Skip to content
2000
Volume 32, Issue 17
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

HuR (Human antigen R) is an RNA binding protein (RBP) that specifically binds to certain RNA sequences, influencing post-transcriptional regulation. HuR is primarily involved in tumor regulation, as well as cell growth, proliferation, inflammation, and angiogenesis. HuR is implicated in endothelial activation, smooth muscle proliferation, inflammatory response, macrophage apoptosis, lipid regulation, and autophagy, playing a crucial regulatory role in atherosclerosis. Accumulating evidence suggests that HuR has dual roles in AS. On the one hand, HuR expedites the development of AS by facilitating endothelial activation, smooth muscle proliferation, and inflammation. On the contrary, it exerts beneficial effects by reducing macrophage apoptosis, regulating lipid efflux, and increasing autophagy. In this review, we aim to provide a comprehensive summary of the role of HuR in the development of AS by examining its involvement in cellular mechanisms, inflammation, autophagy, and apoptosis. Additionally, we discuss the mechanisms of drugs that target HuR, with the goal of offering new perspectives for the treatment of AS.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673279032231214110313
2024-01-15
2025-09-05
Loading full text...

Full text loading...

References

  1. StellosK. GatsiouA. StamatelopoulosK. Perisic MaticL. JohnD. LunellaF.F. JaéN. RossbachO. AmrheinC. SigalaF. BoonR.A. FürtigB. ManavskiY. YouX. UchidaS. KellerT. BoeckelJ.N. Franco-CerecedaA. MaegdefesselL. ChenW. SchwalbeH. BindereifA. ErikssonP. HedinU. ZeiherA.M. DimmelerS. Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation.Nat. Med.201622101140115010.1038/nm.417227595325
    [Google Scholar]
  2. Bravo-San PedroJ.M. KroemerG. GalluzziL. Autophagy and mitophagy in cardiovascular disease.Circ. Res.2017120111812182410.1161/CIRCRESAHA.117.31108228546358
    [Google Scholar]
  3. TapeinosC. GaoH. Bauleth-RamosT. SantosH.A. Progress in stimuli-responsive biomaterials for treating cardiovascular and cerebrovascular diseases.Small20221836220029110.1002/smll.20220029135306751
    [Google Scholar]
  4. GrammatikakisI. AbdelmohsenK. GorospeM. Posttranslational control of HuR function.Wiley Interdiscip. Rev. RNA201781e137210.1002/wrna.137227307117
    [Google Scholar]
  5. VoD.T. AbdelmohsenK. MartindaleJ.L. QiaoM. TominagaK. BurtonT.L. GelfondJ.A.L. BrennerA.J. PatelV. TrageserD. SchefflerB. GorospeM. PenalvaL.O.F. The oncogenic RNA-binding protein Musashi1 is regulated by HuR via mRNA translation and stability in glioblastoma cells.Mol. Cancer Res.201210114315510.1158/1541‑7786.MCR‑11‑020822258704
    [Google Scholar]
  6. PapatheofaniV. LevidouG. SarantisP. KoustasE. KaramouzisM.V. PergarisA. KouraklisG. TheocharisS. HuR protein in hepatocellular carcinoma: Implications in development, prognosis and treatment.Biomedicines20219211910.3390/biomedicines902011933513829
    [Google Scholar]
  7. MustăciosuC.C. BanciuA. RusuC.M. BanciuD.D. SavuD. RaduM. RaduB.M. RNA-binding proteins HuB, HuC, and HuD are distinctly regulated in dorsal root ganglia neurons from STZ-sensitive compared to STZ-resistant diabetic mice.Int. J. Mol. Sci.2019208196510.3390/ijms2008196531013625
    [Google Scholar]
  8. MukherjeeN. CorcoranD.L. NusbaumJ.D. ReidD.W. GeorgievS. HafnerM. AscanoM.Jr TuschlT. OhlerU. KeeneJ.D. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability.Mol. Cell201143332733910.1016/j.molcel.2011.06.00721723170
    [Google Scholar]
  9. ChangS.H. ElementoO. ZhangJ. ZhuangZ.W. SimonsM. HlaT. ELAVL1 regulates alternative splicing of eIF4E transporter to promote postnatal angiogenesis.Proc. Natl. Acad. Sci.201411151183091831410.1073/pnas.141217211125422430
    [Google Scholar]
  10. ChangS.H. LuY.C. LiX. HsiehW.Y. XiongY. GhoshM. EvansT. ElementoO. HlaT. Antagonistic function of the RNA-binding protein HuR and miR-200b in post-transcriptional regulation of vascular endothelial growth factor-A expression and angiogenesis.J. Biol. Chem.201328874908492110.1074/jbc.M112.42387123223443
    [Google Scholar]
  11. LuY.C. ChangS.H. HafnerM. LiX. TuschlT. ElementoO. HlaT. ELAVL1 modulates transcriptome-wide miRNA binding in murine macrophages.Cell Rep.2014962330234310.1016/j.celrep.2014.11.03025533351
    [Google Scholar]
  12. SmithM.R. CostaG. RNA-binding proteins and translation control in angiogenesis.FEBS J.2021289247788780934796614
    [Google Scholar]
  13. ChengM. YangL. FanM. AnS. LiJ. Proatherogenic stimuli induce HuR in atherosclerosis through MAPK/ErK pathway.Am. J. Transl. Res.20191142317232731105838
    [Google Scholar]
  14. AbdelmohsenK. LalA. KimH.H. GorospeM. Posttranscriptional orchestration of an anti-apoptotic program by HuR.Cell Cycle20076111288129210.4161/cc.6.11.429917534146
    [Google Scholar]
  15. BrennanC.M. SteitzJ.A. HuR and mRNA stability.Cell. Mol. Life Sci.200158226627710.1007/PL0000085411289308
    [Google Scholar]
  16. GhoshM. AguilaH.L. MichaudJ. AiY. WuM.T. HemmesA. RistimakiA. GuoC. FurneauxH. HlaT. Essential role of the RNA-binding protein HuR in progenitor cell survival in mice.J. Clin. Invest.2009119123530354310.1172/JCI3826319884656
    [Google Scholar]
  17. GubinM.M. CalaluceR. DavisJ.W. MageeJ.D. StrouseC.S. ShawD.P. MaL. BrownA. HoffmanT. RoldT.L. AtasoyU. Overexpression of the RNA binding protein HuR impairs tumor growth in triple negative breast cancer associated with deficient angiogenesis.Cell Cycle20109163357336610.4161/cc.9.16.1271120724828
    [Google Scholar]
  18. BhattacharyyaS.N. HabermacherR. MartineU. ClossE.I. FilipowiczW. Relief of microRNA-mediated translational repression in human cells subjected to stress.Cell200612561111112410.1016/j.cell.2006.04.03116777601
    [Google Scholar]
  19. SrikantanS. AbdelmohsenK. LeeE.K. TominagaK. SubaranS.S. KuwanoY. KulshresthaR. PanchakshariR. KimH.H. YangX. MartindaleJ.L. MarasaB.S. KimM.M. WerstoR.P. IndigF.E. ChowdhuryD. GorospeM. Translational control of TOP2A influences doxorubicin efficacy.Mol. Cell. Biol.201131183790380110.1128/MCB.05639‑1121768308
    [Google Scholar]
  20. TominagaK. SrikantanS. LeeE.K. SubaranS.S. MartindaleJ.L. AbdelmohsenK. GorospeM. Competitive regulation of nucleolin expression by HuR and miR-494.Mol. Cell. Biol.201131204219423110.1128/MCB.05955‑1121859890
    [Google Scholar]
  21. PoriaD.K. GuhaA. NandiI. RayP.S. RNA-binding protein HuR sequesters microRNA-21 to prevent translation repression of proinflammatory tumor suppressor gene programmed cell death 4.Oncogene201635131703171510.1038/onc.2015.23526189797
    [Google Scholar]
  22. YoonJ.H. AbdelmohsenK. KimJ. YangX. MartindaleJ.L. Tominaga-YamanakaK. WhiteE.J. OrjaloA.V. RinnJ.L. KreftS.G. WilsonG.M. GorospeM. Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination.Nat. Commun.201341293910.1038/ncomms393924326307
    [Google Scholar]
  23. YoonJ.H. AbdelmohsenK. SrikantanS. YangX. MartindaleJ.L. DeS. HuarteM. ZhanM. BeckerK.G. GorospeM. LincRNA-p21 suppresses target mRNA translation.Mol. Cell201247464865510.1016/j.molcel.2012.06.02722841487
    [Google Scholar]
  24. RajasinghJ. The many facets of RNA-binding protein HuR.Trends Cardiovasc. Med.201525868468610.1016/j.tcm.2015.03.01325920625
    [Google Scholar]
  25. TianM. WangJ. LiuS. LiX. LiJ. YangJ. ZhangC. ZhangW. Hepatic HuR protects against the pathogenesis of non-alcoholic fatty liver disease by targeting PTEN.Cell Death Dis.202112323610.1038/s41419‑021‑03514‑033664225
    [Google Scholar]
  26. ShangJ. ZhaoZ. Emerging role of HuR in inflammatory response in kidney diseases.Acta Biochim. Biophys. Sin.201749975376310.1093/abbs/gmx07128910975
    [Google Scholar]
  27. SchultzC.W. PreetR. DhirT. DixonD.A. BrodyJ.R. Understanding and targeting the disease-related RNA binding protein human antigen R (HuR).Wiley Interdiscip. Rev. RNA2020113e158110.1002/wrna.158131970930
    [Google Scholar]
  28. DeryK.J. NakamuraK. KadonoK. HiraoH. KageyamaS. ItoT. KojimaH. KaldasF.M. BusuttilR.W. Kupiec-WeglinskiJ.W. Human Antigen R (HuR): A regulator of heme oxygenase-1 cytoprotection in mouse and human liver transplant injury.Hepatology20207231056107210.1002/hep.3109331879990
    [Google Scholar]
  29. LiuR. WuK. LiY. SunR. LiX. Human antigen R: A potential therapeutic target for liver diseases.Pharmacol. Res.202015510468410.1016/j.phrs.2020.10468432045667
    [Google Scholar]
  30. Stols-GonçalvesD. HovinghG.K. NieuwdorpM. HolleboomA.G. NAFLD and atherosclerosis: Two sides of the same dysmetabolic coin?Trends Endocrinol. Metab.2019301289190210.1016/j.tem.2019.08.00831630897
    [Google Scholar]
  31. HuangZ. LiuS. TangA. WuX. AubeJ. XuL. HuangY. Targeting RNA-binding protein HuR to inhibit the progression of renal tubular fibrosis.J. Transl. Med.202321142810.1186/s12967‑023‑04298‑x37391777
    [Google Scholar]
  32. LiuS. HuangZ. TangA. WuX. AubeJ. XuL. XingC. HuangY. Inhibition of RNA-binding protein HuR reduces glomerulosclerosis in experimental nephritis.Clin. Sci.2020134121433144810.1042/CS2020019332478392
    [Google Scholar]
  33. KlössS. RodenbachD. BordelR. MülschA. Human-antigen R (HuR) expression in hypertension: Downregulation of the mRNA stabilizing protein HuR in genetic hypertension.Hypertension20054561200120610.1161/01.HYP.0000165674.58470.8f15883232
    [Google Scholar]
  34. KlössS. SrivastavaR. MülschA. Down-regulation of soluble guanylyl cyclase expression by cyclic AMP is mediated by mRNA-stabilizing protein HuR.Mol. Pharmacol.20046561440145110.1124/mol.65.6.144015155837
    [Google Scholar]
  35. Martín-GarridoA. González-RamosM. GrieraM. GuijarroB. Cannata-AndiaJ. Rodriguez-PuyolD. Rodriguez-PuyolM. SauraM. H2O2 regulation of vascular function through sGC mRNA stabilization by HuR.Arterioscler. Thromb. Vasc. Biol.201131356757310.1161/ATVBAHA.110.21972521164076
    [Google Scholar]
  36. GreenL.C. AnthonyS.R. SloneS. LanzillottaL. NiemanM.L. WuX. RobbinsN. JonesS.M. RoyS. OwensA.P.III AubeJ. XuL. LorenzJ.N. BlaxallB.C. RubinsteinJ. BenoitJ.B. TranterM. Human antigen R as a therapeutic target in pathological cardiac hypertrophy.JCI Insight201944e12154110.1172/jci.insight.12154130668549
    [Google Scholar]
  37. LiuS. JiangX. LuH. XingM. QiaoY. ZhangC. ZhangW. HuR (Human Antigen R) regulates the contraction of vascular smooth muscle and maintains blood pressure.Arterioscler. Thromb. Vasc. Biol.202040494395710.1161/ATVBAHA.119.31389732075416
    [Google Scholar]
  38. LandmesserU. HornigB. DrexlerH. Endothelial function.Circulation200410921_suppl_1273310.1161/01.CIR.0000129501.88485.1f15173060
    [Google Scholar]
  39. YinM. LiC. jiangJ. LeJ. LuoB. YangF. FangY. YangM. DengZ. NiW. ShaoJ. Cell adhesion molecule-mediated therapeutic strategies in atherosclerosis: From a biological basis and molecular mechanism to drug delivery nanosystems.Biochem. Pharmacol.202118611447110.1016/j.bcp.2021.11447133587918
    [Google Scholar]
  40. KhuranaR. SimonsM. MartinJ.F. ZacharyI.C. Role of angiogenesis in cardiovascular disease: A critical appraisal.Circulation2005112121813182410.1161/CIRCULATIONAHA.105.53529416172288
    [Google Scholar]
  41. ChengH.S. SivachandranN. LauA. BoudreauE. ZhaoJ.L. BaltimoreD. Delgado-OlguinP. CybulskyM.I. FishJ.E. Micro RNA -146 represses endothelial activation by inhibiting pro-inflammatory pathways.EMBO Mol. Med.2013571017103410.1002/emmm.20120231823733368
    [Google Scholar]
  42. GimbroneM.A.Jr García-CardeñaG. Endothelial cell dysfunction and the pathobiology of atherosclerosis.Circ. Res.2016118462063610.1161/CIRCRESAHA.115.30630126892962
    [Google Scholar]
  43. ZhangW. WangQ. WuY. MoriasiC. LiuZ. DaiX. WangQ. LiuW. YuanZ.Y. ZouM.H. Endothelial cell-specific liver kinase B1 deletion causes endothelial dysfunction and hypertension in mice in vivo.Circulation2014129131428143910.1161/CIRCULATIONAHA.113.00414624637557
    [Google Scholar]
  44. EnglandR.N. PrestonK.J. ScaliaR. AutieriM.V. Interleukin-19 decreases leukocyte-endothelial cell interactions by reduction in endothelial cell adhesion molecule mRNA stability.Am. J. Physiol. Cell Physiol.20133053C255C26510.1152/ajpcell.00069.201323596173
    [Google Scholar]
  45. LiangC.J. LeeC.W. SungH.C. ChenY.H. WangS.H. WuP.J. ChiangY.C. TsaiJ.S. WuC.C. LiC.Y. ChenY.L. Magnolol reduced TNF-α-induced vascular cell adhesion molecule-1 expression in endothelial cells via JNK/p38 and NF-κB signaling pathways.Am. J. Chin. Med.201442361963710.1142/S0192415X1450040224871655
    [Google Scholar]
  46. WuW.H. WangS.H. KuanI-I. KaoY. WuP.J. LiangC.J. ChienH.F. KaoC.H. HuangC.J. ChenY.L. Sesamin attenuates intercellular cell adhesion molecule-1 expression in vitro in TNF-α-treated human aortic endothelial cells and in vivo in apolipoprotein-E-deficient mice.Mol. Nutr. Food Res.20105491340135010.1002/mnfr.20090027120306475
    [Google Scholar]
  47. TschernatschM.M. MlecnikB. TrajanoskiZ. ZechnerR. ZimmermannR. LPL-mediated lipolysis of VLDL induces an upregulation of AU-rich mRNAs and an activation of HuR in endothelial cells.Atherosclerosis2006189231031710.1016/j.atherosclerosis.2006.01.00716494882
    [Google Scholar]
  48. CouchieD. VaismanB. AbderrazakA. MahmoodD.F.D. HamzaM.M. CanesiF. DiderotV. El HadriK. Nègre-SalvayreA. Le PageA. FulopT. RemaleyA.T. RouisM. Human plasma thioredoxin-80 Increases With Age and in ApoE −/− mice induces inflammation, angiogenesis, and atherosclerosis.Circulation2017136546447510.1161/CIRCULATIONAHA.117.02761228473446
    [Google Scholar]
  49. MichelJ.B. VirmaniR. ArbustiniE. PasterkampG. Intraplaque haemorrhages as the trigger of plaque vulnerability.Eur. Heart J.2011321619771985, 1985a, 1985b, 1985c10.1093/eurheartj/ehr05421398643
    [Google Scholar]
  50. Goldberg-CohenI. FurneauxbH. LevyA.P. A 40-bp RNA element that mediates stabilization of vascular endothelial growth factor mRNA by HuR.J. Biol. Chem.200227716136351364010.1074/jbc.M10870320011834731
    [Google Scholar]
  51. LiG. ChenY. HanY. MaT. HanY. Human antigen R promotes angiogenesis of endothelial cells cultured with adipose stem cells derived exosomes via overexpression of vascular endothelial growth factor in vitro.Adipocyte202110147548210.1080/21623945.2021.198257734635021
    [Google Scholar]
  52. BennettM.R. SinhaS. OwensG.K. Vascular smooth muscle cells in atherosclerosis.Circ. Res.2016118469270210.1161/CIRCRESAHA.115.30636126892967
    [Google Scholar]
  53. CuneoA.A. HerrickD. AutieriM.V. Il-19 reduces VSMC activation by regulation of mRNA regulatory factor HuR and reduction of mRNA stability.J. Mol. Cell. Cardiol.201049464765410.1016/j.yjmcc.2010.04.01620451530
    [Google Scholar]
  54. LiuL. The anti-inflammatory effect of miR-16 through targeting C- reactive protein is regulated by HuR in vascular smooth muscle cells.Biochem. Biophys. Res. Commun.2020528463664310.1016/j.bbrc.2020.05.10432513543
    [Google Scholar]
  55. PullmannR.Jr JuhaszovaM. de SilanesI.L. KawaiT. Mazan-MamczarzK. HalushkaM.K. GorospeM. Enhanced proliferation of cultured human vascular smooth muscle cells linked to increased function of RNA-binding protein HuR.J. Biol. Chem.200528024228192282610.1074/jbc.M50110620015824116
    [Google Scholar]
  56. FerreiraM.T. MiyakeJ.A. GomesR.N. FeitozaF. StevannatoP.B. da CunhaA.S. SerachiF.O. PanagopoulosA.T. ColquhounA. Cyclooxygenase inhibition alters proliferative, migratory, and invasive properties of human glioblastoma cells in vitro.Int. J. Mol. Sci.2021229429710.3390/ijms2209429733919029
    [Google Scholar]
  57. AguadoA. RodríguezC. Martínez-RevellesS. AvendañoM.S. ZhenyukhO. OrriolsM. Martínez-GonzálezJ. AlonsoM.J. BrionesA.M. DixonD.A. SalaicesM. HuR mediates the synergistic effects of angiotensin II and IL -1β on vascular COX -2 expression and cell migration.Br. J. Pharmacol.2015172123028304210.1111/bph.1310325653183
    [Google Scholar]
  58. AkoolE.S. KleinertH. HamadaF.M.A. AbdelwahabM.H. FürstermannU. PfeilschifterJ. EberhardtW. Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA-stabilizing factor HuR.Mol. Cell. Biol.200323144901491610.1128/MCB.23.14.4901‑4916.200312832476
    [Google Scholar]
  59. LiuS. JiangX. CuiX. WangJ. LiuS. LiH. YangJ. ZhangC. ZhangW. Smooth muscle-specific HuR knockout induces defective autophagy and atherosclerosis.Cell Death Dis.202112438510.1038/s41419‑021‑03671‑233837179
    [Google Scholar]
  60. WolfD. LeyK. Immunity and inflammation in atherosclerosis.Circ. Res.2019124231532710.1161/CIRCRESAHA.118.31359130653442
    [Google Scholar]
  61. ZhuY. XianX. WangZ. BiY. ChenQ. HanX. TangD. ChenR. Research progress on the relationship between atherosclerosis and inflammation.Biomolecules2018838010.3390/biom803008030142970
    [Google Scholar]
  62. DoranA.C. Inflammation resolution: Implications for atherosclerosis.Circ. Res.2022130113014810.1161/CIRCRESAHA.121.31982234995137
    [Google Scholar]
  63. FuX. ZhaiS. YuanJ. Endothelial HuR deletion reduces the expression of proatherogenic molecules and attenuates atherosclerosis.Int. Immunopharmacol.20186524825510.1016/j.intimp.2018.09.02330340104
    [Google Scholar]
  64. SenBanerjeeS. LinZ. AtkinsG.B. GreifD.M. RaoR.M. KumarA. FeinbergM.W. ChenZ. SimonD.I. LuscinskasF.W. MichelT.M. GimbroneM.A.Jr García-CardeñaG. JainM.K. KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation.J. Exp. Med.2004199101305131510.1084/jem.2003113215136591
    [Google Scholar]
  65. RheeW.J. NiC.W. ZhengZ. ChangK. JoH. BaoG. HuR regulates the expression of stress-sensitive genes and mediates inflammatory response in human umbilical vein endothelial cells.Proc. Natl. Acad. Sci.2010107156858686310.1073/pnas.100044410720351266
    [Google Scholar]
  66. CollinsR.G. VeljiR. GuevaraN.V. HicksM.J. ChanL. BeaudetA.L. P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice.J. Exp. Med.2000191118919410.1084/jem.191.1.18910620617
    [Google Scholar]
  67. BoisvertW.A. CurtissL.K. TerkeltaubR.A. Interleukin-8 and its receptor CXCR2 in atherosclerosis.Immunol. Res.2000212-312913810.1385/IR:21:2‑3:12910852110
    [Google Scholar]
  68. HuberS.A. SakkinenP. ConzeD. HardinN. TracyR. Interleukin-6 exacerbates early atherosclerosis in mice.Arterioscler. Thromb. Vasc. Biol.199919102364236710.1161/01.ATV.19.10.236410521365
    [Google Scholar]
  69. ChenJ. MartindaleJ.L. AbdelmohsenK. KumarG. FortinaP.M. GorospeM. RostamiA. YuS. RNA-binding protein HuR promotes Th17 cell differentiation and can be targeted to reduce autoimmune neuroinflammation.J. Immunol.202020482076208710.4049/jimmunol.190076932169842
    [Google Scholar]
  70. ChenJ. CascioJ. MageeJ.D. TechasintanaP. GubinM.M. DahmG.M. CalaluceR. YuS. AtasoyU. Posttranscriptional gene regulation of IL-17 by the RNA-binding protein HuR is required for initiation of experimental autoimmune encephalomyelitis.J. Immunol.2013191115441545010.4049/jimmunol.130118824166976
    [Google Scholar]
  71. TarantinoG. CostantiniS. FinelliC. CaponeF. GuerrieroE. La SalaN. GioiaS. CastelloG. Is serum Interleukin-17 associated with early atherosclerosis in obese patients?J. Transl. Med.201412121410.1186/s12967‑014‑0214‑125092442
    [Google Scholar]
  72. WuT. ShiJ-X. GengS. ZhouW. ShiY. SuX. The MK2/HuR signaling pathway regulates TNF-α-induced ICAM-1 expression by promoting the stabilization of ICAM-1 mRNA.BMC Pulm. Med.20161618410.1186/s12890‑016‑0247‑8
    [Google Scholar]
  73. KorbeckiJ. KojderK. SimińskaD. BohatyrewiczR. GutowskaI. ChlubekD. Baranowska-BosiackaI. CC chemokines in a tumor: A review of pro-cancer and anti-cancer properties of the ligands of receptors CCR1, CCR2, CCR3, and CCR4.Int. J. Mol. Sci.20202121841210.3390/ijms2121841233182504
    [Google Scholar]
  74. TsaiC.S. HuangC.Y. ChenC.H. LinY.W. ShihC.M. TsaoN.W. ChiangK.H. LeeC.Y. JengH. LinF.Y. Eotaxin-2 increased toll-like receptor 4 expression in endothelial cells in vitro and exacerbates high-cholesterol diet-induced atherogenesis in vivo.Am. J. Transl. Res.20168125338535328078007
    [Google Scholar]
  75. LinF.Y. ChenY.H. LinY.W. TsaiJ.S. ChenJ.W. WangH.J. ChenY.L. LiC.Y. LinS.J. The role of human antigen R, an RNA-binding protein, in mediating the stabilization of toll-like receptor 4 mRNA induced by endotoxin: A novel mechanism involved in vascular inflammation.Arterioscler. Thromb. Vasc. Biol.200626122622262910.1161/01.ATV.0000246779.78003.cf16990552
    [Google Scholar]
  76. AtasoyU. CurryS.L. López de SilanesI. ShyuA.B. CasolaroV. GorospeM. StellatoC. Regulation of eotaxin gene expression by TNF-α and IL-4 through mRNA stabilization: Involvement of the RNA-binding protein HuR.J. Immunol.200317184369437810.4049/jimmunol.171.8.436914530362
    [Google Scholar]
  77. SoehnleinO. LibbyP. Targeting inflammation in atherosclerosis - from experimental insights to the clinic.Nat. Rev. Drug Discov.202120858961010.1038/s41573‑021‑00198‑133976384
    [Google Scholar]
  78. LibbyP. inflammation in atherosclerosis-no longer a theory.Clin. Chem.202167113114210.1093/clinchem/hvaa27533393629
    [Google Scholar]
  79. SuiX. YuS. DouL. ChenX. LiX. YangJ. SuY. WangS. WangF. LiJ. miR-291b-3p mediated ROS-induced endothelial cell dysfunction by targeting HUR.Int. J. Mol. Med.20184252383239210.3892/ijmm.2018.382130106126
    [Google Scholar]
  80. GiebeS. HofmannA. BruxM. LoweF. BrehenyD. MorawietzH. BrunssenC. Comparative study of the effects of cigarette smoke versus next generation tobacco and nicotine product extracts on endothelial function.Redox Biol.20214710215010.1016/j.redox.2021.10215034601427
    [Google Scholar]
  81. LiJ. LiuS. CaoG. SunY. ChenW. DongF. XuJ. ZhangC. ZhangW. Nicotine induces endothelial dysfunction and promotes atherosclerosis via GTPCH 1.J. Cell. Mol. Med.201822115406541710.1111/jcmm.1381230091833
    [Google Scholar]
  82. CilO. ChenX. Askew PageH.R. BaldwinS.N. JordanM.C. Myat ThweP. AndersonM.O. HaggieP.M. GreenwoodI.A. RoosK.P. VerkmanA.S. A small molecule inhibitor of the chloride channel TMEM16A blocks vascular smooth muscle contraction and lowers blood pressure in spontaneously hypertensive rats.Kidney Int.2021100231132010.1016/j.kint.2021.03.02533836171
    [Google Scholar]
  83. PaukkuK. BacklundM. De BoerR.A. KalkkinenN. KontulaK.K. LehtonenJ.Y.A. Regulation of AT1R expression through HuR by insulin.Nucleic Acids Res.201240125250526110.1093/nar/gks17022362742
    [Google Scholar]
  84. TheofilisP. OikonomouE. TsioufisK. TousoulisD. The role of macrophages in atherosclerosis: Pathophysiologic mechanisms and treatment considerations.Int. J. Mol. Sci.20232411956810.3390/ijms2411956837298518
    [Google Scholar]
  85. GonzalezL. TrigattiB.L. Macrophage apoptosis and necrotic core development in atherosclerosis: A rapidly advancing field with clinical relevance to imaging and therapy.Can. J. Cardiol.201733330331210.1016/j.cjca.2016.12.01028232016
    [Google Scholar]
  86. MuralidharanR. BabuA. AmreddyN. SrivastavaA. ChenA. ZhaoY.D. KompellaU.B. MunshiA. RameshR. Tumor-targeted nanoparticle delivery of hur sirna inhibits lung tumor growth in vitro and in vivo by disrupting the oncogenic activity of the RNA-binding protein HuR.Mol. Cancer Ther.20171681470148610.1158/1535‑7163.MCT‑17‑013428572169
    [Google Scholar]
  87. KatsanouV. MilatosS. YiakouvakiA. SgantzisN. KotsoniA. AlexiouM. HarokoposV. AidinisV. HembergerM. KontoyiannisD.L. The RNA-binding protein Elavl1/HuR is essential for placental branching morphogenesis and embryonic development.Mol. Cell. Biol.200929102762277610.1128/MCB.01393‑0819307312
    [Google Scholar]
  88. SimionV. ZhouH. HaemmigS. PierceJ.B. MendesS. TesmenitskyY. Pérez-CremadesD. LeeJ.F. ChenA.F. RondaN. PapottiB. MartoJ.A. FeinbergM.W. A macrophage-specific lncRNA regulates apoptosis and atherosclerosis by tethering HuR in the nucleus.Nat. Commun.2020111613510.1038/s41467‑020‑19664‑233262333
    [Google Scholar]
  89. RamírezC.M. LinC.S. AbdelmohsenK. GoedekeL. YoonJ.H. Madrigal-MatuteJ. Martin-VenturaJ.L. VoD.T. UrenP.J. PenalvaL.O. GorospeM. Fernández-HernandoC. RNA binding protein HuR regulates the expression of ABCA1.J. Lipid Res.20145561066107610.1194/jlr.M04492524729624
    [Google Scholar]
  90. NagaiN. KawashimaH. TodaE. HommaK. OsadaH. GuzmanN.A. ShibataS. UchiyamaY. OkanoH. TsubotaK. OzawaY. Renin-angiotensin system impairs macrophage lipid metabolism to promote age-related macular degeneration in mouse models.Commun. Biol.20203176710.1038/s42003‑020‑01483‑233299105
    [Google Scholar]
  91. FitzwalterB.E. ThorburnA. Recent insights into cell death and autophagy.FEBS J.2015282224279428810.1111/febs.1351526367268
    [Google Scholar]
  92. WangI.K. PalanisamyK. SunK.T. YuS.H. YuT.M. LiC.H. LinF.Y. ChouA.K. WangG.J. ChenK.B. LiC.Y. The functional interplay of lncRNA EGOT and HuR regulates hypoxia-induced autophagy in renal tubular cells.J. Cell. Biochem.2020121114522453410.1002/jcb.2966932030803
    [Google Scholar]
  93. XuY. TianY. LiF. WangY. YangJ. GongH. WanX. OuyangM. Circular RNA HECTD1 mitigates ulcerative colitis by promoting enterocyte autophagy via miR-182-5p/HuR axis.Inflamm. Bowel Dis.202228227328810.1093/ibd/izab18834427642
    [Google Scholar]
  94. FangJ. QianY. ChenJ. XuD. CaoN. ZhuG. HuW. HuH. QianN. YangS. WangJ. LiuX. Human antigen R regulates autophagic flux by stabilizing autophagy-associated mRNA in calcific aortic valve disease.Cardiovasc. Res.2023119112117212910.1093/cvr/cvad07737183487
    [Google Scholar]
  95. Tamargo-GómezI. MariñoG. AMPK: Regulation of metabolic dynamics in the context of autophagy.Int. J. Mol. Sci.20181912381210.3390/ijms1912381230501132
    [Google Scholar]
  96. ZhuS. ChoudhuryN.R. RooneyS. PhamN.T. KoszelaJ. KellyD. SpanosC. RappsilberJ. AuerM. MichlewskiG. RNA pull-down confocal nanoscanning (RP-CONA) detects quercetin as pri-miR-7/HuR interaction inhibitor that decreases α-synuclein levels.Nucleic Acids Res.202149116456647310.1093/nar/gkab48434107032
    [Google Scholar]
  97. MirzoevaS. TongX. BridgemanB.B. PlebanekM.P. VolpertO.V. Apigenin inhibits UVB-induced skin carcinogenesis: The role of thrombospondin-1 as an anti-inflammatory factor.Neoplasia201820993094210.1016/j.neo.2018.07.00530118999
    [Google Scholar]
  98. ChaeM.J. SungH.Y. KimE.H. LeeM. KwakH. ChaeC.H. KimS. ParkW.Y. Chemical inhibitors destabilize HuR binding to the AU-rich element of TNF-α mRNA.Exp. Mol. Med.2009411182483110.3858/emm.2009.41.11.08819949288
    [Google Scholar]
  99. WuX. LanL. WilsonD.M. MarquezR.T. TsaoW. GaoP. RoyA. TurnerB.A. McDonaldP. TungeJ.A. RogersS.A. DixonD.A. AubéJ. XuL. Identification and validation of novel small molecule disruptors of HuR-mRNA interaction.ACS Chem. Biol.20151061476148410.1021/cb500851u25750985
    [Google Scholar]
  100. JosephB.P. WeberV. KnüpferL. GiorgettiA. Alfonso-PrietoM. KraußS. CarloniP. RossettiG. Low molecular weight inhibitors targeting the RNA-binding protein HuR.Int. J. Mol. Sci.202324171312710.3390/ijms24171312737685931
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673279032231214110313
Loading
/content/journals/cmc/10.2174/0109298673279032231214110313
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test