Current Medicinal Chemistry - Volume 32, Issue 17, 2025
Volume 32, Issue 17, 2025
-
-
Optimizing the Antimicrobial Effects by using Natural Compounds in COVID-19 Management
Authors: Amin Gasmi, Asma Gasmi Benahmed, Maryam Dadar, Pavan Mujawdiya and Geir BjørklundCOVID-19 has emerged as the most significant global health issue of our time. The causative agent, SARS-CoV-2, causes extensive damage to the lower respiratory tract in susceptible populations, leading to lung damage and death. COVID-19-infected patients are also prone to respiratory pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli. In some cases, these respiratory pathogens are multidrug-resistant and cause life-threatening infections in patients. Since the existing antibiotics are ineffective against these antibiotic-resistant bacteria, urgent attention is required to develop new and effective therapeutic agents to combat antimicrobial-resistant bacteria. Alternatively, novel therapeutic strategies can be explored to enhance the antimicrobial effects of the existing antimicrobial agents, such as antibiotics. Adding natural compounds with existing antimicrobial agents to increase their antimicrobial activity is one of the most suitable and promising options to combat the rising threat of both COVID-19 and antimicrobial resistance. Natural compounds are generally considered safe and may even reduce the side effects of drugs and medicines. In light of such advantages, the current review summarized some of the studies that have combined natural compounds with antibiotics and antiviral to increase the antimicrobial potential of these drugs. This study can help researchers compare and understand already existing data to design new studies to develop antimicrobial agents against COVID-19.
-
- Medicine, Immunology, Inflammation & Allergy, Chemistry, Medicinal Chemistry, Pharmacology, Biochemistry and Molecular Biology
-
-
-
MNK: A Novel Promising Target for Cancer Immunotherapy
Authors: Pei Shu, Yanna Lei, Ge Gao, Xiaoyu Li, Diyuan Qin, Benxia Zhang, Yue Chen, Qizhi Ma and Yongsheng WangCancer immunotherapy has demonstrated remarkable success in the treatment of multiple advanced malignancies, especially approaches to target the immune checkpoint. Nonetheless, the limited response rate remains a barrier to broader application. Identifying other ways to extend the beneficiaries to a large extent is needed. Emerging evidence has shown that mitogen-activated protein kinase-interacting kinases (MNKs) could be regarded as a novel, attractive target for cancer immunotherapy that is closely correlated with cancer biology and therapies. A comprehensive understanding of the role and mechanism of MNKs in cancer will shed light on the discovery of novel therapeutic strategies for cancer treatment. In this review, we outlined the structure of MNKs, their function and expression, and how MNKs affect tumor progression and elucidated the evidence supporting MNKs as a new promising treatment modality in human cancers.
-
-
-
-
Synthetic Curcumin Analogs in the Treatment of Cancer: A Literature Review
Treatment of cancer, one of the most fatal diseases in the present century, has become a topic of global concern. Unfavorable unintentional effects of chemotherapy and radiation treatments have been the main reasons for the research on the discovery of drugs with a broader spectrum of effectiveness and efficiency, with minimal side effects. Curcumin (diferuloylmethane) is a naturally occurring phenolic structure with anticancer properties through its inhibition of cell multiplication, metastasis, and prolongation of cell cycle suppression of apoptosis in various tumor cells. The primary restriction regarding the use of curcumin in cancer treatment is related to poor bioavailability and unfavorable pharmacokinetic profiles of curcumin due to its poor absorption rate, fast metabolism, and systemic elimination. A variety of ways have been proposed to overcome these limitations. With this background, the present study focuses on providing a comprehensive overview of the anticancer properties of curcumin derivatives and the synthesis of curcumin analogs with application to different types of cancers. The regulation of various target and signaling pathways is considered in various cancers, including breast, gastrointestinal, pancreatic, prostate, skin, and lung cancers. A review of the literature indicates that modifying the structure of curcumin through the substitution of the phenyl group and unsaturated carbon branch around the two main sites of oxygen can result in the improvement of physical and chemical properties, as well as the enhancement of physiological activities of the curcumin molecule and the anti-cancer activities of this polyphenol. Curcumin analogs demonstrate anticancer properties at multiple targets at different cell stages and by various signaling biochemical pathways. These include cytokines, transcription factors, growth factors, and modulation of genes involved in cellular proliferation and apoptosis in breast, gastrointestinal, skin, prostate, and lung cancers, thereby mitigating tumor progression.
-
-
-
Photodynamic Therapy as a Desirable Approach in the Treatment of Colorectal Cancer, with Special Focus on Photodynamic Nanotherapeutics in Immunotherapy
Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide; however, there is not a convincing treatment for this disease. Limitations of conventional CRC therapies force scientists to develop novel treatment concepts for both primary care alongside adjuvant therapy. Photodynamic therapy (PDT) has been introduced as a promising therapeutic procedure for CRC mediated through theranostic principle in which special dyes, photosensitizers (PSs), are excited by near-infrared (NIR) and visible light. Recent studies showed that PDT has synergistic effects in combination with chemotherapy or immunotherapy in the treatment of CRC patients. Of note, nanoformulation of PS or immunotherapeutic agents could augment the PDT effectiveness. In this review, we summarize PDT application in CRC management with a special focus on the nanoparticles-based delivery system from the perspective of targeting deeper CRC and increased PDT efficiency, which could provide a desirable approach for clinical translation.
-
-
-
Polyphenols as Potential Antioxidants for the Treatment of Intervertebral Disc Degeneration
Authors: Xiao-Long Li, Xiao-Yu Yu, Yu-Ao Tao, Yu-Zhu Xu, Xi Li, Jia-Dong Wang, Le-Le Zhang, Yun-Tao Wang and Pan FanIntervertebral disc degeneration (IDD) is a common musculoskeletal system disease, which is one of the most important causes of low back pain. Despite the high prevalence of IDD, current treatments are limited to relieving symptoms, and there are no effective therapeutic agents that can block or reverse the progression of IDD. Oxidative stress, the result of an imbalance between the production of reactive oxygen species (ROS) and clearance by the antioxidant defense system, plays an important role in the progression of IDD. Polyphenols are antioxidant compounds that can inhibit ROS production, which can scavenge free radicals, reduce hydrogen peroxide production, and inhibit lipid oxidation in nucleus pulposus (NP) cells and IDD animal models. In this review, we discussed the antioxidant effects of polyphenols and their regulatory role in different molecular pathways associated with the pathogenesis of IDD, as well as the limitations and future prospects of polyphenols as a potential treatment of IDD.
-
-
-
Multifaceted Nature of HuR in Atherosclerosis Development
Authors: Yan-Xia Wang, Hong-Yu Zheng, Kun Zhou, Hai-Lin Xie, Zhong Ren, Hui-Ting Liu, Huan Liu, Zhi-Xiang Zhou and Zhi-Sheng JiangHuR (Human antigen R) is an RNA binding protein (RBP) that specifically binds to certain RNA sequences, influencing post-transcriptional regulation. HuR is primarily involved in tumor regulation, as well as cell growth, proliferation, inflammation, and angiogenesis. HuR is implicated in endothelial activation, smooth muscle proliferation, inflammatory response, macrophage apoptosis, lipid regulation, and autophagy, playing a crucial regulatory role in atherosclerosis. Accumulating evidence suggests that HuR has dual roles in AS. On the one hand, HuR expedites the development of AS by facilitating endothelial activation, smooth muscle proliferation, and inflammation. On the contrary, it exerts beneficial effects by reducing macrophage apoptosis, regulating lipid efflux, and increasing autophagy. In this review, we aim to provide a comprehensive summary of the role of HuR in the development of AS by examining its involvement in cellular mechanisms, inflammation, autophagy, and apoptosis. Additionally, we discuss the mechanisms of drugs that target HuR, with the goal of offering new perspectives for the treatment of AS.
-
-
-
Heavy Metal Exposure-induced Cardiovascular Diseases: Molecular Mechanisms and Therapeutic Role of Antioxidants
Globally, cardiovascular diseases (CVDs) are the main cause of mortality every year worldwide. CVD health is influenced by various health factors, such as blood pressure, cholesterol levels, and glucose control. The main risk factors include smoking, physical activity, food intake, and body mass index. Around 90% of CVDs could be prevented by controlling these risk factors. Heavy metals are indigenous to the environment of the earth. However, modern lifestyles have led to the exploitation of our environment by unconstrained use of heavy metals. Though heavy metals are essential components, they are hazardous to humans and living systems due to their persistent and non-degradable nature. The main purpose of this study is to provide a literature review on the mechanisms of heavy metals, particularly arsenic, lead, and cadmium, that cause cardiovascular diseases. The major mechanism by which heavy metals result in various modalities of cardiovascular disease is the generation of reactive species and the depletion of the antioxidant reserves inside the biological system. The generation of reactive species gradually leads to the activation of various signaling pathways, resulting in either apoptosis or unrestricted cell growth. These unfavorable conditions result in a state when there is an imbalance between reactive species generation and antioxidant activity. Both endogenously present antioxidants and dietary antioxidants are very much essential in regulating the redox potential of the body. They help in the detoxification and excretion of heavy metals and their metabolites in the biological system. Therefore, recognizing the role of heavy metals in cardiovascular health is crucial for developing preventive strategies and interventions aimed at mitigating their adverse effects on human health.
-
- Medicine, Immunology, Inflammation & Allergy, Chemistry, Medicinal Chemistry, Pharmacology, Biochemistry and Molecular Biology
-
-
-
Cyclodextrins as a Strategy for Enhancing Solubility of Therapeutic Agents for Neglected Tropical Diseases: A Systematic Review
BackgroundNeglected Tropical Diseases (NTD) are chronic infectious conditions that primarily affect marginalized populations. The chemotherapeutic arsenal available for treating NTD is limited and outdated, which poses a challenge in controlling and eradicating these diseases. This is exacerbated by the pharmaceutical industry's lack of interest in funding the development of new therapeutic alternatives. In addition, a considerable number of drugs used in NTD therapy have low aqueous solubility. To address this issue, solubility enhancement strategies, such as the use of inclusion complexes with cyclodextrins (CD) can be employed.
ObjectiveTherefore, this systematic review aims to present the application of CD in complexing with drugs and chemotherapeutic compounds used in the therapy of some of the most prevalent NTD worldwide and how these complexes can enhance the treatment of these diseases.
MethodsTwo bibliographic databases, Science Direct and PubMed, were used to conduct the search. The selection of studies and the writing of this systematic review followed the criteria outlined by the PRISMA guidelines.
ResultsFrom a total of 978 articles, 23 were selected after applying the exclusion criteria. All the studies selected were consistent with the use of CD as a strategy to increase the solubility of therapeutic agents used in NTD.
ConclusionThe results indicate that CD can enhance the solubility of chemotherapeutic agents for the treatment of Neglected Tropical Diseases (NTD). This review presents data that clearly highlights the potential use of CD in the development of new treatments for neglected tropical diseases. It can assist in the formulation of future treatments that are more effective and safer.
-
-
-
-
Multitargeted Docking, DFT-Based Optimisation, Pharmacokinetics, and MD Simulation Reveal 6-Oxidopamine HBr as a Multitargeted Inhibitor of Cervical Cancer Proteins
BackgroundCervical cancer originates in the cervix, the lower part of the uterus, and results from the uncontrolled growth of abnormal cervical cells, forming malignant tumours. It poses a major global health challenge, calling for innovative drug design strategies to enhance treatment outcomes.
MethodsIn this study, we have screened the FDA-approved drug library against four proteins, MCM10, MCM6, DNA polymerase epsilon subunit-2, and TBK1, which are essential for DNA replication, DNA repair, and cellular signalling pathways, which are dysregulated in cervical cancer cells, leading to uncontrolled growth. We have used the multisampling algorithms for screening using HTVS, SP, and XP docking; identified 6-oxidopamine HBr (C8H12BrNO3), which is used to create a model of Parkinson’s disease in animals, and obtained the docking score ranging from -5.057 to -8.871 Kcal/mol. The poses were filtered with MM\GBSA score ranging from -21.67 to -27.63 Kcal/mol. We performed QM-based DFT and pharmacokinetics studies and compared them with the standard values, suggesting that the compound can be used in cervical cancer proteins.
ResultsThe P-L complex’s interaction fingerprints have resulted in the most interacting residues, 4THR, 4SER, and 4LYS, showing the compound’s interaction pattern.
ConclusionFurther, the stability of 6-oxidopamine HBr in complex with each protein was evaluated with 100 ns MD simulation in the SPC water model in a neutralised state to analyse the deviation, fluctuations, and intermolecular interactions that have proven the compound to have a better inhibitory effect against each protein and that it can be used for cervical cancer; however, experimental validation is suggested before human use.
-
-
-
Increased ACSL6 Expression Predicts a Favorable Prognosis in Triple-negative Breast Cancer
Authors: Hui Hua, Shuaikang Pan, Haizhou Diao, Yueyue Cao, Xiaojun Qian and Jinguo ZhangBackgroundLong-chain acyl-coenzyme A synthases (ACSLs) are responsible for the catalysis of fatty acids into their corresponding fatty acyl-CoAs. The dysregulation of ACSLs has been increasingly recognized in cancer patients. However, the function of ACSL6 in triple-negative breast cancer (TNBC) is still completely unknown.
MethodsIn this study, immunohistochemistry was applied to detect ACSL6 protein expression using a TNBC tissue microarray. Additionally, the mRNA levels of ACSL6 in human normal tissues and pancancer tissues were analyzed using Genotype Tissue Expression (GTEx) datasets and The Cancer Genome Atlas (TCGA) database. The correlations between the levels of ACSL6 expression and clinical characteristics were analyzed. The survival analysis of ACSL6 in TNBC was carried out using the Kaplan‒Meier Plotter online tool. Associations of ACSL6 with immune infiltration analyses were conducted using the ESTIMATE, CIBERSORT, and TISIDB databases. The relationship between ACSL6 and sensitivity to drugs was analyzed from Genomics of Drug Sensitivity in Cancer (GDSC).
ResultsThe results indicated a significant increase in ACSL6 expression in TNBC tissues compared to adjacent normal tissues. However, high ACSL6 expression was significantly associated with favorable survival outcomes in TNBC patients. Enrichment analysis revealed that coexpressed genes of ACSL6 were significantly enriched in various immunity processes. ACSL6 was positively correlated with the infiltration of memory CD4 T cells, while a negative correlation was found between ACSL6 and M2 macrophages and resting dendritic cells. Further analysis revealed that high levels of ACSL6 correlated with increased survival outcomes in cancer patients who received immunotherapy.
ConclusionAltogether, the current findings highlight the potential value of ACSL6 as a diagnostic and prognostic marker in the treatment of TNBC.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)
Most Read This Month
