plants in inhibition of growth, adherence, and cytotoxin production of Campylobacter jejuni and Campylobacter coli. J. Food Sci. 2011 76 6 M421 M426 10.1111/j.1750‑3841.2011.02229.x 22417513
    [Google Scholar]
  62. Zayed M.F. Mahfoze R.A. El-kousy S.M. Al-Ashkar E.A. In-vitro antioxidant and antimicrobial activities of metal nanoparticles biosynthesized using optimized Pimpinella anisum extract. Colloids Surf. A Physicochem. Eng. Asp. 2020 585 124167 10.1016/j.colsurfa.2019.124167
    [Google Scholar]
  63. Sonia N.S. Divakar S. George T. Phytoconstituents in milk yam (Ipomoea digitata L.) tubers. Res. J. Agric. Sci. 2021 12 2 433 438
    [Google Scholar]
  64. Aljaafari M.N. Alkhoori M.A. Hag-Ali M. Cheng W.H. Lim S.H.E. Loh J.Y. Lai K.S. Contribution of aldehydes and their derivatives to antimicrobial and immunomodulatory activities. Molecules 2022 27 11 3589 10.3390/molecules27113589 35684521
    [Google Scholar]
  65. Baldwin C. Olarewaju O. Hemolytic Anemia. StatPearls StatPearls Publishing 2020 https://www.ncbi.nlm.nih.gov/books/NBK
    [Google Scholar]
  66. Liaqat N. Jahan N. Khalil-ur-Rahman Anwar T. Qureshi H. Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Front Chem. 2022 10 952006 10.3389/fchem.2022.952006 36105303
    [Google Scholar]
  67. Alshameri A.W. Owais M. Altaf I. Farheen S. Rumex nervosus mediated green synthesis of silver nanoparticles and evaluation of its In vitro antibacterial, and cytotoxic activity. OpenNano 2022 8 100084 10.1016/j.onano.2022.100084
    [Google Scholar]
  68. Moon D.O. Kim M.O. Choi Y.H. Kim G.Y. β-Sitosterol induces G2/M arrest, endoreduplication, and apoptosis through the Bcl-2 and PI3K/Akt signaling pathways. Cancer Lett. 2008 264 2 181 191 10.1016/j.canlet.2008.01.032 18314257
    [Google Scholar]
  69. Huang L. Zhu X. Zhou S. Cheng Z. Shi K. Zhang C. Shao H. Phthalic acid esters: Natural sources and biological activities. Toxins 2021 13 7 495 10.3390/toxins13070495 34357967
    [Google Scholar]
  70. Tripathi N. Kumar S. Singh R. Singh C.J. Singh P. Varshney V.K. Isolation and identification of γ-sitosterol by GC-MS from Roots of Girardinia heterophylla. Orient. J. Chem. 2013 29 2 705 707 10.13005/ojc/290245
    [Google Scholar]
  71. Sundarraj S. Thangam R. Sreevani V. Kaveri K. Gunasekaran P. Achiraman S. Kannan S. γ-Sitosterol from Acacia nilotica L. induces G2/M cell cycle arrest and apoptosis through c-Myc suppression in MCF-7 and A549 cells. J. Ethnopharmacol. 2012 141 3 803 809 10.1016/j.jep.2012.03.014 22440953
    [Google Scholar]
  72. Rao P.P. Shenoy Belle V. Nayak A.G. Kumar N. Rao V. Cheruku S.P. Prabhu K. Evaluation of the merit of ethanolic extract of Annona reticulata as an anti-cancer agent in human colon cancer cell lines (HCT-116). F1000 Res. 2023 12 1571 10.12688/f1000research.141542.2 39866203
    [Google Scholar]
  73. Fass R. Shapiro M. Dekel R. Sewell J. Systematic review: Proton‐pump inhibitor failure in gastro‐oesophageal reflux disease – where next? Aliment. Pharmacol. Ther. 2005 22 2 79 94 10.1111/j.1365‑2036.2005.02531.x 16011666
    [Google Scholar]
  74. Li X.Q. Andersson T.B. Ahlström M. Weidolf L. Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metab. Dispos. 2004 32 8 821 827 10.1124/dmd.32.8.821 15258107
    [Google Scholar]
  75. Guan N.N. Wang C.C. Zhang L. Huang L. Li J.Q. Piao X. In silico prediction of potential miRNA‐disease association using an integrative bioinformatics approach based on kernel fusion. J. Cell. Mol. Med. 2020 24 1 573 587 10.1111/jcmm.14765 31747722
    [Google Scholar]
  76. Lipinski C.A. Lombardo F. Dominy B.W. Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. Adv. Drug Deliv. Rev. 2001 46 1-3 3 26 10.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  77. Muegge I. Heald S.L. Brittelli D. Simple selection criteria for drug-like chemical matter. J. Med. Chem. 2001 44 12 1841 1846 10.1021/jm015507e 11384230
    [Google Scholar]
  78. Ghose A.K. Viswanadhan V.N. Wendoloski J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1999 1 1 55 68 10.1021/cc9800071 10746014
    [Google Scholar]
  79. Veber D.F. Johnson S.R. Cheng H.Y. Smith B.R. Ward K.W. Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002 45 12 2615 2623 10.1021/jm020017n 12036371
    [Google Scholar]
  80. Egan W.J. Merz K.M. Jr Baldwin J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000 43 21 3867 3877 10.1021/jm000292e 11052792
    [Google Scholar]
  81. Bradley J. TNF-mediated inflammatory disease. J Pathol. 2008 14 2 149 160 10.1002/path.2287.
    [Google Scholar]
  82. Carver R.S. Stevenson M.C. Scheving L.A. Russell W.E. Diverse expression of ErbB receptor proteins during rat liver development and regeneration. Gastroenterology 2002 123 6 2017 2027 10.1053/gast.2002.37060 12454858
    [Google Scholar]
  83. Cohen M.M. Jr The AKT genes and their roles in various disorders. Am. J. Med. Genet. A. 2013 161 12 2931 2937 10.1002/ajmg.a.36101 24039187
    [Google Scholar]
  84. Mitsudomi T. Yatabe Y. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010 277 2 301 308 10.1111/j.1742‑4658.2009.07448.x 19922469
    [Google Scholar]
  85. Shahzadi Z. Yousaf Z. Anjum I. Bilal M. Yasin H. Aftab A. Booker A. Ullah R. Bari A. Network pharmacology and molecular docking: Combined computational approaches to explore the antihypertensive potential of Fabaceae species. Bioresour Bioprocess 2024 11 1 53 10.1186/s40643‑024‑00764‑6
    [Google Scholar]
  86. Zhu N. Hou J. Molecular mechanism of the anti-inflammatory effects of Sophorae Flavescentis Aiton identified by network pharmacology. Sci Rep 2021 11 1005 10.1038/s41598‑020‑80297‑y
    [Google Scholar]
  87. Arogbodo J.O. Faluyi O.B. Igbe F.O. In vitro antimicrobial activity of ethanolic leaf extracts of Hibiscus asper Hook. F. and Hibiscus sabdariffa L. on some pathogenic bacteria. J Sci Res Med Biol Sci 2021 2 3 1 12 10.47631/jsrmbs.v2i3.304
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128360594250725110421
Loading
/content/journals/cpd/10.2174/0113816128360594250725110421
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: omeprazole ; Drug ; allopathic drugs ; rumex ; pharmacology ; metabolite
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test