
Full text loading...
Emerging evidence reveals that interactions between the nervous system and tumor biology significantly influence cancer progression, metastasis, and therapeutic outcomes. Here, we elucidate the neurobiological mechanisms that underpin tumor development, highlighting the dynamic role of neural components within the tumor microenvironment (TME). Neural signals and structural adaptations in the TME stimulate tumorigenesis and enable cancer cell plasticity, mimicking neurodevelopmental processes. Astrocytic glial cells release neurotrophic factors that support metastatic colonization and enhance tumor cell survival. Notably, cancer cells can establish pseudo-tripartite synapses with neurons, promoting both proliferation and invasion. We explore the cancer-neural network interplay, emphasizing how axonal remodeling, circuit reorganization, and synaptic dysfunction not only drive tumor growth but also contribute to associated symptoms like seizures and chronic pain. Molecularly, mutations such as in PIK3CA and abnormalities in neurotransmitter signaling reveal how neurotumors communicate and adapt. Furthermore, metabolic stress responses from tumor cells can activate nociceptive neurons, sustaining malignant progression. Understanding these neurobiological interactions opens avenues for novel therapeutic strategies. Precision neuro-oncology may benefit from targeting neurotrophic signaling, synaptic pathways, and neuronal differentiation programs. Advances in biomarker research from neurotumors also contribute to improved diagnostic and prognostic tools. By integrating neuroscience insights into oncological frameworks, we propose a paradigm shift toward therapies that intercept the neural circuitry sustaining malignancies. This neuro-oncological approach holds promise in addressing aggressive cancer phenotypes and improving patient outcomes.