Skip to content
2000
image of Innovations in mRNA-Based Nanoparticle for the Treatment of Ocular Disorders: A Comprehensive Review

Abstract

The eye, due to its complex anatomy and physiology, presents numerous barriers that restrict the access of drug molecules to the site of action for the maintenance of optimal concentration. Thus, limited drug bioavailability is one of the significant issues with commercially existing drug delivery systems in achieving overall therapeutic effectiveness. Recently, the field of ocular health and management has garnered much attention for the innovation of efficient nanotechnology approaches to overcome the constraints imposed by the intricate anatomy and physiology of the eye. Hypothesizing that the conjugation of mRNA-based therapies with the latest nano delivery systems can overcome these barriers, this review was designed to explore the outstanding potential of these approaches for the management of ocular disorders. With extensive investigations of current findings, the authors believe that such integrations present exciting opportunities to pave the way for the development of effective approaches for various ocular disorders such as uveitis, Leber congenital amaurosis, age-related macular degeneration, retinitis pigmentosa, and many more. Moreover, the approaches exploiting the combination of mRNA and nanotechnology offer effective solutions to address the limitations of currently available management strategies. This review presents various innovative mRNA-based nanotechnology approaches, their mechanisms, challenges, and prospects for further development, focusing on the immense potential of mRNA-based strategies to revolutionize the landscape of ocular therapeutics.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128391408250804231522
2025-08-22
2025-10-18
Loading full text...

Full text loading...

References

  1. Burton M.J. Ramke J. Marques A.P. The lancet global health commission on global eye health: Vision beyond 2020. Lancet Glob. Health 2021 9 4 e489 e551 10.1016/S2214‑109X(20)30488‑5 33607016
    [Google Scholar]
  2. Flaxman S.R. Bourne R.R.A. Resnikoff S. Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis. Lancet Glob. Health 2017 5 12 e1221 e1234 10.1016/S2214‑109X(17)30393‑5 29032195
    [Google Scholar]
  3. Koenig K.M. Gross J.M. Evolution and development of complex eyes: A celebration of diversity. Development 2020 147 19 dev182923 10.1242/dev.182923 33051250
    [Google Scholar]
  4. Neal S. McCulloch K.J. Napoli F.R. Daly C.M. Coleman J.H. Koenig K.M. Co-option of the limb patterning program in cephalopod eye development. BMC Biol. 2022 20 1 1 10.1186/s12915‑021‑01182‑2 34983491
    [Google Scholar]
  5. Wu Y. Feng X. Liu X. In-built ultraconformal interphases enable high-safety practical lithium batteries. Energy Storage Mater. 2021 43 248 257 10.1016/j.ensm.2021.09.007
    [Google Scholar]
  6. Subrizi A. del Amo E.M. Korzhikov-Vlakh V. Tennikova T. Ruponen M. Urtti A. Design principles of ocular drug delivery systems: Importance of drug payload, release rate, and material properties. Drug Discov. Today 2019 24 8 1446 1457 10.1016/j.drudis.2019.02.001 30738982
    [Google Scholar]
  7. Irimia T. Ghica M. Popa L. Anuţa V. Arsene A.L. Dinu-Pîrvu C.E. Strategies for improving ocular drug bioavailability and corneal wound healing with chitosan-based delivery systems. Polymers 2018 10 11 1221 10.3390/polym10111221 30961146
    [Google Scholar]
  8. Onugwu A.L. Nwagwu C.S. Onugwu O.S. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J. Control. Release 2023 354 465 488 10.1016/j.jconrel.2023.01.018 36642250
    [Google Scholar]
  9. Antas P. Carvalho C. Cabral-Teixeira J. de Lemos L. Seabra M.C. Toward low-cost gene therapy: mRNA-based therapeutics for treatment of inherited retinal diseases. Trends Mol. Med. 2024 30 2 136 146 10.1016/j.molmed.2023.11.009 38044158
    [Google Scholar]
  10. Bordet T. Behar-Cohen F. Ocular gene therapies in clinical practice: Viral vectors and nonviral alternatives. Drug Discov. Today 2019 24 8 1685 1693 10.1016/j.drudis.2019.05.038 31173914
    [Google Scholar]
  11. Drag S. Dotiwala F. Upadhyay A.K. Gene therapy for retinal degenerative diseases: Progress, challenges, and future directions. Invest. Ophthalmol. Vis. Sci. 2023 64 7 39 10.1167/iovs.64.7.39 37389545
    [Google Scholar]
  12. Gemayel M.C. Bhatwadekar A.D. Ciulla T. RNA therapeutics for retinal diseases. Expert Opin. Biol. Ther. 2021 21 5 603 613 10.1080/14712598.2021.1856365 33307874
    [Google Scholar]
  13. Yasir M. Puri D. Kumar S. Sharma K. Mishra S. Gaur P. Development of nitrendipine nanoliposome for transdermal drug delivery: Preparation, characterization and permeation studies. Drug Deliv. Lett. 2017 7 1 48 53 10.2174/2210303107666170210093559
    [Google Scholar]
  14. Yousefi Adlsadabad S. Hanrahan J.W. Kakkar A. mRNA delivery: Challenges and advances through polymeric soft nanoparticles. Int. J. Mol. Sci. 2024 25 3 1739 10.3390/ijms25031739 38339015
    [Google Scholar]
  15. Sharma H. Tyagi S.J. Chandra P. Role of exosomes in Parkinson’s and Alzheimer’s diseases. In: Exosomes Based Drug Delivery Strategies for Brain Disorders. Singapore Springer Nature 2024 147 182 10.1007/978‑981‑99‑8373‑5_6
    [Google Scholar]
  16. Huang P. Deng H. Zhou Y. Chen X. The roles of polymers in mRNA delivery. Matter 2022 5 6 1670 1699 10.1016/j.matt.2022.03.006
    [Google Scholar]
  17. Singh S. Nagalakshmi D. Sharma K.K. Ravichandiran V. Natural antioxidants for neuroinflammatory disorders and possible involvement of Nrf2 pathway: A review. Heliyon 2021 7 2 e06216 10.1016/j.heliyon.2021.e06216 33659743
    [Google Scholar]
  18. Meng Z. O’Keeffe-Ahern J. Lyu J. Pierucci L. Zhou D. Wang W. A new developing class of gene delivery: Messenger RNA-based therapeutics. Biomater. Sci. 2017 5 12 2381 2392 10.1039/C7BM00712D 29063914
    [Google Scholar]
  19. Qin S. Tang X. Chen Y. mRNA-based therapeutics: Powerful and versatile tools to combat diseases. Signal Transduct. Target. Ther. 2022 7 1 166 10.1038/s41392‑022‑01007‑w 35597779
    [Google Scholar]
  20. Basha S. Mukunda D.C. Rodrigues J. A comprehensive review of protein misfolding disorders, underlying mechanism, clinical diagnosis, and therapeutic strategies. Ageing Res. Rev. 2023 90 102017 10.1016/j.arr.2023.102017 37468112
    [Google Scholar]
  21. Gupta R. Sharma K.K. Afzal M. Anticonvulsant activity of ethanol extracts of Vetiveria zizanioides roots in experimental mice. Pharm. Biol. 2013 51 12 1521 1524 10.3109/13880209.2013.799710 23863081
    [Google Scholar]
  22. Poulin F. Sonenberg N. Mechanism of translation initiation in eukaryotes. In: Madame Curie Bioscience Database. Austin (TX) Landes Bioscience 2013
    [Google Scholar]
  23. Mathew E. Rajiah K. Sharma K.K. Consumer’s perception on design and layout of consumer medical information leaflets on obesity and lipid lowering drugs. J. Clin. Diagn. Res. 2013 7 12 2800 2802 10.7860/JCDR/2013/6468.3762 24551641
    [Google Scholar]
  24. Zhang G. Tang T. Chen Y. Huang X. Liang T. mRNA vaccines in disease prevention and treatment. Signal Transduct. Target. Ther. 2023 8 1 365 10.1038/s41392‑023‑01579‑1 37726283
    [Google Scholar]
  25. Wang J. Ding Y. Chong K. Recent advances in lipid nanoparticles and their safety concerns for mRNA delivery. Vaccines 2024 12 10 1148 10.3390/vaccines12101148 39460315
    [Google Scholar]
  26. Zhang W. Jiang Y. He Y. Lipid carriers for mRNA delivery. Acta Pharm. Sin. B 2023 13 10 4105 4126 10.1016/j.apsb.2022.11.026 37799378
    [Google Scholar]
  27. Yan J. Zhang H. Li G. Su J. Wei Y. Xu C. Lipid nanovehicles overcome barriers to systemic RNA delivery: Lipid components, fabrication methods, and rational design. Acta Pharm. Sin. B 2024 14 2 579 601 10.1016/j.apsb.2023.10.012 38322344
    [Google Scholar]
  28. Haque M.A. Shrestha A. Mikelis C.M. Mattheolabakis G. Comprehensive analysis of lipid nanoparticle formulation and preparation for RNA delivery. Int. J. Pharm. X 2024 8 100283 10.1016/j.ijpx.2024.100283 39309631
    [Google Scholar]
  29. Nikitin M.P. Zelepukin I.V. Shipunova V.O. Sokolov I.L. Deyev S.M. Nikitin P.I. Enhancement of the blood-circulation time and performance of nanomedicines via the forced clearance of erythrocytes. Nat. Biomed. Eng. 2020 4 7 717 731 10.1038/s41551‑020‑0581‑2 32632229
    [Google Scholar]
  30. Jeong M. Lee Y. Park J. Jung H. Lee H. Lipid nanoparticles (LNPs) for in vivo RNA delivery and their breakthrough technology for future applications. Adv. Drug Deliv. Rev. 2023 200 114990 10.1016/j.addr.2023.114990 37423563
    [Google Scholar]
  31. Liu Y. Huang Y. He G. Guo C. Dong J. Wu L. Development of mRNA lipid nanoparticles: Targeting and therapeutic aspects. Int. J. Mol. Sci. 2024 25 18 10166 10.3390/ijms251810166 39337651
    [Google Scholar]
  32. Naahidi S. Jafari M. Edalat F. Raymond K. Khademhosseini A. Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release 2013 166 2 182 194 10.1016/j.jconrel.2012.12.013 23262199
    [Google Scholar]
  33. Karayianni M. Sentoukas T. Skandalis A. Pippa N. Pispas S. Chitosan-based nanoparticles for nucleic acid delivery: Technological aspects, applications, and future perspectives. Pharmaceutics 2023 15 7 1849 10.3390/pharmaceutics15071849 37514036
    [Google Scholar]
  34. Sabin J. Alatorre-Meda M. Miñones J. Domínguez-Arca V. Prieto G. New insights on the mechanism of polyethylenimine transfection and their implications on gene therapy and DNA vaccines. Colloids Surf. B Biointerfaces 2022 210 112219 10.1016/j.colsurfb.2021.112219 34836707
    [Google Scholar]
  35. Iqbal S. Zhao Z. Poly (β amino esters) copolymers: Novel potential vectors for delivery of genes and related therapeutics. Int. J. Pharm. 2022 611 121289 10.1016/j.ijpharm.2021.121289 34775041
    [Google Scholar]
  36. Yousefpour P. Ni K. Irvine D.J. Targeted modulation of immune cells and tissues using engineered biomaterials. Nat. Rev. Bioeng. 2023 1 2 107 124 10.1038/s44222‑022‑00016‑2 37772035
    [Google Scholar]
  37. Sung Y.K. Kim S.W. Recent advances in polymeric drug delivery systems. Biomater. Res. 2020 24 1 12 10.1186/s40824‑020‑00190‑7 32537239
    [Google Scholar]
  38. Vavilis T. Stamoula E. Ainatzoglou A. mRNA in the context of protein replacement therapy. Pharmaceutics 2023 15 1 166 10.3390/pharmaceutics15010166 36678793
    [Google Scholar]
  39. Iqbal Z. Rehman K. Mahmood A. Exosome for mRNA delivery: Strategies and therapeutic applications. J. Nanobiotechnology 2024 22 1 395 10.1186/s12951‑024‑02634‑x 38965553
    [Google Scholar]
  40. Kim H.I. Park J. Zhu Y. Wang X. Han Y. Zhang D. Recent advances in extracellular vesicles for therapeutic cargo delivery. Exp. Mol. Med. 2024 56 4 836 849 10.1038/s12276‑024‑01201‑6 38556545
    [Google Scholar]
  41. Kooijmans S.A.A. Schiffelers R.M. Zarovni N. Vago R. Modulation of tissue tropism and biological activity of exosomes and other extracellular vesicles: New nanotools for cancer treatment. Pharmacol. Res. 2016 111 487 500 10.1016/j.phrs.2016.07.006 27394168
    [Google Scholar]
  42. Abdelsalam M. Ahmed M. Osaid Z. Hamoudi R. Harati R. Insights into exosome transport through the blood–brain barrier and the potential therapeutical applications in brain diseases. Pharmaceuticals 2023 16 4 571 10.3390/ph16040571 37111328
    [Google Scholar]
  43. Chheda U. Pradeepan S. Esposito E. Strezsak S. Fernandez-Delgado O. Kranz J. Factors affecting stability of RNA – temperature, length, concentration, ph, and buffering species. J. Pharm. Sci. 2024 113 2 377 385 10.1016/j.xphs.2023.11.023 38042343
    [Google Scholar]
  44. Jella K.K. Nasti T.H. Li Z. Malla S.R. Buchwald Z.S. Khan M.K. Exosomes, their biogenesis and role in inter-cellular communication, tumor microenvironment and cancer immunotherapy. Vaccines 2018 6 4 69 10.3390/vaccines6040069 30261592
    [Google Scholar]
  45. Zou Z. Li H. Xu G. Hu Y. Zhang W. Tian K. Current knowledge and future perspectives of exosomes as nanocarriers in diagnosis and treatment of diseases. Int. J. Nanomedicine 2023 18 4751 4778 10.2147/IJN.S417422 37635911
    [Google Scholar]
  46. Chen H. Wang L. Zeng X. Exosomes, a new star for targeted delivery. Front. Cell Dev. Biol. 2021 9 751079 10.3389/fcell.2021.751079 34692704
    [Google Scholar]
  47. Li M. Li S. Du C. Exosomes from different cells: Characteristics, modifications, and therapeutic applications. Eur. J. Med. Chem. 2020 207 112784 10.1016/j.ejmech.2020.112784 33007722
    [Google Scholar]
  48. Afzal M. Kazmi I. Alzarea S.I. Acute toxicity studies and psychopharmacological effects of eucalyptus globulus leaf oil in rodents. Int. J. Pharmacol. 2022 18 673 681 10.3923/ijp.2022.673.681
    [Google Scholar]
  49. Lu R.M. Hsu H.E. Perez S.J.L.P. Current landscape of mRNA technologies and delivery systems for new modality therapeutics. J. Biomed. Sci. 2024 31 1 89 10.1186/s12929‑024‑01080‑z 39256822
    [Google Scholar]
  50. Taherdoost H. Ghofrani A. AI’s role in revolutionizing personalized medicine by reshaping pharmacogenomics and drug therapy. Intelligent Pharmacy 2024 2 5 643 650 10.1016/j.ipha.2024.08.005
    [Google Scholar]
  51. Shi Y. Shi M. Wang Y. You J. Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications. Signal Transduct. Target. Ther. 2024 9 1 322 10.1038/s41392‑024‑02002‑z 39543114
    [Google Scholar]
  52. Kwon S. Kwon M. Im S. Lee K. Lee H. mRNA vaccines: The most recent clinical applications of synthetic mRNA. Arch. Pharm. Res. 2022 45 4 245 262 10.1007/s12272‑022‑01381‑7 35426547
    [Google Scholar]
  53. Monroe J. Eyler D.E. Mitchell L. N1-Methylpseudouridine and pseudouridine modifications modulate mRNA decoding during translation. Nat. Commun. 2024 15 1 8119 10.1038/s41467‑024‑51301‑0 39284850
    [Google Scholar]
  54. Hou X. Zaks T. Langer R. Dong Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021 6 12 1078 1094 10.1038/s41578‑021‑00358‑0 34394960
    [Google Scholar]
  55. Javaid A. Sharma K.K. Verma A. Mudavath S.L. Niacin-loaded liquid crystal nanoparticles ameliorate prostaglandin d2-mediated niacin-induced flushing and hepatotoxicity. ACS Appl. Nano Mater. 2024 7 1 444 454 10.1021/acsanm.3c04649
    [Google Scholar]
  56. Grunberger D. Weinstein I.B. Jacobson K.B. Codon recognition by enzymatically mischarged valine transfer ribonucleic acid. Science 1969 166 3913 1635 1637 10.1126/science.166.3913.1635 4902680
    [Google Scholar]
  57. Sharma K. Fatma N. Ali Z. Neuropathy; its profile and experimental nerve injury neuropathic pain models. RE:view 2023 29 42 3343 3356 10.22541/au.168795192.29939872/v1 38058089
    [Google Scholar]
  58. Nakayama M. Antigen presentation by MHC-dressed cells. Front. Immunol. 2015 5 672 10.3389/fimmu.2014.00672 25601867
    [Google Scholar]
  59. Gouirand V. Habrylo I. Rosenblum M.D. Regulatory T. Regulatory T cells and inflammatory mediators in autoimmune disease. J. Invest. Dermatol. 2022 142 3 774 780 10.1016/j.jid.2021.05.010 34284898
    [Google Scholar]
  60. Gretzmeier C. Eiselein S. Johnson G.R. Degradation of protein translation machinery by amino acid starvation-induced macroautophagy. Autophagy 2017 13 6 1064 1075 10.1080/15548627.2016.1274485 28453381
    [Google Scholar]
  61. Boo S.H. Kim Y.K. The emerging role of RNA modifications in the regulation of mRNA stability. Exp. Mol. Med. 2020 52 3 400 408 10.1038/s12276‑020‑0407‑z 32210357
    [Google Scholar]
  62. Javaid A. Singh A. Sharma K.K. Transdermal delivery of niacin through polysaccharide films ameliorates cutaneous flushing in experimental wistar rats. AAPS PharmSciTech 2024 25 5 101 10.1208/s12249‑024‑02812‑y 38714629
    [Google Scholar]
  63. Wang Y.S. Kumari M. Chen G.H. mRNA-based vaccines and therapeutics: An in-depth survey of current and upcoming clinical applications. J. Biomed. Sci. 2023 30 1 84 10.1186/s12929‑023‑00977‑5 37805495
    [Google Scholar]
  64. Leppek K. Byeon G.W. Kladwang W. Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nat. Commun. 2022 13 1 1536 10.1038/s41467‑022‑28776‑w 35318324
    [Google Scholar]
  65. Li W. Deng X. Chen J. RNA-binding proteins in regulating mRNA stability and translation: Roles and mechanisms in cancer. Semin. Cancer Biol. 2022 86 Pt 2 664 677 10.1016/j.semcancer.2022.03.025 35381329
    [Google Scholar]
  66. Lai W.J.C. Kayedkhordeh M. Cornell E.V. mRNAs and lncRNAs intrinsically form secondary structures with short end-to-end distances. Nat. Commun. 2018 9 1 4328 10.1038/s41467‑018‑06792‑z 30337527
    [Google Scholar]
  67. Sebastian-delaCruz M. Gonzalez-Moro I. Olazagoitia-Garmendia A. Castellanos-Rubio A. Santin I. The role of lncRNAs in gene expression regulation through mRNA stabilization. Noncoding RNA 2021 7 1 3 10.3390/ncrna7010003 33466464
    [Google Scholar]
  68. Meister G. Argonaute proteins: Functional insights and emerging roles. Nat. Rev. Genet. 2013 14 7 447 459 10.1038/nrg3462 23732335
    [Google Scholar]
  69. Kim J.H. Modena M.S. Sehgal E. Courney A. Neudorf C.W. Arribere J.A. SMG-6 mRNA cleavage stalls ribosomes near premature stop codons in vivo. Nucleic Acids Res. 2022 50 15 8852 8866 10.1093/nar/gkac681 35950494
    [Google Scholar]
  70. Nouaille S. Mondeil S. Finoux A.L. Moulis C. Girbal L. Cocaign-Bousquet M. The stability of an mRNA is influenced by its concentration: A potential physical mechanism to regulate gene expression. Nucleic Acids Res. 2017 45 20 11711 11724 10.1093/nar/gkx781 28977619
    [Google Scholar]
  71. Barckmann B. Simonelig M. Control of maternal mRNA stability in germ cells and early embryos. Biochim. Biophys. Acta. Gene Regul. Mech. 2013 1829 6-7 714 724 10.1016/j.bbagrm.2012.12.011 23298642
    [Google Scholar]
  72. Chen L. Deng H. Cui H. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018 9 6 7204 7218 10.18632/oncotarget.23208 29467962
    [Google Scholar]
  73. Wilson D.M. Cookson M.R. Van Den Bosch L. Zetterberg H. Holtzman D.M. Dewachter I. Hallmarks of neurodegenerative diseases. Cell 2023 186 4 693 714 10.1016/j.cell.2022.12.032 36803602
    [Google Scholar]
  74. Sayed N. Allawadhi P. Khurana A. Gene therapy: Comprehensive overview and therapeutic applications. Life Sci. 2022 294 120375 10.1016/j.lfs.2022.120375 35123997
    [Google Scholar]
  75. Malakondaiah S. Julius A. Ponnambalam D. Gene silencing by RNA interference: A review. Genome Instab. Dis. 2024 5 225 241 10.1007/s42764‑024‑00135‑7
    [Google Scholar]
  76. Porwal M. Rastogi V. Chandra P. Sharma K.K. Varshney P. Significance of phytoconstituents in modulating cell signalling pathways for the treatment of pancreatic cancer. Rev. Bras. Farmacogn. 2024 35 23 40 10.1007/S43450‑024‑00589‑6
    [Google Scholar]
  77. Schaefer M. Kapoor U. Jantsch M.F. Understanding RNA modifications: The promises and technological bottlenecks of the ‘epitranscriptome’. Open Biol. 2017 7 5 170077 10.1098/rsob.170077 28566301
    [Google Scholar]
  78. Mofidfar M. Abdi B. Ahadian S. Drug delivery to the anterior segment of the eye: A review of current and future treatment strategies. Int. J. Pharm. 2021 607 120924 10.1016/j.ijpharm.2021.120924 34324989
    [Google Scholar]
  79. Ramsay E. Lajunen T. Bhattacharya M. Selective drug delivery to the retinal cells: Biological barriers and avenues. J. Control. Release 2023 361 1 19 10.1016/j.jconrel.2023.07.028 37481214
    [Google Scholar]
  80. Díaz-Coránguez M. Ramos C. Antonetti D.A. The inner blood-retinal barrier: Cellular basis and development. Vision Res. 2017 139 123 137 10.1016/j.visres.2017.05.009 28619516
    [Google Scholar]
  81. Wang S. Li W. Chen M. Cao Y. Lu W. Li X. The retinal pigment epithelium: Functions and roles in ocular diseases. Fundamental Research 2024 4 6 1710 1718 10.1016/j.fmre.2023.08.011 39734536
    [Google Scholar]
  82. Masoudi S. Biochemistry of human tear film: A review. Exp. Eye Res. 2022 220 109101 10.1016/j.exer.2022.109101 35508212
    [Google Scholar]
  83. Cwiklik L. Tear film lipid layer: A molecular level view. Biochim. Biophys. Acta Biomembr. 2016 1858 10 2421 2430 10.1016/j.bbamem.2016.02.020 26898663
    [Google Scholar]
  84. Böhm E.W. Buonfiglio F. Voigt A.M. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biol. 2023 68 102967 10.1016/j.redox.2023.102967 38006824
    [Google Scholar]
  85. Hodges R.R. Dartt D.A. Tear film mucins: Front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins. Exp. Eye Res. 2013 117 62 78 10.1016/j.exer.2013.07.027 23954166
    [Google Scholar]
  86. Ahmed S. Amin M.M. Sayed S. Ocular drug delivery: A comprehensive review. AAPS PharmSciTech 2023 24 2 66 10.1208/s12249‑023‑02516‑9 36788150
    [Google Scholar]
  87. Sridhar M. Anatomy of cornea and ocular surface. Indian J. Ophthalmol. 2018 66 2 190 194 10.4103/ijo.IJO_646_17 29380756
    [Google Scholar]
  88. Espana E.M. Birk D.E. Composition, structure and function of the corneal stroma. Exp. Eye Res. 2020 198 108137 10.1016/j.exer.2020.108137 32663498
    [Google Scholar]
  89. Hosoya K. Lee V.H.L. Kim K.J. Roles of the conjunctiva in ocular drug delivery: A review of conjunctival transport mechanisms and their regulation. Eur. J. Pharm. Biopharm. 2005 60 2 227 240 10.1016/j.ejpb.2004.12.007 15939235
    [Google Scholar]
  90. Cholkar K. Dasari S.R. Pal D. Mitra A.K. Ocular transporters and receptors: Their role in drug delivery. Woodhead Publishing Series in Biomedicine 2013 1 36 10.1533/9781908818317.1
    [Google Scholar]
  91. Sharma H. Chandra P. Challenges and future prospects: A benefaction of phytoconstituents on molecular targets pertaining to Alzheimer’s disease. Int. J. Pharm. Investig. 2023 14 1 117 126 10.5530/ijpi.14.1.15
    [Google Scholar]
  92. Bhol N.K. Bhanjadeo M.M. Singh A.K. The interplay between cytokines, inflammation, and antioxidants: mechanistic insights and therapeutic potentials of various antioxidants and anti-cytokine compounds. Biomed. Pharmacother. 2024 178 117177 10.1016/j.biopha.2024.117177 39053423
    [Google Scholar]
  93. Tenchov R. Bird R. Curtze A.E. Zhou Q. Lipid nanoparticles—from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 2021 15 11 16982 17015 10.1021/acsnano.1c04996 34181394
    [Google Scholar]
  94. Elmowafy E.M. Tiboni M. Soliman M.E. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/] poly(lactic-co-glycolic acid) micro and nanoparticles. J. Pharm. Investig. 2019 49 4 347 380 10.1007/s40005‑019‑00439‑x
    [Google Scholar]
  95. Poon I.K.H. Lucas C.D. Rossi A.G. Ravichandran K.S. Apoptotic cell clearance: Basic biology and therapeutic potential. Nat. Rev. Immunol. 2014 14 3 166 180 10.1038/nri3607 24481336
    [Google Scholar]
  96. Forrester J.V. McMenamin P.G. Dando S.J. CNS infection and immune privilege. Nat. Rev. Neurosci. 2018 19 11 655 671 10.1038/s41583‑018‑0070‑8 30310148
    [Google Scholar]
  97. Stepp M.A. Menko A.S. Immune responses to injury and their links to eye disease. Transl. Res. 2021 236 52 71 10.1016/j.trsl.2021.05.005 34051364
    [Google Scholar]
  98. Forrester J.V. McMenamin P.G. Evolution of the ocular immune system. Eye 2024 2024 1 10 10.1038/s41433‑024‑03512‑4 39653763
    [Google Scholar]
  99. Mitchell M.J. Billingsley M.M. Haley R.M. Wechsler M.E. Peppas N.A. Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021 20 2 101 124 10.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  100. Suk JS Xu Q Kim N Hanes J Ensign LM PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 2016 99 Pt A 28 51 10.1016/j.addr.2015.09.012 26456916
    [Google Scholar]
  101. Allyn M.M. Luo R.H. Hellwarth E.B. Swindle-Reilly K.E. Considerations for polymers used in ocular drug delivery. Front. Med. 2022 8 787644 10.3389/fmed.2021.787644 35155469
    [Google Scholar]
  102. Franz S. Rammelt S. Scharnweber D. Simon J.C. Immune responses to implants – A review of the implications for the design of immunomodulatory biomaterials. Biomaterials 2011 32 28 6692 6709 10.1016/j.biomaterials.2011.05.078 21715002
    [Google Scholar]
  103. Nair J.B. Joseph A.M. PS Joseph M.M. Impact of nanoparticles on immune cells and their potential applications in cancer immunotherapy. Biocell 2024 48 11 1579 1602 10.32604/biocell.2024.054879
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128391408250804231522
Loading
/content/journals/cpd/10.2174/0113816128391408250804231522
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: ocular disorders ; nanotechnology ; glaucoma ; bioavailability ; mRNA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test