Skip to content
2000
image of Formulation and in vitro Evaluation of Targeted Chemotherapy of Crizotinib-loaded polymeric Nanoparticles on Cancer Cell Lines

Abstract

Introduction

Crizotinib, an inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase, holds significant potential for the treatment of lung cancer. However, its toxicities present a major challenge to its clinical use. To enhance the targeted delivery of Crizotinib to lung tumors, polymeric-based nanoparticles were developed.

Methods

Crizotinib-loaded polymeric nanoparticles were prepared using a nano-precipitation method, incorporating stearic acid as the lipid, polyethylene glycol as the polymer, and Tween 80 as the surfactant. Key formulation parameters were optimized to achieve high-quality nanoparticles.

Results

The optimized formulation exhibited a mean particle size of 142 nm, a zeta potential of -31.9 mV, an entrapment efficiency of 82.35%, and an drug release of 60.69%. These nanoparticles were then tested on lung cancer cell lines to assess their cytotoxicity, apoptosis induction, and anti-proliferative effects on the cell cycle. studies confirmed that the Crizotinib-loaded nanoparticles exerted targeted effects on non-small cell lung carcinoma (NSCLC) cell lines, showing maximum inhibitory effects. One year of storage at 4°C, stability testing demonstrated that the lyophilized nanoparticles maintained their effectiveness.

Discussion

crizotinib nano-formulations were assessed for a variety of physicochemical and characterization. Five different formulations were designed and optimized on the basis of Particle size, Zeta potential, %EE, and drug release. Optimum formulation also showed maximum inhibitory effect on the cancer cell line.

Conclusion

This nanotechnology approach offers a promising targeted drug delivery system for Crizotinib, characterized by small particle size, high encapsulation efficiency (EE), and optimal drug release.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128412622250730015435
2025-08-12
2025-12-13
Loading full text...

Full text loading...

References

  1. Saslow D. Solomon D. Lawson H.W. American cancer society, american society for colposcopy and cervical pathology, and american society for clinical pathology screening guidelines for the prevention and early detection of cervical cancer. Am. J. Clin. Pathol. 2012 137 4 516 542 10.1309/AJCPTGD94EVRSJCG 22431528
    [Google Scholar]
  2. Cigarette smoking among adults--United States, 1999. MMWR Morb. Mortal. Wkly. Rep. 2001 50 40 869 873 11666113
    [Google Scholar]
  3. Vaporciyan A.A. Nesbitt J.C. Lee J.S. Stevens C. Komaki R. Roth J.A. Cancer of the lung. Holland-Frei Cancer Medicine. 5th ed BC Decker 2000
    [Google Scholar]
  4. Vincent R.G. Pickren J.W. Lane W.W. The changing histopathology of lung cancer.A review of 1682 cases. Cancer 1977 39 4 1647 1655 10.1002/1097‑0142(197704)39:4<1647:AID‑CNCR2820390439>3.0.CO;2‑H 192433
    [Google Scholar]
  5. Bilello K.S. Murin S. Matthay R.A. Epidemiology, etiology, and prevention of lung cancer. Clin. Chest Med. 2002 23 1 1 25 10.1016/S0272‑5231(03)00057‑1 11901905
    [Google Scholar]
  6. Fontham E.T.H. Correa P. Reynolds P. Environmental tobacco smoke and lung cancer in nonsmoking women. A multicenter study. JAMA 1994 271 22 1752 1759 10.1001/jama.1994.03510460044031 8196118
    [Google Scholar]
  7. Gazdar A.F. Gao B. Minna J.D. Lung cancer cell lines: Useless artifacts or invaluable tools for medical science? Lung Cancer 2010 68 3 309 318 10.1016/j.lungcan.2009.12.005 20079948
    [Google Scholar]
  8. Gazdar A.F. Girard L. Lockwood W.W. Lam W.L. Minna J.D. Lung cancer cell lines as tools for biomedical discovery and research. J. Natl. Cancer Inst. 2010 102 17 1310 1321 10.1093/jnci/djq279 20679594
    [Google Scholar]
  9. Ahmadi F. Saeedi M. Akbari J. Nanohybrid based on (Mn, Zn) ferrite nanoparticles functionalized with chitosan and sodium alginate for loading of curcumin against human breast cancer cells. AAPS PharmSciTech 2023 24 8 222 10.1208/s12249‑023‑02683‑9 37935931
    [Google Scholar]
  10. Wistuba I.I. Bryant D. Behrens C. Comparison of features of human lung cancer cell lines and their corresponding tumors. Clin. Cancer Res. 1999 5 5 991 1000 10353731
    [Google Scholar]
  11. Blanco R. Iwakawa R. Tang M. A gene-alteration profile of human lung cancer cell lines. Hum. Mutat. 2009 30 8 1199 1206 10.1002/humu.21028 19472407
    [Google Scholar]
  12. Wang P. Gao Q. Suo Z. Identification and characterization of cells with cancer stem cell properties in human primary lung cancer cell lines. PLoS One 2013 8 3 e57020 10.1371/journal.pone.0057020 23469181
    [Google Scholar]
  13. Ho M.M. Ng A.V. Lam S. Hung J.Y. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res. 2007 67 10 4827 4833 10.1158/0008‑5472.CAN‑06‑3557 17510412
    [Google Scholar]
  14. Molina J.R. Adjei A.A. Jett J.R. Advances in chemotherapy of non-small cell lung cancer. Chest 2006 130 4 1211 1219 10.1378/chest.130.4.1211 17035458
    [Google Scholar]
  15. Schiller J.H. Harrington D. Belani C.P. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N. Engl. J. Med. 2002 346 2 92 98 10.1056/NEJMoa011954 11784875
    [Google Scholar]
  16. Tan M. He C. Jiang W. Development of solid lipid nanoparticles containing total flavonoid extract from Dracocephalum moldavica L. and their therapeutic effect against myocardial ischemia–reperfusion injury in rats. Int. J. Nanomedicine 2017 12 3253 3265 10.2147/IJN.S131893 28458544
    [Google Scholar]
  17. Shaw A.T. Yasothan U. Kirkpatrick P. Crizotinib. Nat. Rev. Drug Discov. 2011 10 12 897 898 10.1038/nrd3600 22129984
    [Google Scholar]
  18. Heigener D.F. Reck M. Crizotinib. Small Molecules in Oncology 2018 57 65
    [Google Scholar]
  19. Crucho C.I.C. Barros M.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C 2017 80 771 784 10.1016/j.msec.2017.06.004 28866227
    [Google Scholar]
  20. Jiang Z.M. Dai S.P. Xu Y.Q. Crizotinib-loaded polymeric nanoparticles in lung cancer chemotherapy. Med. Oncol. 2015 32 7 193 10.1007/s12032‑015‑0636‑5 26025486
    [Google Scholar]
  21. Martínez Rivas C.J. Tarhini M. Badri W. Nanoprecipitation process: From encapsulation to drug delivery. Int. J. Pharm. 2017 532 1 66 81 10.1016/j.ijpharm.2017.08.064 28801107
    [Google Scholar]
  22. Luque-Alcaraz A.G. Lizardi-Mendoza J. Goycoolea F.M. Higuera-Ciapara I. Argüelles-Monal W. Preparation of chitosan nanoparticles by nanoprecipitation and their ability as a drug nanocarrier. RSC Advances 2016 6 64 59250 59256 10.1039/C6RA06563E
    [Google Scholar]
  23. Pal S.L. Jana U. Manna P.K. Mohanta G.P. Manavalan R. Nanoparticle: An overview of preparation and characterization. J. Appl. Pharm. Sci. 2011 ••• 228 234
    [Google Scholar]
  24. Tarhini M. Benlyamani I. Hamdani S. Protein-based nanoparticle preparation via nanoprecipitation method. Materials 2018 11 3 394 10.3390/ma11030394 29518919
    [Google Scholar]
  25. Jaiswal J. Kumar Gupta S. Kreuter J. Preparation of biodegradable cyclosporine nanoparticles by high-pressure emulsification-solvent evaporation process. J. Control. Release 2004 96 1 169 178 10.1016/j.jconrel.2004.01.017 15063039
    [Google Scholar]
  26. Shah R. Eldridge D. Palombo E. Harding I. Optimisation and stability assessment of solid lipid nanoparticles using particle size and zeta potential. J. Physiol. Sci. 2014 25 1 59 75
    [Google Scholar]
  27. Nalwa H.S. Encyclopedia of nanoscience and nanotechnology. No Title 2004
    [Google Scholar]
  28. Yang X. Trinh H.M. Agrahari V. Sheng Y. Pal D. Mitra A.K. Nanoparticle-based topical ophthalmic gel formulation for sustained release of hydrocortisone butyrate. AAPS PharmSciTech 2016 17 2 294 306 10.1208/s12249‑015‑0354‑5 26085051
    [Google Scholar]
  29. McCarron P.A. Woolfson A.D. Keating S.M. Sustained release of 5-fluorouracil from polymeric nanoparticles. J. Pharm. Pharmacol. 2000 52 12 1451 1459 10.1211/0022357001777658 11197072
    [Google Scholar]
  30. Mehnert W. Mäder K. Solid lipid nanoparticles. Adv. Drug Deliv. Rev. 2012 64 83 101 10.1016/j.addr.2012.09.021 11311991
    [Google Scholar]
  31. Langdon S.P. Cancer cell culture. Springer 2010 360
    [Google Scholar]
  32. Shoieb A. Elgayyar M. Dudrick P. Bell J. Tithof P. In vitro inhibition of growth and induction of apoptosis in cancer cell lines by thymoquinone. Int. J. Oncol. 2003 22 1 107 113 10.3892/ijo.22.1.107 12469192
    [Google Scholar]
  33. Borowicz S. Van Scoyk M. Avasarala S. The soft agar colony formation assay. J. Vis. Exp. 2014 92 e51998 25408172
    [Google Scholar]
  34. Ottanà R. Carotti S. Maccari R. In vitro antiproliferative activity against human colon cancer cell lines of representative 4-thiazolidinones. Part I. Bioorg. Med. Chem. Lett. 2005 15 17 3930 3933 10.1016/j.bmcl.2005.05.093 15993594
    [Google Scholar]
  35. Jain A. Jain S.K. In vitro and cell uptake studies for targeting of ligand anchored nanoparticles for colon tumors. Eur. J. Pharm. Sci. 2008 35 5 404 416 10.1016/j.ejps.2008.08.008 18824095
    [Google Scholar]
  36. Sun J. Zhang J. Yang H. Microfluidic cell cycle analysis of spread cells by DAPI staining. Micromachines 2017 8 2 36 10.3390/mi8020036
    [Google Scholar]
  37. Liu Y. Yang G. Zou D. Formulation of nanoparticles using mixing-induced nanoprecipitation for drug delivery. Ind. Eng. Chem. Res. 2020 59 9 4134 4149 10.1021/acs.iecr.9b04747
    [Google Scholar]
  38. Abyadeh M. Karimi Zarchi A.A. Faramarzi M.A. Amani A. Evaluation of factors affecting size and size distribution of chitosan-electrosprayed nanoparticles. Avicenna J. Med. Biotechnol. 2017 9 3 126 132 28706607
    [Google Scholar]
  39. Schwarz J.A. Contescu C.I. Putyera K. Dekker encyclopedia of nanoscience and nanotechnology. CRC press 2004
    [Google Scholar]
  40. Preet Kaur S. Rao R. Hussain A. Khatkar S. Preparation and characterization of rivastigmine loaded chitosan nanoparticles. J Pharm Sci Res 2011 3 5 1227
    [Google Scholar]
  41. Naureen F. Shah Y. Shah S.I. Formulation development of mirtazapine liquisolid compacts: Optimization using central composite design. Molecules 2022 27 13 4005 10.3390/molecules27134005 35807252
    [Google Scholar]
  42. Khattak M.A. Iqbal Z. Nasir F. Tamoxifen-loaded eudragit nanoparticles: Quality by design approach for optimization of nanoparticles as delivery system. Pharmaceutics 2023 15 10 2373 10.3390/pharmaceutics15102373 37896131
    [Google Scholar]
  43. Mozafari M.R. Pardakhty A. Azarmi S. Jazayeri J.A. Nokhodchi A. Omri A. Role of nanocarrier systems in cancer nanotherapy. J. Liposome Res. 2009 19 4 310 321 10.3109/08982100902913204 19863166
    [Google Scholar]
  44. Sharma N. Madan P. Lin S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. J Econ Adm Sci 2016 11 3 404 416 10.1016/j.ajps.2015.09.004
    [Google Scholar]
  45. Devrim B. Bozkır A. Canefe K. Preparation and evaluation of PLGA microparticles as carrier for the pulmonary delivery of rhIL-2: I. Effects of some formulation parameters on microparticle characteristics. J. Microencapsul. 2011 28 6 582 594 10.3109/02652048.2011.599438 21827360
    [Google Scholar]
  46. Satari N. Taymouri S. Varshosaz J. Rostami M. Mirian M. Preparation and evaluation of inhalable dry powder containing glucosamine-conjugated gefitinib SLNs for lung cancer therapy. Drug Dev. Ind. Pharm. 2020 46 8 1265 1277 10.1080/03639045.2020.1788063 32594775
    [Google Scholar]
  47. Ali M.E. Lamprecht A. Spray freeze drying as an alternative technique for lyophilization of polymeric and lipid-based nanoparticles. Int. J. Pharm. 2017 516 1-2 170 177 10.1016/j.ijpharm.2016.11.023 27845211
    [Google Scholar]
  48. Shahgaldian P. Gualbert J. Aïssa K. Coleman A.W. A study of the freeze-drying conditions of calixarene based solid lipid nanoparticles. Eur. J. Pharm. Biopharm. 2003 55 2 181 184 10.1016/S0939‑6411(02)00196‑0 12637094
    [Google Scholar]
  49. Radomskasoukharev A. Stability of lipid excipients in solid lipid nanoparticles. Adv. Drug Deliv. Rev. 2007 59 6 411 418 10.1016/j.addr.2007.04.004 17553589
    [Google Scholar]
  50. Bhardwaj U. Burgess D.J. A novel USP apparatus 4 based release testing method for dispersed systems. Int. J. Pharm. 2010 388 1-2 287 294 10.1016/j.ijpharm.2010.01.009 20083176
    [Google Scholar]
  51. Heurtault B. Saulnier P. Pech B. Proust J-E. Benoit J-P. Physico-chemical stability of colloidal lipid particles. Biomaterials 2003 24 23 4283 4300 10.1016/S0142‑9612(03)00331‑4 12853260
    [Google Scholar]
  52. Reddy K.B. Mangold G.L. Tandon A.K. Inhibition of breast cancer cell growth in vitro by a tyrosine kinase inhibitor. Cancer Res. 1992 52 13 3636 3641 1617636
    [Google Scholar]
  53. Redman C. Scott J.A. Baines A.T. Inhibitory effect of selenomethionine on the growth of three selected human tumor cell lines. Cancer Lett. 1998 125 1-2 103 110 10.1016/S0304‑3835(97)00497‑7 9566703
    [Google Scholar]
  54. Qi L. Xu Z. Chen M. In vitro and in vivo suppression of hepatocellular carcinoma growth by chitosan nanoparticles. Eur. J. Cancer 2007 43 1 184 193 10.1016/j.ejca.2006.08.029 17049839
    [Google Scholar]
  55. Pappa G. Lichtenberg M. Iori R. Barillari J. Bartsch H. Gerhäuser C. Comparison of growth inhibition profiles and mechanisms of apoptosis induction in human colon cancer cell lines by isothiocyanates and indoles from Brassicaceae. Mutat. Res. 2006 599 1-2 76 87 10.1016/j.mrfmmm.2006.01.007 16500682
    [Google Scholar]
  56. Alimova I.N. Liu B. Fan Z. Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle 2009 8 6 909 915 10.4161/cc.8.6.7933 19221498
    [Google Scholar]
  57. Burlison J.A. Avila C. Vielhauer G. Lubbers D.J. Holzbeierlein J. Blagg B.S.J. Development of novobiocin analogues that manifest anti-proliferative activity against several cancer cell lines. J. Org. Chem. 2008 73 6 2130 2137 10.1021/jo702191a 18293999
    [Google Scholar]
  58. Mueller J. Kretzschmar I. Volkmer R. Boisguerin P. Comparison of cellular uptake using 22 CPPs in 4 different cell lines. Bioconjug. Chem. 2008 19 12 2363 2374 10.1021/bc800194e 19053306
    [Google Scholar]
  59. Su Y. Xu J. Shen P. Cellular uptake and cytotoxic evaluation of fullerenol in different cell lines. Toxicology 2010 269 2-3 155 159 10.1016/j.tox.2009.11.015 19941929
    [Google Scholar]
  60. Guo Y. Wang L. Lv P. Zhang P. Transferrin-conjugated doxorubicin-loaded lipid-coated nanoparticles for the targeting and therapy of lung cancer. Oncol. Lett. 2015 9 3 1065 1072 10.3892/ol.2014.2840 25663858
    [Google Scholar]
  61. Mahmoud A.M. Deambrogi C. Advancements in nanotechnology for targeted and controlled drug delivery in hematologic malignancies: Shaping the future of targeted therapeutics. Applied Biosciences 2025 4 1 16 10.3390/applbiosci4010016
    [Google Scholar]
  62. Yuan H. Miao J. Du Y. You J. Hu F. Zeng S. Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. Int. J. Pharm. 2008 348 1-2 137 145 10.1016/j.ijpharm.2007.07.012 17714896
    [Google Scholar]
  63. Sabatelle R.C. Geller A. Li S. Synthesis of amphiphilic amino poly-amido-saccharide and poly(lactic) acid block copolymers and fabrication of paclitaxel-loaded mucoadhesive nanoparticles. Bioconjug. Chem. 2024 35 9 1429 1440 10.1021/acs.bioconjchem.4c00325 39159059
    [Google Scholar]
  64. Zhang L. Chan J.M. Gu F.X. Self-assembled lipid--polymer hybrid nanoparticles: A robust drug delivery platform. ACS Nano 2008 2 8 1696 1702 10.1021/nn800275r 19206374
    [Google Scholar]
  65. Silant’ev V.E. Shmelev M.E. Belousov A.S. How to develop drug delivery system based on carbohydrate nanoparticles targeted to brain tumors. Polymers 2023 15 11 2516 10.3390/polym15112516 37299315
    [Google Scholar]
  66. Lin S. Ke Z. Liu K. Identification of DAPI-stained normal, inflammatory, and carcinoma hepatic cells based on hyperspectral microscopy. Biomed. Opt. Express 2022 13 4 2082 2090 10.1364/BOE.451006 35519237
    [Google Scholar]
  67. Abdellatif A.A.H. Ali A.T. Bouazzaoui A. Alsharidah M. Al Rugaie O. Tolba N.S. Formulation of polymeric nanoparticles loaded sorafenib; evaluation of cytotoxicity, molecular evaluation, and gene expression studies in lung and breast cancer cell lines. Nanotechnol. Rev. 2022 11 1 987 1004 10.1515/ntrev‑2022‑0058
    [Google Scholar]
  68. Chen Y. Ma J. Wang F. Amygdalin induces apoptosis in human cervical cancer cell line HeLa cells. Immunopharmacol. Immunotoxicol. 2013 35 1 43 51 10.3109/08923973.2012.738688 23137229
    [Google Scholar]
  69. Ferro A. Mestre T. Carneiro P. Sahumbaiev I. Seruca R. Sanches J.M. Blue intensity matters for cell cycle profiling in fluorescence DAPI-stained images. Lab. Invest. 2017 97 5 615 625 10.1038/labinvest.2017.13 28263290
    [Google Scholar]
  70. Nasr M. Hashem F. Abdelmoniem R. Tantawy N. Teiama M. In vitro cytotoxicity and cellular uptake of tamoxifen citrate-loaded polymeric micelles. AAPS PharmSciTech 2020 21 8 306 10.1208/s12249‑020‑01850‑6 33151433
    [Google Scholar]
  71. Tolis C. Peters G.J. Ferreira C.G. Pinedo H.M. Giaccone G. Cell cycle disturbances and apoptosis induced by topotecan and gemcitabine on human lung cancer cell lines. Eur. J. Cancer 1999 35 5 796 807 10.1016/S0959‑8049(98)00425‑0 10505042
    [Google Scholar]
  72. Takeshima M. Ono M. Higuchi T. Chen C. Hara T. Nakano S. Anti‐proliferative and apoptosis‐inducing activity of lycopene against three subtypes of human breast cancer cell lines. Cancer Sci. 2014 105 3 252 257 10.1111/cas.12349 24397737
    [Google Scholar]
  73. Jaganathan S.K. Mazumdar A. Mondhe D. Mandal M. Apoptotic effect of eugenol in human colon cancer cell lines. Cell Biol. Int. 2011 35 6 607 615 10.1042/CBI20100118 21044050
    [Google Scholar]
  74. Kalemkerian G.P. Slusher R. Ramalingam S. Gadgeel S. Mabry M. Growth inhibition and induction of apoptosis by fenretinide in small-cell lung cancer cell lines. J. Natl. Cancer Inst. 1995 87 22 1674 1680 10.1093/jnci/87.22.1674 7473815
    [Google Scholar]
  75. Yang G. Liao J. Kim K. Yurkow E.J. Yang C.S. Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. Carcinogenesis 1998 19 4 611 616 10.1093/carcin/19.4.611 9600345
    [Google Scholar]
  76. Zheng S-Y. Li Y. Jiang D. Zhao J. Ge J-F. Anticancer effect and apoptosis induction by quercetin in the human lung cancer cell line A-549. Mol. Med. Rep. 2012 5 3 822 826 22200874
    [Google Scholar]
  77. Ho K. Yazan L.S. Ismail N. Ismail M. Apoptosis and cell cycle arrest of human colorectal cancer cell line HT-29 induced by vanillin. Cancer Epidemiol. 2009 33 2 155 160 10.1016/j.canep.2009.06.003 19679064
    [Google Scholar]
  78. Senaratne S.G. Pirianov G. Mansi J.L. Arnett T.R. Langrish V. Bisphosphonates induce apoptosis in human breast cancer cell lines. Br. J. Cancer 2000 82 8 1459 1468 10.1054/bjoc.1999.1131 10780527
    [Google Scholar]
  79. Nakagawa Y. Akao Y. Morikawa H. Arsenic trioxide-induced apoptosis through oxidative stress in cells of colon cancer cell lines. Life Sci. 2002 70 19 2253 2269 10.1016/S0024‑3205(01)01545‑4 12005185
    [Google Scholar]
  80. Tracy S. Mukohara T. Hansen M. Meyerson M. Johnson B.E. Jänne P.A. Gefitinib induces apoptosis in the EGFRL858R non-small-cell lung cancer cell line H3255. Cancer Res. 2004 64 20 7241 7244 10.1158/0008‑5472.CAN‑04‑1905 15492241
    [Google Scholar]
  81. Gibb R.K. Taylor D.D. Wan T. O’Connor D.M. Doering D.L. Gerçel-Taylor Ç. Apoptosis as a measure of chemosensitivity to cisplatin and taxol therapy in ovarian cancer cell lines. Gynecol. Oncol. 1997 65 1 13 22 10.1006/gyno.1997.4637 9103385
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128412622250730015435
Loading
/content/journals/cpd/10.2174/0113816128412622250730015435
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test