Current Pharmaceutical Design - Current Issue
Volume 32, Issue 3, 2026
-
-
New Phenylpropanoid from Croton velutinus (Euphorbiaceae) as Potential Anticancer Natural Product Targeting MAPKs: Review with Docking Approach
More LessCancer encompasses a group of diseases characterized by uncontrolled cell growth and the ability to invade or spread to other parts of the body. It is considered a major public health issue, being the second leading cause of death worldwide. A crucial signaling pathway altered in many cancers is the Mitogen-Activated Protein Kinase (MAPK) pathway, which is associated with the regulation of cell proliferation, differentiation, and survival, playing a central role in the development and maintenance of malignant tumors. Natural products have made significant contributions to pharmacotherapy, particularly in the field of cancer treatment. The Euphorbiaceae family, comprising approximately 300 genera and over 5,000 species, is known for its rich diversity of bioactive compounds. Croton velutinus (Euphorbiaceae), a species predominantly found in Northeast Brazil, has recently garnered attention due to its novel phenylpropanoids isolated from its roots. Among these, (E)-4-(1-epoxy-7,8-propen) phenylbenzoate (CV2) has demonstrated potential cytotoxic activity against various human tumor cell lines, including B16F10, MCF-7, HL60, HCT-116, and HepG2. This review aims to highlight the antitumor activity of phenylpropanoids derived from the Euphorbiaceae family. Furthermore, through molecular docking studies, we explored the binding efficacy of CV2 with MAPKs (ERK, JNK, p38), comparing it to 25 other phenylpropanoid compounds reported in the literature, revealing promising interactions that could be further investigated for therapeutic applications.
-
-
-
Sugammadex in Perioperative Neuromuscular Management: Current Advances and Best Practices
More LessAuthors: Xuehua Zhou and Xia ShenNeuromuscular blocking agents (NMBAs) are crucial for anesthesia, enabling intubation and optimal surgical conditions. Timely reversal of blockade is critical for safe extubation and recovery. While neostigmine, a traditional reversal agent, is effective for moderate blockade, it has limitations in reversing deep blockade and requires anticholinergics to mitigate side effects. Sugammadex, a novel agent, addresses these limitations by selectively encapsulating aminosteroid NMBAs like rocuronium, providing rapid and reliable reversal. It demonstrates significant advantages, including faster recovery and reduced postoperative complications, especially in high-risk populations such as elderly patients or those with organ dysfunction. However, challenges such as high costs and potential adverse effects, including hypersensitivity and cardiovascular events, restrict its routine use. This review explores sugammadex’s pharmacological features, clinical applications, and cost-effectiveness, offering strategies to optimize its use in complex surgical scenarios while addressing current limitations.
-
-
-
Cytotoxic Effects of Dysphania ambrosioides Extracts on Oral Squamous Cell Carcinoma
More LessIntroductionDysphania ambrosioides, commonly known as “mastruz,” is a medicinal plant traditionally used for its therapeutic properties, including antimicrobial and anti-inflammatory effects. Previous studies have also suggested its antitumor potential. However, its role in oral squamous cell carcinoma (OSCC) remains unexplored. This study aimed to evaluate the in vitro cytotoxic effects of D. ambrosioides extracts on SCC4 (OSCC) and HaCaT (human keratinocyte) cell lines.
MethodsCrude extracts were obtained using different methods, including hexanic, ethanolic, hydroethanolic (7:3), and aqueous extractions, all performed ultrasonic-assisted extraction. The extracts were tested at concentrations ranging from 7.81 µg/mL to 1000 µg/mL using 2-fold serial dilutions. Cell viability was assessed after 48 hours of treatment using the MTT assay, with DMSO as the control.
ResultsThe extracts exhibited concentration-dependent cytotoxic effects on both cell lines, with HaCaT cells showing greater sensitivity. However, the lack of selectivity toward tumor cells over normal cells suggests a broad-spectrum cytotoxic activity without tumor-specific therapeutic targeting.
ConclusionThese findings highlight the need for further fractionation of the extracts and identification of the bioactive compounds responsible for the observed effects. Although the extracts demonstrated significant cytotoxic activity, their therapeutic potential should not be limited to cytotoxicity alone. Future studies should explore additional biological activities, such as anti-inflammatory or immunomodulatory properties, to fully understand the therapeutic applications of D. ambrosioides.
-
-
-
Exploration of Pharmacological Mechanism of Kaempferol in Treating Rheumatoid Arthritis based on Network Pharmacology, Molecular Modelling, and Experimental Validation
More LessAuthors: Zhenquan Wei, Yi Liu, Yanyi Du, Hanqi Lu, Haixin Yang, Yongyan Zhu, Jianxin Diao, Qiang Xu, Cuiping Jiang, Nan Li and Dongmei PanBackgroundThe autoimmune inflammatory disease known as rheumatoid arthritis (RA) has a complicated and poorly understood etiology. Fibroblast-like synoviocytes (FLSs) have tumor-like characteristics in RA, including aggressive growth and heightened activation that leads to the release of pro-inflammatory factors. These processes are essential for the gradual deterioration of joint tissues. Kaempferol, with the chemical formula 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one, is found in many different types of plants and plant families. The pharmacological effects of this substance have been well-documented. The benefits of this substance encompass protection for the heart and brain, as well as fighting inflammation, bacteria, cancer, osteoporosis, and allergies. It also has properties that can help with anxiety, pain relief, and hormonal balance. However, its precise function in the management of RA is still unclear.
ObjectiveTo investigate the effect of kaempferol on apoptosis in RA FLSs and elucidate the underlying mechanisms.
MethodsWe used the CCK-8 assay to assess the effects of different kaempferol concentrations on RA FLSs. We also used flow cytometry with Annexin V-FITC/PI staining to analyse cell cycle distribution and quantify apoptotic cells. To verify apoptosis, the TUNEL test was employed. Important proteins associated with apoptosis were verified to be expressed using western blotting. Finally, network pharmacology analysis was used to identify potential kaempferol targets, and their interactions with AKT1, PIK3R1, and HSP90AA1 proteins were studied using molecular docking and molecular dynamics simulations.
ResultsKaempferol treatment significantly increased apoptosis in RA FLSs, up-regulating the pro-apoptotic protein Bax and down-regulating the anti-apoptotic protein Bcl-2. Specifically, kaempferol at 100 and 200 μM increased the apoptosis index to 29.77 ± 6.02% and 55.63 ± 11.05%, respectively, compared to the control. The induction of caspase-9 and caspase-3 cleavage was observed, indicating the activation of the mitochondrial pathway. Kaempferol also inhibited the phosphorylation of PI3K and Akt, with a significant reduction in their activation. Molecular docking studies demonstrated that kaempferol interacted with AKT1, PIK3R1, and HSP90AA1 proteins, with binding energies of -6.51, -4.26, and -6.51 kcal/mol, respectively, suggesting a strong affinity and potential direct impact on these proteins.
ConclusionKaempferol induces apoptosis in RA FLSs by inhibiting phosphorylation of the PI3K/Akt signaling pathway, increasing levels of pro-apoptotic proteins, and decreasing levels of anti-apoptotic proteins. Thus, kaempferol, a naturally occurring flavonoid, has great promise in the management of RA.
-
-
-
Integrated Network Pharmacology and Molecular Modeling Approach for Potential PTGS2 Inhibitors against Rheumatoid Arthritis
More LessAuthors: Huda Abbasi, Maria Sharif, Peter John and Attya BhattiIntroductionRheumatoid arthritis (RA) is a chronic inflammatory condition of the joints and a leading cause of global disability. However, the use of current anti-inflammatory treatments is often limited by serious side effects and multi-organ toxicity, necessitating the exploration of safer alternatives.
ObjectiveThis study aims to investigate the anti-rheumatic potential of natural compounds of Cassia angustifolia as small-molecule inhibitors of PTGS2.
MethodsThe therapeutic potential of C. angustifolia was evaluated through antioxidant and anti-inflammatory assays. Gas chromatography-mass spectrometry (GC-MS) was used to identify its constituents. ADMET profiling (absorption, distribution, metabolism, excretion, and toxicity), network pharmacology, and molecular dynamics simulation were employed to uncover the active compounds against PTGS2 for RA treatment.
ResultsC. angustifolia extract contained significant phenolic (18.2 ± 0.008 mg GAE/g DW) and flavonoid (27.57 ± 0.03 mg RE/g DW) content. GC-MS yielded 288 compounds of which four passed the toxicity parameters. Protein-protein interaction analysis revealed 10 RA-related targets, with PTGS2 emerging as the most prominent one. Molecular docking and simulations revealed that compound-2 [2-Benzo [1,3] dioxol-5-yl-8-methoxy-3-nitro-2H-chromene] and compound-4 [alpha-hydroxy-N-[2-methoxyphenyl]-benzene propanamide] binds strongly with PTGS2 (-7.7 kcal/mol and -7.9 kcal/mol, respectively) predicting its stable interaction.
ConclusionC. angustifolia compounds present a significant potential as PTGS2 inhibitors, warranting further in vitro and in vivo investigations to confirm their therapeutic efficacy against RA.
-
-
-
Design, Molecular Docking, In Vitro and In Vivo Evaluation of Dimenhydrinate-Cyclodextrin Complex for Fast-Disintegrating Tablet
More LessIntroductionThis study aimed to formulate and evaluate dimenhydrinate (DMH) as fast-disintegrating tablets (FDTs) complexed with β-cyclodextrin (β-CD) to enhance its solubility, dissolution profile, and pharmacological performance.
MethodsA DMH:β-CD inclusion complex was prepared at a 1:1 molar ratio using the kneading method. Characterization was performed through phase solubility studies, FTIR analysis, molecular docking, and in vitro dissolution testing. FDTs were developed using various superdisintegrants and assessed for quality attributes of a tablet, including hardness, friability, wetting time, water absorption ratio, and drug content.
ResultsPhase solubility and FTIR analyses confirmed the formation of a stable DMH:β-CD complex. Molecular docking indicated a binding affinity of -4.2 kcal/mol between β-CD and diphenhydramine. Among the FDT formulations, CP3 containing 9% crospovidone showed the best performance, with a disintegration time of 4.3 seconds and the highest drug release rate. In vivo pharmacological tests demonstrated enhanced sedative and antiemetic activities of the optimized FDTs compared to conventional DMH formulations.
DiscussionThe findings suggest that cyclodextrin-based complexation combined with orodispersible tablet technology can significantly enhance DMH's pharmacological efficacy and patient compliance. However, additional investigations on long-term stability, pharmacokinetics, and clinical scalability are warranted.
ConclusionThe DMH:β-CD FDTs developed in this study offer promising improvements in solubility, dissolution, and therapeutic performance, indicating their potential for better clinical outcomes and patient acceptability.
-
Volumes & issues
-
Volume 32 (2026)
-
Volume 31 (2025)
-
Volume 30 (2024)
-
Volume 29 (2023)
-
Volume 28 (2022)
-
Volume 27 (2021)
-
Volume 26 (2020)
-
Volume 25 (2019)
-
Volume 24 (2018)
-
Volume 23 (2017)
-
Volume 22 (2016)
-
Volume 21 (2015)
-
Volume 20 (2014)
-
Volume 19 (2013)
-
Volume 18 (2012)
-
Volume 17 (2011)
-
Volume 16 (2010)
-
Volume 15 (2009)
-
Volume 14 (2008)
-
Volume 13 (2007)
-
Volume 12 (2006)
-
Volume 11 (2005)
-
Volume 10 (2004)
-
Volume 9 (2003)
-
Volume 8 (2002)
-
Volume 7 (2001)
-
Volume 6 (2000)
Most Read This Month Most Read RSS feed