Skip to content
2000
Volume 32, Issue 17
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Intervertebral disc degeneration (IDD) is a common musculoskeletal system disease, which is one of the most important causes of low back pain. Despite the high prevalence of IDD, current treatments are limited to relieving symptoms, and there are no effective therapeutic agents that can block or reverse the progression of IDD. Oxidative stress, the result of an imbalance between the production of reactive oxygen species (ROS) and clearance by the antioxidant defense system, plays an important role in the progression of IDD. Polyphenols are antioxidant compounds that can inhibit ROS production, which can scavenge free radicals, reduce hydrogen peroxide production, and inhibit lipid oxidation in nucleus pulposus (NP) cells and IDD animal models. In this review, we discussed the antioxidant effects of polyphenols and their regulatory role in different molecular pathways associated with the pathogenesis of IDD, as well as the limitations and future prospects of polyphenols as a potential treatment of IDD.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673287391231228081400
2025-01-17
2025-09-05
Loading full text...

Full text loading...

References

  1. KamaliA. ZiadlouR. LangG. PfannkucheJ. CuiS. LiZ. RichardsR.G. AliniM. GradS. Small molecule-based treatment approaches for intervertebral disc degeneration: Current options and future directions.Theranostics2021111274710.7150/thno.4898733391459
    [Google Scholar]
  2. Mohd IsaI.L. TeohS.L. Mohd NorN.H. MokhtarS.A. Discogenic low back pain: Anatomy, pathophysiology and treatments of intervertebral disc degeneration.Int. J. Mol. Sci.202224120810.3390/ijms2401020836613651
    [Google Scholar]
  3. FranciscoV. PinoJ. González-GayM.Á. LagoF. KarppinenJ. TervonenO. MobasheriA. GualilloO. A new immunometabolic perspective of intervertebral disc degeneration.Nat. Rev. Rheumatol.2022181476010.1038/s41584‑021‑00713‑z34845360
    [Google Scholar]
  4. van der GraafJ.W. KroezeR.J. BuckensC.F.M. LessmannN. van HooffM.L. MRI image features with an evident relation to low back pain: A narrative review.Eur. Spine J.20233251830184110.1007/s00586‑023‑07602‑x36892719
    [Google Scholar]
  5. RiderS.M. MizunoS. KangJ.D. Molecular mechanisms of intervertebral disc degeneration.Spine Surg. Relat. Res.20193111110.22603/ssrr.2017‑009531435545
    [Google Scholar]
  6. LuY. ZhouL. HeS. RenH.L. ZhouN. HuZ.M. Lycopene alleviates disc degeneration under oxidative stress through the Nrf2 signaling pathway.Mol. Cell. Probes20205110155910.1016/j.mcp.2020.10155932151764
    [Google Scholar]
  7. TangZ. HuB. ZangF. WangJ. ZhangX. ChenH. Nrf2 drives oxidative stress-induced autophagy in nucleus pulposus cells via a Keap1/Nrf2/p62 feedback loop to protect intervertebral disc from degeneration.Cell Death Dis.201910751010.1038/s41419‑019‑1701‑331263165
    [Google Scholar]
  8. VassalleC. MaltintiM. SabatinoL. Targeting oxidative stress for disease prevention and therapy: Where do we stand, and where do we go from here.Molecules20202511265310.3390/molecules2511265332517368
    [Google Scholar]
  9. FuloriaS. SubramaniyanV. KarupiahS. KumariU. SathasivamK. MeenakshiD.U. WuY.S. SekarM. ChitranshiN. MalviyaR. SudhakarK. BajajS. FuloriaN.K. Comprehensive review of methodology to detect reactive oxygen species (ROS) in mammalian species and establish its relationship with antioxidants and cancer.Antioxidants202110112810.3390/antiox1001012833477494
    [Google Scholar]
  10. AldrichJ.L. PanickerA. OvalleR.Jr SharmaB. Drug delivery strategies and nanozyme technologies to overcome limitations for targeting oxidative stress in osteoarthritis.Pharmaceuticals2023167104410.3390/ph1607104437513955
    [Google Scholar]
  11. LiY. ChenL. GaoY. ZouX. WeiF. Oxidative stress and intervertebral disc degeneration: Pathophysiology, signaling pathway, and therapy.Oxid. Med. Cell. Longev.2022202211410.1155/2022/198474236262281
    [Google Scholar]
  12. LiguoriI. RussoG. CurcioF. BulliG. AranL. Della-MorteD. GargiuloG. TestaG. CacciatoreF. BonaduceD. AbeteP. Oxidative stress, aging, and diseases.Clin. Interv. Aging20181375777210.2147/CIA.S15851329731617
    [Google Scholar]
  13. ChenR. LeeC. LinX. ZhaoC. LiX. Novel function of VEGF-B as an antioxidant and therapeutic implications.Pharmacol. Res.2019143333910.1016/j.phrs.2019.03.00230851357
    [Google Scholar]
  14. SzymanskaR. PospíšilP. KrukJ. Plant-derived antioxidants in disease prevention 2018.Oxid. Med. Cell. Longev.201820181210.1155/2018/206837030622663
    [Google Scholar]
  15. LiK. LiY. MiJ. MaoL. HanX. ZhaoJ. Resveratrol protects against sodium nitroprusside induced nucleus pulposus cell apoptosis by scavenging ROS.Int. J. Mol. Med.20184152485249210.3892/ijmm.2018.346129436588
    [Google Scholar]
  16. SongD. GeJ. WangY. YanQ. WuC. YuH. YangM. YangH. ZouJ. Tea polyphenol attenuates oxidative stress-induced degeneration of intervertebral discs by regulating the Keap1/Nrf2/ARE pathway.Oxid. Med. Cell. Longev.2021202111310.1155/2021/668414733505586
    [Google Scholar]
  17. BaiX. JiangM. WangJ. YangS. LiuZ. ZhangH. ZhuX. Cyanidin attenuates the apoptosis of rat nucleus pulposus cells and the degeneration of intervertebral disc via the JAK2/STAT3 signal pathway in vitro and in vivo.Pharm. Biol.202260142743610.1080/13880209.2022.203577335175176
    [Google Scholar]
  18. AnsariM.Y. AhmadN. HaqqiT.M. Oxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenols.Biomed. Pharmacother.202012911045210.1016/j.biopha.2020.11045232768946
    [Google Scholar]
  19. ChedeaV.S. MacoveiȘ.O. BocșanI.C. MăgureanuD.C. LevaiA.M. BuzoianuA.D. PopR.M. Grape pomace polyphenols as a source of compounds for management of oxidative stress and inflammation—a possible alternative for non-steroidal anti-inflammatory drugs?Molecules20222720682610.3390/molecules2720682636296420
    [Google Scholar]
  20. ChenH.W. LiuM.Q. ZhangG.Z. ZhangC.Y. WangZ.H. LinA.X. KangJ.H. LiuW.Z. GuoX.D. WangY.D. KangX.W. Proanthocyanidins inhibit the apoptosis and aging of nucleus pulposus cells through the PI3K/Akt pathway delaying intervertebral disc degeneration.Connect. Tissue Res.202263665066210.1080/03008207.2022.206312135491814
    [Google Scholar]
  21. XieJ. LinJ. WeiM. TengY. HeQ. YangG. YangX. Sustained Akt signaling in articular chondrocytes causes osteoarthritis via oxidative stress-induced senescence in mice.Bone Res.2019712310.1038/s41413‑019‑0062‑y31646013
    [Google Scholar]
  22. ZhangY.H. ShangguanW.J. ZhaoZ.J. ZhouF.C. LiuH.T. LiangZ.H. SongJ. ShaoJ. Naringin inhibits apoptosis induced by cyclic stretch in rat annular cells and partially attenuates disc degeneration by inhibiting the ROS/NF-κB pathway.Oxid. Med. Cell. Longev.2022202211410.1155/2022/617944435251479
    [Google Scholar]
  23. CaoG. YangS. CaoJ. TanZ. WuL. DongF. DingW. ZhangF. The role of oxidative stress in intervertebral disc degeneration.Oxid. Med. Cell. Longev.2022202211610.1155/2022/216681735069969
    [Google Scholar]
  24. VoN. NiedernhoferL.J. NastoL.A. JacobsL. RobbinsP.D. KangJ. EvansC.H. An overview of underlying causes and animal models for the study of age-related degenerative disorders of the spine and synovial joints.J. Orthop. Res.201331683183710.1002/jor.2220423483579
    [Google Scholar]
  25. SakaiD. GradS. Advancing the cellular and molecular therapy for intervertebral disc disease.Adv. Drug Deliv. Rev.20158415917110.1016/j.addr.2014.06.00924993611
    [Google Scholar]
  26. LinJ. DuJ. WuX. XuC. LiuJ. JiangL. ChengX. GeG. ChenL. PangQ. GengD. MaoH. SIRT3 mitigates intervertebral disc degeneration by delaying oxidative stress-induced senescence of nucleus pulposus cells.J. Cell. Physiol.202123696441645610.1002/jcp.3031933565085
    [Google Scholar]
  27. HongS. HongL. WuD. LiB. LiuC. GuoW. MinJ. HuM. ZhaoY. YangQ. Oxidative damage to human parametrial ligament fibroblasts induced by mechanical stress.Mol. Med. Rep.20151245342534810.3892/mmr.2015.411526238938
    [Google Scholar]
  28. ZhangG.Z. LiuM.Q. ChenH.W. WuZ.L. GaoY.C. MaZ.J. HeX.G. KangX.W. NF-κB signalling pathways in nucleus pulposus cell function and intervertebral disc degeneration.Cell Prolif.2021547e1305710.1111/cpr.1305734028920
    [Google Scholar]
  29. PradoA.F. BatistaR.I.M. Tanus-SantosJ.E. GerlachR.F. Matrix metalloproteinases and arterial hypertension: Role of oxidative stress and nitric oxide in vascular functional and structural alterations.Biomolecules202111458510.3390/biom1104058533923477
    [Google Scholar]
  30. FengC. LiuH. YangM. ZhangY. HuangB. ZhouY. Disc cell senescence in intervertebral disc degeneration: Causes and molecular pathways.Cell Cycle201615131674168410.1080/15384101.2016.115243327192096
    [Google Scholar]
  31. SalminenA. KaarnirantaK. KauppinenA. Crosstalk between oxidative stress and SIRT1: Impact on the aging process.Int. J. Mol. Sci.20131423834385910.3390/ijms1402383423434668
    [Google Scholar]
  32. ZhouN. LinX. DongW. HuangW. JiangW. LinL. QiuQ. ZhangX. ShenJ. SongZ. LiangX. HaoJ. WangD. HuZ. SIRT1 alleviates senescence of degenerative human intervertebral disc cartilage endo-plate cells via the p53/p21 pathway.Sci. Rep.2016612262810.1038/srep2262826940203
    [Google Scholar]
  33. GuoJ. ShaoM. LuF. JiangJ. XiaX. Role of sirt1 plays in nucleus pulposus cells and intervertebral disc degeneration.Spine20174213E757E76610.1097/BRS.000000000000195427792110
    [Google Scholar]
  34. TaoL. LuX. FuZ. TianY. LiuX. LiJ. ZhaoP. Tong Sai granule improves AECOPD via regulation of MAPK-SIRT1-NF-κB pathway and cellular senescence alleviation.J. Ethnopharmacol.202331411662210.1016/j.jep.2023.11662237210015
    [Google Scholar]
  35. ShaoZ. WangB. ShiY. XieC. HuangC. ChenB. ZhangH. ZengG. LiangH. WuY. ZhouY. TianN. WuA. GaoW. WangX. ZhangX. Senolytic agent quercetin ameliorates intervertebral disc degeneration via the Nrf2/NF-κB axis.Osteoarthritis Cartilage202129341342210.1016/j.joca.2020.11.00633242601
    [Google Scholar]
  36. WangF. CaiF. ShiR. WangX.H. WuX.T. Aging and age related stresses: A senescence mechanism of intervertebral disc degeneration.Osteoarthritis Cartilage201624339840810.1016/j.joca.2015.09.01926455958
    [Google Scholar]
  37. XiangQ. ZhaoY. LinJ. JiangS. LiW. The Nrf2 antioxidant defense system in intervertebral disc degeneration: Molecular insights.Exp. Mol. Med.20225481067107510.1038/s12276‑022‑00829‑635978054
    [Google Scholar]
  38. WangY. WangL. WenX. HaoD. ZhangN. HeG. JiangX. NF-κB signaling in skin aging.Mech. Ageing Dev.201918411116010.1016/j.mad.2019.11116031634486
    [Google Scholar]
  39. CuiZ. ZhaoX. AmevorF.K. DuX. WangY. LiD. ShuG. TianY. ZhaoX. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism.Front. Immunol.20221394332110.3389/fimmu.2022.94332135935939
    [Google Scholar]
  40. ChenC. ZhouM. GeY. WangX. SIRT1 and aging related signaling pathways.Mech. Ageing Dev.202018711121510.1016/j.mad.2020.11121532084459
    [Google Scholar]
  41. LuoZ. MaY. DiT. MaB. LiH. AnJ. WangY. ZhangH. DNMT3B decreases extracellular matrix degradation and alleviates intervertebral disc degeneration through TRPA1 methylation to inhibit the COX2/YAP axis.Aging (Albany NY)20211316202582027610.18632/aging.20341034428744
    [Google Scholar]
  42. LiangH. LuoR. LiG. ZhangW. SongY. YangC. The proteolysis of ECM in intervertebral disc degeneration.Int. J. Mol. Sci.2022233171510.3390/ijms2303171535163637
    [Google Scholar]
  43. YaoZ. NieL. ZhaoY. ZhangY. LiuY. LiJ. ChengL. Salubrinal suppresses IL-17-induced upregulation of mmp-13 and extracellular matrix degradation through the nf-kb pathway in human nucleus pulposus cells.Inflammation20163961997200710.1007/s10753‑016‑0435‑y27590238
    [Google Scholar]
  44. VoN.V. HartmanR.A. YurubeT. JacobsL.J. SowaG.A. KangJ.D. Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration.Spine J.201313333134110.1016/j.spinee.2012.02.02723369495
    [Google Scholar]
  45. LianC. GaoB. WuZ. QiuX. PengY. LiangA. XuC. SuP. HuangD. Collagen type II is downregulated in the degenerative nucleus pulposus and contributes to the degeneration and apoptosis of human nucleus pulposus cells.Mol. Med. Rep.20171644730473610.3892/mmr.2017.717828791354
    [Google Scholar]
  46. HematiK. PourhanifehM.H. FatemiI. HosseinzadehA. MehrzadiS. Anti-degenerative effect of melatonin on intervertebral disc: Protective contribution against inflammation, oxidative stress, apoptosis, and autophagy.Curr. Drug Targets202223771171810.2174/138945012366622011415165435034592
    [Google Scholar]
  47. TangH. ZhangS. LuX. GengT. Effects of puerarin on the intervertebral disc degeneration and biological characteristics of nucleus pulposus cells.Pharm. Biol.2023611122210.1080/13880209.2022.214754836524765
    [Google Scholar]
  48. DudekM. MorrisH. RogersN. PathiranageD.R.J. RajS.S. ChanD. KadlerK.E. HoylandJ. MengQ.J. The clock transcription factor BMAL1 is a key regulator of extracellular matrix homeostasis and cell fate in the intervertebral disc.Matrix Biol.20231221910.1016/j.matbio.2023.07.00237495193
    [Google Scholar]
  49. XieM. TangQ. NieJ. ZhangC. ZhouX. YuS. SunJ. ChengX. DongN. HuY. ChenL. BMAL1- downregulation aggravates porphyromonas gingivalis -induced atherosclerosis by encouraging oxidative stress.Circ. Res.20201266e15e2910.1161/CIRCRESAHA.119.31550232078488
    [Google Scholar]
  50. DengZ. LiY. LiuH. XiaoS. LiL. TianJ. ChengC. ZhangG. ZhangF. The role of sirtuin 1 and its activator, resveratrol in osteoarthritis.Biosci. Rep.2019395BSR2019018910.1042/BSR2019018930996115
    [Google Scholar]
  51. ZhangX. HuY. ChengP. ZhouH. ChenX. WuD. ZhangR. YuD. GaoX. ShiJ. ZhangK. LiS. SongP. WangK. Targeted therapy for intervertebral disc degeneration: Inhibiting apoptosis is a promising treatment strategy.Int. J. Med. Sci.202118132799281310.7150/ijms.5917134220308
    [Google Scholar]
  52. HeR. CuiM. LinH. ZhaoL. WangJ. ChenS. ShaoZ. Melatonin resists oxidative stress-induced apoptosis in nucleus pulposus cells.Life Sci.201819912213010.1016/j.lfs.2018.03.02029526797
    [Google Scholar]
  53. WuT. JiaX. FengH. WuD. ACTG1 regulates intervertebral disc degeneration via the NF-κB-p65 and Akt pathways.Biochem. Biophys. Res. Commun.2021545546110.1016/j.bbrc.2021.01.05733545632
    [Google Scholar]
  54. XuF. XuJ. XiongX. DengY. Salidroside inhibits MAPK, NF-κB, and STAT3 pathways in psoriasis-associated oxidative stress via SIRT1 activation.Redox Rep.2019241707410.1080/13510002.2019.165837731495284
    [Google Scholar]
  55. JarisarapurinW. KunchanaK. ChularojmontriL. WattanapitayakulS.K. Unripe carica papaya protects methylglyoxal-invoked endothelial cell inflammation and apoptosis via the suppression of oxidative stress and Akt/MAPK/NF-κB signals.Antioxidants2021108115810.3390/antiox1008115834439407
    [Google Scholar]
  56. RisbudM.V. FertalaJ. VresilovicE.J. AlbertT.J. ShapiroI.M. Nucleus pulposus cells upregulate PI3K/Akt and MEK/ERK signaling pathways under hypoxic conditions and resist apoptosis induced by serum withdrawal.Spine200530888288910.1097/01.brs.0000159096.11248.6d15834331
    [Google Scholar]
  57. KeplerC.K. MarkovaD.Z. HilibrandA.S. VaccaroA.R. RisbudM.V. AlbertT.J. AndersonD.G. Substance P stimulates production of inflammatory cytokines in human disc cells.Spine20133821E1291E129910.1097/BRS.0b013e3182a42bc223873242
    [Google Scholar]
  58. TianY. JiY. MeiX. PanJ. HeW. SunJ. WanK. YangH. Lower plasma melatonin in the intervertebral disk degeneration patients was associated with increased proinflammatory cytokines.Clin. Interv. Aging20211621522410.2147/CIA.S29004533568902
    [Google Scholar]
  59. RisbudM.V. ShapiroI.M. Role of cytokines in intervertebral disc degeneration: Pain and disc content.Nat. Rev. Rheumatol.2014101445610.1038/nrrheum.2013.16024166242
    [Google Scholar]
  60. LauridsenC. From oxidative stress to inflammation: Redox balance and immune system.Poult. Sci.201998104240424610.3382/ps/pey40730371893
    [Google Scholar]
  61. UchiyamaY. ChengC.C. DanielsonK.G. MochidaJ. AlbertT.J. ShapiroI.M. RisbudM.V. Expression of acid-sensing ion channel 3 (ASIC3) in nucleus pulposus cells of the intervertebral disc is regulated by p75NTR and ERK signaling.J. Bone Miner. Res.200722121996200610.1359/jbmr.07080517696763
    [Google Scholar]
  62. PurmessurD. FreemontA.J. HoylandJ.A. Expression and regulation of neurotrophins in the nondegenerate and degenerate human intervertebral disc.Arthritis Res. Ther.2008104R9910.1186/ar248718727839
    [Google Scholar]
  63. GruberH.E. HoelscherG.L. BetheaS. HanleyE.N.Jr Interleukin 1-beta upregulates brain-derived neurotrophic factor, neurotrophin 3 and neuropilin 2 gene expression and NGF production in annulus cells.Biotech. Histochem.201287850651110.3109/10520295.2012.70369222853041
    [Google Scholar]
  64. ZhangW. LiG. LuoR. LeiJ. SongY. WangB. MaL. LiaoZ. KeW. LiuH. HuaW. ZhaoK. FengX. WuX. ZhangY. WangK. YangC. Cytosolic escape of mitochondrial DNA triggers cGAS-STING-NLRP3 axis-dependent nucleus pulposus cell pyroptosis.Exp. Mol. Med.202254212914210.1038/s12276‑022‑00729‑935145201
    [Google Scholar]
  65. RenC. JinJ. LiC. XiangJ. WuY. ZhouY. SunL. ZhangX. TianN. Metformin inactivates the cGAS-STING pathway through autophagy and suppresses senescence in nucleus pulposus cells.J. Cell Sci.202213515jcs25973810.1242/jcs.25973835722742
    [Google Scholar]
  66. ZouM. KeQ. NieQ. QiR. ZhuX. LiuW. HuX. SunQ. FuJ.L. TangX. LiuY. LiD.W.C. GongL. Inhibition of cGAS-STING by JQ1 alleviates oxidative stress-induced retina inflammation and degeneration.Cell Death Differ.20222991816183310.1038/s41418‑022‑00967‑435347235
    [Google Scholar]
  67. MaH. XieC. ChenZ. HeG. DaiZ. CaiH. ZhangH. LuH. WuH. HuX. ZhouK. ZhengG. XuH. XuC. MFG-E8 alleviates intervertebral disc degeneration by suppressing pyroptosis and extracellular matrix degradation in nucleus pulposus cells via Nrf2/TXNIP/NLRP3 axis.Cell Death Discov.20228120910.1038/s41420‑022‑01002‑835440086
    [Google Scholar]
  68. YangC.J. LiX. FengX.Q. ChenY. FengJ.G. JiaJ. WeiJ.C. ZhouJ. Activation of LRP1 ameliorates cerebral ischemia/reperfusion injury and cognitive decline by suppressing neuroinflammation and oxidative stress through TXNIP/NLRP3 signaling pathway in mice.Oxid. Med. Cell. Longev.2022202212310.1155/2022/872939836035210
    [Google Scholar]
  69. KlionskyD.J. PetroniG. AmaravadiR.K. BaehreckeE.H. BallabioA. BoyaP. Bravo-San PedroJ.M. CadwellK. CecconiF. ChoiA.M.K. ChoiM.E. ChuC.T. CodognoP. ColomboM.I. CuervoA.M. DereticV. DikicI. ElazarZ. EskelinenE.L. FimiaG.M. GewirtzD.A. GreenD.R. HansenM. JäätteläM. JohansenT. JuhászG. KarantzaV. KraftC. KroemerG. KtistakisN.T. KumarS. Lopez-OtinC. MacleodK.F. MadeoF. MartinezJ. MeléndezA. MizushimaN. MünzC. PenningerJ.M. PereraR.M. PiacentiniM. ReggioriF. RubinszteinD.C. RyanK.M. SadoshimaJ. SantambrogioL. ScorranoL. SimonH.U. SimonA.K. SimonsenA. StolzA. TavernarakisN. ToozeS.A. YoshimoriT. YuanJ. YueZ. ZhongQ. GalluzziL. PietrocolaF. Autophagy in major human diseases.EMBO J.20214019e10886310.15252/embj.202110886334459017
    [Google Scholar]
  70. GlickD. BarthS. MacleodK.F. Autophagy: Cellular and molecular mechanisms.J. Pathol.2010221131210.1002/path.269720225336
    [Google Scholar]
  71. FilomeniG. De ZioD. CecconiF. Oxidative stress and autophagy: The clash between damage and metabolic needs.Cell Death Differ.201522337738810.1038/cdd.2014.15025257172
    [Google Scholar]
  72. KroemerG. MariñoG. LevineB. Autophagy and the integrated stress response.Mol. Cell201040228029310.1016/j.molcel.2010.09.02320965422
    [Google Scholar]
  73. ChenJ.W. NiB.B. ZhengX.F. LiB. JiangS.D. JiangL.S. Hypoxia facilitates the survival of nucleus pulposus cells in serum deprivation by down-regulating excessive autophagy through restricting ROS generation.Int. J. Biochem. Cell Biol.20155911010.1016/j.biocel.2014.11.00925456445
    [Google Scholar]
  74. ZhangS. LiangW. AbuliziY. XuT. CaoR. XunC. ZhangJ. ShengW. Quercetin alleviates intervertebral disc degeneration by modulating p38 MAPK-mediated autophagy.Bio. Med. Res. Int.2021202111510.1155/2021/663156234055990
    [Google Scholar]
  75. RanaA. SamtiyaM. DhewaT. MishraV. AlukoR.E. Health benefits of polyphenols: A concise review.J. Food Biochem.20224610e1426410.1111/jfbc.1426435694805
    [Google Scholar]
  76. BodeA.M. DongZ. Epigallocatechin 3-gallate and green tea catechins: United they work, divided they fail.Cancer Prev. Res. (Phila.)20092651451710.1158/1940‑6207.CAPR‑09‑008319470792
    [Google Scholar]
  77. SinghB.N. ShankarS. SrivastavaR.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications.Biochem. Pharmacol.201182121807182110.1016/j.bcp.2011.07.09321827739
    [Google Scholar]
  78. KrupkovaO. HandaJ. HlavnaM. KlasenJ. OspeltC. FergusonS.J. Wuertz-KozakK. The natural polyphenol epigallocatechin gallate protects intervertebral disc cells from oxidative stress.Oxid. Med. Cell. Longev.2016201611710.1155/2016/703139727119009
    [Google Scholar]
  79. KrupkovaO. SekiguchiM. KlasenJ. HausmannO. KonnoS. FergusonS.J. Wuertz-KozakK. Epigallocatechin 3-gallate suppresses interleukin-1β-induced inflammatory responses in intervertebral disc cells in vitro and reduces radiculopathic pain in rats.Eur. Cell. Mater.20142837238610.22203/eCM.v028a2625422948
    [Google Scholar]
  80. MeiL. ZhengY. MaT. XiaB. GaoX. HaoY. LuoZ. HuangJ. (-)-Epigallocatechin-3-gallate ameliorates intervertebral disc degeneration through reprogramming of the circadian clock.Front. Pharmacol.20211275354810.3389/fphar.2021.75354834803694
    [Google Scholar]
  81. TianY. BaoZ. JiY. MeiX. YangH. Epigallocatechin-3-Gallate Protects H2O2-induced nucleus pulposus cell apoptosis and inflammation by inhibiting cGAS/Sting/NLRP3 activation.Drug Des. Devel. Ther.2020142113212210.2147/DDDT.S25162332546974
    [Google Scholar]
  82. SalehiB. MishraA. NigamM. SenerB. KilicM. Sharifi-RadM. FokouP. MartinsN. Sharifi-RadJ. Resveratrol: A double-edged sword in health benefits.Biomedicines2018639110.3390/biomedicines603009130205595
    [Google Scholar]
  83. FakhriS. AbbaszadehF. MoradiS.Z. CaoH. KhanH. XiaoJ. Effects of polyphenols on oxidative stress, inflammation, and interconnected pathways during spinal cord injury.Oxid. Med. Cell. Longev.2022202213410.1155/2022/810019535035667
    [Google Scholar]
  84. JiangW. ZhangX. HaoJ. ShenJ. FangJ. DongW. WangD. ZhangX. ShuiW. LuoY. LinL. QiuQ. LiuB. HuZ. SIRT1 protects against apoptosis by promoting autophagy in degenerative human disc nucleus pulposus cells.Sci. Rep.201441745610.1038/srep0745625503852
    [Google Scholar]
  85. GaoJ. ZhangQ. SongL. Resveratrol enhances matrix biosynthesis of nucleus pulposus cells through activating autophagy via the PI3K/Akt pathway under oxidative damage.Biosci. Rep.2018384BSR2018054410.1042/BSR2018054429752339
    [Google Scholar]
  86. HeJ. ZhangA. SongZ. GuoS. ChenY. LiuZ. ZhangJ. XuX. LiuJ. ChuL. The resistant effect of SIRT1 in oxidative stress-induced senescence of rat nucleus pulposus cell is regulated by Akt-FoxO1 pathway.Biosci. Rep.2019395BSR2019011210.1042/BSR2019011230967498
    [Google Scholar]
  87. WuJ.W. WangJ.J. ChenJ.B. HuangY.L. WangH. LiuG.H. LiL.F. KangM. WangX.G. CaiH.H. Resveratrol could reverse the expression of SIRT1 and MMP-1 in vitro.Genet. Mol. Res.2015144123861239310.4238/2015.October.16.526505388
    [Google Scholar]
  88. QiW. QiW. XiongD. LongM. Quercetin: Its antioxidant mechanism, antibacterial properties and potential application in prevention and control of toxipathy.Molecules20222719654510.3390/molecules2719654536235082
    [Google Scholar]
  89. ChungS. YaoH. CaitoS. HwangJ. ArunachalamG. RahmanI. Regulation of SIRT1 in cellular functions: Role of polyphenols.Arch. Biochem. Biophys.20105011799010.1016/j.abb.2010.05.00320450879
    [Google Scholar]
  90. WangD. HeX. WangD. PengP. XuX. GaoB. ZhengC. WangH. JiaH. ShangQ. SunZ. LuoZ. YangL. Quercetin suppresses apoptosis and attenuates intervertebral disc degeneration via the SIRT1-autophagy pathway.Front. Cell Dev. Biol.2020861300610.3389/fcell.2020.61300633363176
    [Google Scholar]
  91. ShiW. KongY. SuY. KussM.A. JiangX. LiX. XieJ. DuanB. Tannic acid-inspired, self-healing, and dual stimuli responsive dynamic hydrogel with potent antibacterial and anti-oxidative properties.J. Mater. Chem. B Mater. Biol. Med.20219357182719510.1039/D1TB00156F33651063
    [Google Scholar]
  92. GuoZ. XieW. LuJ. GuoX. XuJ. XuW. ChiY. TakuyaN. WuH. ZhaoL. Tannic acid-based metal phenolic networks for bio-applications: A review.J. Mater. Chem. B Mater. Biol. Med.20219204098411010.1039/D1TB00383F33913461
    [Google Scholar]
  93. AbouelmagdS.A. MengF. KimB.K. HyunH. YeoY. Tannic acid-mediated surface functionalization of polymeric nanoparticles.ACS Biomater. Sci. Eng.20162122294230310.1021/acsbiomaterials.6b0049728944286
    [Google Scholar]
  94. LarrañagaA. IsaI.L.M. PatilV. ThambooS. LomoraM. Fernández-YagueM.A. SarasuaJ.R. PalivanC.G. PanditA. Antioxidant functionalized polymer capsules to prevent oxidative stress.Acta Biomater.201867213110.1016/j.actbio.2017.12.01429258803
    [Google Scholar]
  95. WangY. WuY. ZhangB. ZhengC. HuC. GuoC. KongQ. WangY. Repair of degenerative nucleus pulposus by polyphenol nanosphere-encapsulated hydrogel gene delivery system.Biomaterials202329812213210.1016/j.biomaterials.2023.12213237156085
    [Google Scholar]
  96. WangC.M. HsuY.M. JhanY.L. TsaiS.J. LinS.X. SuC.H. ChouC.H. Structure elucidation of procyanidins isolated from Rhododendron formosanum and their anti-oxidative and anti-bacterial activities.Molecules2015207127871280310.3390/molecules20071278726184152
    [Google Scholar]
  97. ShangP. TangQ. HuZ. HuangS. HuY. ZhuJ. LiuH. Procyanidin B3 alleviates intervertebral disc degeneration via interaction with the TLR4/MD-2 complex.J. Cell. Mol. Med.20202463701371110.1111/jcmm.1507432068951
    [Google Scholar]
  98. ZouY.P. ZhangQ.C. ZhangQ.Y. JiangL.B. LiX.L. Procyanidin B2 alleviates oxidative stress-induced nucleus pulposus cells apoptosis through upregulating Nrf2 via PI3K–Akt pathway.J. Orthop. Res.20234171555156410.1002/jor.2549236448180
    [Google Scholar]
  99. WoodburyA. YuS.P. WeiL. GarcíaP. Neuro-modulating effects of honokiol: A review.Front. Neurol.2013413010.3389/fneur.2013.0013024062717
    [Google Scholar]
  100. ZhouY. ChungA.C.K. FanR. LeeH.M. XuG. TomlinsonB. ChanJ.C.N. KongA.P.S. Sirt3 deficiency increased the vulnerability of pancreatic beta cells to oxidative stress-induced dysfunction.Antioxid. Redox Signal.2017271396297610.1089/ars.2016.685928375738
    [Google Scholar]
  101. WangJ. NisarM. HuangC. PanX. LinD. ZhengG. JinH. ChenD. TianN. HuangQ. DuanY. YanY. WangK. WuC. HuJ. ZhangX. WangX. Small molecule natural compound agonist of SIRT3 as a therapeutic target for the treatment of intervertebral disc degeneration.Exp. Mol. Med.2018501111410.1038/s12276‑018‑0173‑330420619
    [Google Scholar]
  102. TangP. GuJ.M. XieZ.A. GuY. JieZ.W. HuangK.M. WangJ.Y. FanS.W. JiangX.S. HuZ.J. Honokiol alleviates the degeneration of intervertebral disc via suppressing the activation of TXNIP-NLRP3 inflammasome signal pathway.Free Radic. Biol. Med.201812036837910.1016/j.freeradbiomed.2018.04.00829649568
    [Google Scholar]
  103. KulkarniS.S. CantóC. The molecular targets of resveratrol.Biochim. Biophys. Acta Mol. Basis Dis.2015185261114112310.1016/j.bbadis.2014.10.00525315298
    [Google Scholar]
  104. Rodriguez-MateosA. HeissC. BorgesG. CrozierA. Berry (poly)phenols and cardiovascular health.J. Agric. Food Chem.201462183842385110.1021/jf403757g24059851
    [Google Scholar]
  105. SinghA.P. SinghR. VermaS.S. RaiV. KaschulaC.H. MaitiP. GuptaS.C. Health benefits of resveratrol: Evidence from clinical studies.Med. Res. Rev.20193951851189110.1002/med.2156530741437
    [Google Scholar]
  106. AshrafizadehM. AhmadiZ. MohammadinejadR. FarkhondehT. SamarghandianS. Curcumin activates the Nrf2 pathway and induces cellular protection against oxidative injury.Curr. Mol. Med.202020211613310.2174/18755666MTAxyNTQkx31622191
    [Google Scholar]
  107. ZhangM. ZhangC. ZhangL. YangQ. ZhouS. WenQ. WangJ. Nrf2 is a potential prognostic marker and promotes proliferation and invasion in human hepatocellular carcinoma.BMC Cancer201515153110.1186/s12885‑015‑1541‑126194347
    [Google Scholar]
  108. DeNicolaG.M. ChenP.H. MullarkyE. SudderthJ.A. HuZ. WuD. TangH. XieY. AsaraJ.M. HuffmanK.E. WistubaI.I. MinnaJ.D. DeBerardinisR.J. CantleyL.C. NRF2 regulates serine biosynthesis in non–small cell lung cancer.Nat. Genet.201547121475148110.1038/ng.342126482881
    [Google Scholar]
  109. KnatkoE.V. IbbotsonS.H. ZhangY. HigginsM. FaheyJ.W. TalalayP. DaweR.S. FergusonJ. HuangJ.T.J. ClarkeR. ZhengS. SaitoA. KalraS. BenedictA.L. HondaT. ProbyC.M. Dinkova-KostovaA.T. Nrf2 activation protects against solar-simulated ultraviolet radiation in mice and humans.Cancer Prev. Res. (Phila.)20158647548610.1158/1940‑6207.CAPR‑14‑036225804610
    [Google Scholar]
  110. SekharK.R. FreemanM.L. Nrf2 promotes survival following exposure to ionizing radiationFree Radic Biol Med201588Pt B26827410.1016/j.freeradbiomed.2015.04.035
    [Google Scholar]
  111. TaoS. JustinianoR. ZhangD.D. WondrakG.T. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV.Redox Biol.20131153254110.1016/j.redox.2013.10.00424273736
    [Google Scholar]
  112. Rojo de la VegaM. ChapmanE. ZhangD.D. NRF2 and the hallmarks of cancer.Cancer Cell2018341214310.1016/j.ccell.2018.03.02229731393
    [Google Scholar]
  113. SatohH. MoriguchiT. SaigusaD. BairdL. YuL. RokutanH. IgarashiK. EbinaM. ShibataT. YamamotoM. NRF2 intensifies host defense systems to prevent lung carcinogenesis, but after tumor initiation accelerates malignant cell growth.Cancer Res.201676103088309610.1158/0008‑5472.CAN‑15‑158427020858
    [Google Scholar]
  114. TaoS. Rojo de la VegaM. ChapmanE. OoiA. ZhangD.D. The effects of NRF2 modulation on the initiation and progression of chemically and genetically induced lung cancer.Mol. Carcinog.201857218219210.1002/mc.2274528976703
    [Google Scholar]
  115. WangH. LiuX. LongM. HuangY. ZhangL. ZhangR. ZhengY. LiaoX. WangY. LiaoQ. LiW. TangZ. TongQ. WangX. FangF. de la VegaM.R. OuyangQ. ZhangD.D. YuS. ZhengH. NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis.Sci. Transl. Med.20168334334ra5110.1126/scitranslmed.aad609527075625
    [Google Scholar]
  116. ChioI.I.C. JafarnejadS.M. Ponz-SarviseM. ParkY. RiveraK. PalmW. WilsonJ. SangarV. HaoY. ÖhlundD. WrightK. FilippiniD. LeeE.J. Da SilvaB. SchoepferC. WilkinsonJ.E. BuscagliaJ.M. DeNicolaG.M. TiriacH. HammellM. CrawfordH.C. SchmidtE.E. ThompsonC.B. PappinD.J. SonenbergN. TuvesonD.A. NRF2 promotes tumor maintenance by modulating mRNA translation in pancreatic cancer.Cell2016166496397610.1016/j.cell.2016.06.05627477511
    [Google Scholar]
  117. LiY. YanH. XuX. LiuH. WuC. ZhaoL. Erastin/sorafenib induces cisplatin-resistant non-small cell lung cancer cell ferroptosis through inhibition of the Nrf2/xCT pathway.Oncol. Lett.202019132333331897145
    [Google Scholar]
  118. XuY. YangY. HuangY. MaQ. ShangJ. GuoJ. CaoX. WangX. LiM. Inhibition of Nrf2/HO-1 signaling pathway by dextran sulfate suppresses angiogenesis of gastric cancer.J. Cancer20211241042106010.7150/jca.5060533442403
    [Google Scholar]
  119. QinS. HeX. LinH. SchulteB.A. ZhaoM. TewK.D. WangG.Y. Nrf2 inhibition sensitizes breast cancer stem cells to ionizing radiation via suppressing DNA repair.Free Radic. Biol. Med.202116923824710.1016/j.freeradbiomed.2021.04.00633892113
    [Google Scholar]
  120. NoorolyaiS. ShajariN. BaghbaniE. SadreddiniS. BaradaranB. The relation between PI3K/AKT signalling pathway and cancer.Gene201969812012810.1016/j.gene.2019.02.07630849534
    [Google Scholar]
  121. ZhangL. McClementsD.J. WeiZ. WangG. LiuX. LiuF. Delivery of synergistic polyphenol combinations using biopolymer-based systems: Advances in physicochemical properties, stability and bioavailability.Crit. Rev. Food Sci. Nutr.202060122083209710.1080/10408398.2019.163035831257900
    [Google Scholar]
  122. GasmiA. MujawdiyaP.K. NoorS. LysiukR. DarmohrayR. PiscopoS. LenchykL. AntonyakH. DehtiarovaK. ShanaidaM. PolishchukA. ShanaidaV. PeanaM. BjørklundG. Polyphenols in metabolic diseases.Molecules20222719628010.3390/molecules2719628036234817
    [Google Scholar]
  123. LiuM. ZhangL. ZangW. ZhangK. LiH. GaoY. Pharmacological effects of resveratrol in intervertebral disc degeneration: A literature review.Orthop. Surg.202214123141314910.1111/os.1356036303427
    [Google Scholar]
  124. ErtasA. GedizT. OzdolC. GursesI.A. OnderM. UzelM. AghayevK. Risk of intervertebral disc joint puncture during lumbar puncture.Clin. Neurol. Neurosurg.202120010610710.1016/j.clineuro.2020.10610732739069
    [Google Scholar]
  125. BaiX. GuoX. ZhangF. ZhengL. DingW. YangS. Resveratrol combined with 17 β -estradiol prevents IL-1 β induced apoptosis in human nucleus pulposus via the PI3K/AKT/Mtor and PI3K/AKT/GSK-3 β pathway.J. Invest. Surg.202134890491110.1080/08941939.2019.170594132036721
    [Google Scholar]
  126. Turuvekere Vittala MurthyN. AgrahariV. ChauhanH. Polyphenols against infectious diseases: Controlled release nano-formulations.Eur. J. Pharm. Biopharm.2021161667910.1016/j.ejpb.2021.02.00333588032
    [Google Scholar]
  127. ZhangX. ZhengY. WangZ. HuangS. ChenY. JiangW. ZhangH. DingM. LiQ. XiaoX. LuoX. WangZ. QiH. Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and synergistic targeted therapy of residual tumor during HIFU ablation.Biomaterials201435195148516110.1016/j.biomaterials.2014.02.03624680663
    [Google Scholar]
  128. ShenJ. ZhuoN. XuS. SongZ. HuZ. HaoJ. GuoX. Resveratrol delivery by ultrasound-mediated nanobubbles targeting nucleus pulposus cells.Nanomedicine201813121433144610.2217/nnm‑2018‑001929658365
    [Google Scholar]
  129. KrupkovaO. FergusonS.J. Wuertz-KozakK. Stability of (−)-epigallocatechin gallate and its activity in liquid formulations and delivery systems.J. Nutr. Biochem.20163711210.1016/j.jnutbio.2016.01.00227770867
    [Google Scholar]
  130. ShiM. ShiY.L. LiX.M. YangR. CaiZ.Y. LiQ.S. MaS.C. YeJ.H. LuJ.L. LiangY.R. ZhengX.Q. Food-grade encapsulation systems for (-)-epigallocatechin gallate.Molecules201823244510.3390/molecules2302044529462972
    [Google Scholar]
  131. LoepfeM. DussA. ZafeiropoulouK.A. BjörgvinsdóttirO. D’EsteM. EglinD. FortunatoG. KlasenJ. FergusonS.J. Wuertz-KozakK. KrupkovaO. Electrospray-based microencapsulation of epigallocatechin 3-gallate for local delivery into the intervertebral disc.Pharmaceutics201911943510.3390/pharmaceutics1109043531480533
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673287391231228081400
Loading
/content/journals/cmc/10.2174/0109298673287391231228081400
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test