Skip to content
2000
Volume 32, Issue 17
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide; however, there is not a convincing treatment for this disease. Limitations of conventional CRC therapies force scientists to develop novel treatment concepts for both primary care alongside adjuvant therapy. Photodynamic therapy (PDT) has been introduced as a promising therapeutic procedure for CRC mediated through theranostic principle in which special dyes, photosensitizers (PSs), are excited by near-infrared (NIR) and visible light. Recent studies showed that PDT has synergistic effects in combination with chemotherapy or immunotherapy in the treatment of CRC patients. Of note, nanoformulation of PS or immunotherapeutic agents could augment the PDT effectiveness. In this review, we summarize PDT application in CRC management with a special focus on the nanoparticles-based delivery system from the perspective of targeting deeper CRC and increased PDT efficiency, which could provide a desirable approach for clinical translation.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673267788231208073338
2024-01-24
2025-10-22
Loading full text...

Full text loading...

References

  1. WangJ. XuC. WuH. ShenS. LncRNA SNHG12 promotes cell growth and inhibits cell apoptosis in colorectal cancer cells.Braz. J. Med. Biol. Res.2017503e607910.1590/1414‑431x20176079
    [Google Scholar]
  2. BalchenV. SimonK. Colorectal cancer development and advances in screening.Clin. Interv. Aging20161196797610.2147/CIA.S10928527486317
    [Google Scholar]
  3. SiegelR.L. KimberlyD. Miller AnnS.G.S.A. FedewaL.F. ButterlyJ.C. AndersonA.C.R.A.S. Colorectal cancer statistics.Cancer J. Clin.2020703145164
    [Google Scholar]
  4. DoubeniC.A. LaiyemoA.O. MajorJ.M. SchootmanM. LianM. ParkY. GraubardB.I. HollenbeckA.R. SinhaR. Socioeconomic status and the risk of colorectal cancer.Cancer2012118143636364410.1002/cncr.2667722898918
    [Google Scholar]
  5. DoubeniC.A. MajorJ.M. LaiyemoA.O. SchootmanM. ZauberA.G. HollenbeckA.R. SinhaR. AllisonJ. Contribution of behavioral risk factors and obesity to socioeconomic differences in colorectal cancer incidence.J. Natl. Cancer Inst.2012104181353136210.1093/jnci/djs34622952311
    [Google Scholar]
  6. KlabundeC.N. CroninK.A. BreenN. WaldronW.R. AmbsA.H. NadelM.R. Trends in colorectal cancer test use among vulnerable populations in the United States.Cancer Epidemiol. Biomarkers Prev.20112081611162110.1158/1055‑9965.EPI‑11‑022021653643
    [Google Scholar]
  7. JemalA. SiegelR. XuJ. WardE. Cancer statistics, 2010.CA Cancer J. Clin.201060527730010.3322/caac.20073
    [Google Scholar]
  8. ChanA.T. GiovannucciE.L. Primary prevention of colorectal cancer.Gastroenterology2010138620292043.e1010.1053/j.gastro.2010.01.057
    [Google Scholar]
  9. BoursiB. SellaT. LibermanE. ShapiraS. DavidM. KazanovD. ArberN. KrausS. The APC p.I1307K polymorphism is a significant risk factor for CRC in average risk Ashkenazi Jews.Eur. J. Cancer201349173680368510.1016/j.ejca.2013.06.04023896379
    [Google Scholar]
  10. LockerG.Y. LynchH.T. Genetic factors and colorectal cancer in Ashkenazi Jews.Fam. Cancer200433-421522110.1007/s10689‑004‑9547‑x15516844
    [Google Scholar]
  11. ParryS. WinA.K. ParryB. MacraeF.A. GurrinL.C. ChurchJ.M. BaronJ.A. GilesG.G. LeggettB.A. WinshipI. LiptonL. YoungG.P. YoungJ.P. LodgeC.J. SoutheyM.C. NewcombP.A. Le MarchandL. HaileR.W. LindorN.M. GallingerS. HopperJ.L. JenkinsM.A. Metachronous colorectal cancer risk for mismatch repair gene mutation carriers: The advantage of more extensive colon surgery.Gut201160795095710.1136/gut.2010.22805621193451
    [Google Scholar]
  12. EkbomA. HelmickC. ZackM. AdamiH.O. Ulcerative colitis and colorectal cancer. A population-based study.N. Engl. J. Med.1990323181228123310.1056/NEJM1990110132318022215606
    [Google Scholar]
  13. BotteriE. IodiceS. BagnardiV. RaimondiS. LowenfelsA.B. MaisonneuveP. Smoking and colorectal cancer: A meta-analysis.JAMA2008300232765277810.1001/jama.2008.83919088354
    [Google Scholar]
  14. FedirkoV. TramacereI. BagnardiV. RotaM. ScottiL. IslamiF. NegriE. StraifK. RomieuI. La VecchiaC. BoffettaP. JenabM. Alcohol drinking and colorectal cancer risk: An overall and dose–response meta-analysis of published studies.Ann. Oncol.20112291958197210.1093/annonc/mdq65321307158
    [Google Scholar]
  15. SausE. Iraola-GuzmánS. WillisJ.R. Brunet-VegaA. GabaldónT. Microbiome and colorectal cancer: Roles in carcinogenesis and clinical potential.Mol. Aspects Med.2019699310610.1016/j.mam.2019.05.00131082399
    [Google Scholar]
  16. MillerK.D. NogueiraL. MariottoA.B. RowlandJ.H. YabroffK.R. AlfanoC.M. JemalA. KramerJ.L. SiegelR.L. Cancer treatment and survivorship statistics, 2019.CA Cancer J. Clin.201969536338510.3322/caac.2156531184787
    [Google Scholar]
  17. JoyeI. HaustermansK. Early and late toxicity of radiotherapy for rectal cancer.Recent Results Cancer Res.201420318920110.1007/978‑3‑319‑08060‑4_13
    [Google Scholar]
  18. JayakumarJ. MohammedZ. JayaprakashB. RamziM. Recent developments in nanomedicine; treatment options for colorectal cancer.Modern Technology: Present Future of Cancer MachaM.A. BhatAA USAOMICS Group eBooks2015
    [Google Scholar]
  19. BrarB. RanjanK. PalriaA. KumarR. GhoshM. SihagS. MinakshiP. Nanotechnology in colorectal cancer for precision diagnosis and therapy.Front. Nanotechnol2021369926610.3389/fnano.2021.699266
    [Google Scholar]
  20. GuidolinK. DingL. YanH. Englesakis HBAM. ChadiS. QuereshyF. ZhengG. Photodynamic therapy for colorectal cancer: A systematic review of clinical research.Surg. Innov.202229678880310.1177/1553350622108354535428418
    [Google Scholar]
  21. MartinsW.K. BelottoR. SilvaM.N. GrassoD. SurianiM.D. LavorT.S. ItriR. BaptistaM.S. TsuboneT.M. Autophagy regulation and photodynamic therapy: Insights to improve outcomes of cancer treatment.Front. Oncol.20211061047210.3389/fonc.2020.61047233552982
    [Google Scholar]
  22. XuS. BulinA.L. HurbinA. ElleaumeH. CollJ.L. BroekgaardenM. Photodynamic diagnosis and therapy for peritoneal carcinomatosis: Emerging perspectives.Cancers2020129249110.3390/cancers1209249132899137
    [Google Scholar]
  23. CorreiaJ.H. RodriguesJ.A. PimentaS. DongT. YangZ. Photodynamic therapy review: Principles, photosensitizers, applications, and future directions.Pharmaceutics2021139133210.3390/pharmaceutics1309133234575408
    [Google Scholar]
  24. NelkeK.H. PawlakW. LeszczyszynJ. GerberH. Photodynamic therapy in head and neck cancer.Advances in Hygiene Experimental Medicine201468119128
    [Google Scholar]
  25. ShafirsteinG. BattooA. HarrisK. BaumannH. GollnickS.O. LindenmannJ. NwoguC.E. Photodynamic therapy of non–small cell lung cancer. Narrative review and future directions.Ann. Am. Thorac. Soc.201613226527510.1513/AnnalsATS.201509‑650FR26646726
    [Google Scholar]
  26. GheewalaT. SkworT. MunirathinamG. Photosensitizers in prostate cancer therapy.Oncotarget2017818305243053810.18632/oncotarget.1549628430624
    [Google Scholar]
  27. OuyangG. XiongL. LiuZ. LamB. BuiB. MaL. ChenX. ZhouP. WangK. ZhangZ. HuangH. MiaoX. ChenW. WenY. Inhibition of autophagy potentiates the apoptosis-inducing effects of photodynamic therapy on human colon cancer cells.Photodiagn. Photodyn. Ther.20182139640310.1016/j.pdpdt.2018.01.01029355734
    [Google Scholar]
  28. AgostinisP. BergK. CengelK.A. FosterT.H. GirottiA.W. GollnickS.O. HahnS.M. HamblinM.R. JuzenieneA. KesselD. KorbelikM. MoanJ. MrozP. NowisD. PietteJ. WilsonB.C. GolabJ. Photodynamic therapy of cancer: An update.CA Cancer J. Clin.201161425028110.3322/caac.2011421617154
    [Google Scholar]
  29. FooteC.S. Type I and type II mechanisms of photodynamic action.ACS Publications198710.1021/bk‑1987‑0339.ch002
    [Google Scholar]
  30. OrmondA. FreemanH. Dye sensitizers for photodynamic therapy.Materials20136381784010.3390/ma603081728809342
    [Google Scholar]
  31. BaptistaM.S. CadetJ. Di MascioP. GhogareA.A. GreerA. HamblinM.R. LorenteC. NunezS.C. RibeiroM.S. ThomasA.H. VignoniM. YoshimuraT.M. Type I and type II photosensitized oxidation reactions: Guidelines and mechanistic pathways.Photochem. Photobiol.201793491291910.1111/php.1271628084040
    [Google Scholar]
  32. WachowskaM. MuchowiczA. FirczukM. GabrysiakM. WiniarskaM. WańczykM. BojarczukK. GolabJ. Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer.Molecules20111654140416410.3390/molecules16054140
    [Google Scholar]
  33. KimM.M. DarafshehA. Light sources and dosimetry techniques for photodynamic therapy.Photochem. Photobiol.202096228029410.1111/php.1321932003006
    [Google Scholar]
  34. RodriguezL. BatlleA. Di VenosaG. BattahS. DobbinP. MacRobertA.J. CasasA. Mechanisms of 5-aminolevulic acid ester uptake in mammalian cells.Br. J. Pharmacol.2006147782583310.1038/sj.bjp.070666816432502
    [Google Scholar]
  35. Dos SantosA.F. De AlmeidaD.R.Q. TerraL.F. BaptistaM.S. LabriolaL. Photodynamic therapy in cancer treatment - an update review.J. Cancer Metastasis Treat.201920192510.20517/2394‑4722.2018.83
    [Google Scholar]
  36. HamblinM.R. Photodynamic therapy for cancer: What’s past is prologue.Photochem. Photobiol.202096350651610.1111/php.1319031820824
    [Google Scholar]
  37. AbdelghanyS.M. SchmidD. DeaconJ. JaworskiJ. FayF. McLaughlinK.M. GormleyJ.A. BurrowsJ.F. LongleyD.B. DonnellyR.F. ScottC.J. Enhanced antitumor activity of the photosensitizer meso-Tetra(N-methyl-4-pyridyl) porphine tetra tosylate through encapsulation in antibody-targeted chitosan/alginate nanoparticles.Biomacromolecules201314230231010.1021/bm301858a23327610
    [Google Scholar]
  38. AckroydR. KeltyC. BrownN. ReedM. The history of photodetection and photodynamic therapy.Photochem. Photobiol.200174565666910.1562/0031‑8655(2001)074<0656:THOPAP>2.0.CO;211723793
    [Google Scholar]
  39. MittonD. AckroydR. A brief overview of photodynamic therapy in Europe.Photodiagn. Photodyn. Ther.20085210311110.1016/j.pdpdt.2008.04.00419356640
    [Google Scholar]
  40. LeeC.N. HsuR. ChenH. WongT.W. Daylight photodynamic therapy: An update.Molecules20202521519510.3390/molecules2521519533171665
    [Google Scholar]
  41. HamblinM.R. HuangY. Imaging in Photodynamic Therapy.CRC Press2017479
    [Google Scholar]
  42. DolmansD.E.J.G.J. FukumuraD. JainR.K. Photodynamic therapy for cancer.Nat. Rev. Cancer20033538038710.1038/nrc107112724736
    [Google Scholar]
  43. WeberH.M. MehranY.Z. OrthaberA. SaadatH.H. WeberR. WojcikM. Successful reduction of SARS-CoV-2 viral load by photodynamic therapy (PDT) verified by QPCR—A novel approach in treating patients in early infection stages.Med. Clin. Res20205311325
    [Google Scholar]
  44. WeberM. Intravenöse und interstitielle Lasertherapie: Eine neue Option in der Onkologie.Akupunkt. Aurikulomed2011373234
    [Google Scholar]
  45. RochaL.G.B. Development of a novel photosensitizer for Photodynamic Therapy of cancer.PortugalUniversidade de Coimbra2016
    [Google Scholar]
  46. FitzgeraldF. Photodynamic therapy (PDT): Principles, mechanisms and applications.Nova Biomedical2017223
    [Google Scholar]
  47. CastanoA.P. DemidovaT.N. HamblinM.R. Mechanisms in photodynamic therapy: part two—cellular signaling, cell metabolism and modes of cell death.Photodiagn. Photodyn. Ther.20052112310.1016/S1572‑1000(05)00030‑X25048553
    [Google Scholar]
  48. BacellarI. TsuboneT. PavaniC. BaptistaM. Photodynamic efficiency: From molecular photochemistry to cell death.Int. J. Mol. Sci.2015169205232055910.3390/ijms16092052326334268
    [Google Scholar]
  49. JensenT.J. VicenteM.G.H. LuguyaR. NortonJ. FronczekF.R. SmithK.M. Effect of overall charge and charge distribution on cellular uptake, distribution and phototoxicity of cationic porphyrins in HEp2 cells.J. Photochem. Photobiol. B2010100210011110.1016/j.jphotobiol.2010.05.00720558079
    [Google Scholar]
  50. PavaniC. IamamotoY. BaptistaM.S. Mechanism and efficiency of cell death of type II photosensitizers: Effect of zinc chelation.Photochem. Photobiol.201288477478110.1111/j.1751‑1097.2012.01102.x22283143
    [Google Scholar]
  51. DaviesM.J. Singlet oxygen-mediated damage to proteins and its consequences.Biochem. Biophys. Res. Commun.2003305376177010.1016/S0006‑291X(03)00817‑912763058
    [Google Scholar]
  52. St DenisT.G. HamblinM.R. Synthesis, bioanalysis and biodistribution of photosensitizer conjugates for photodynamic therapy.Bioanalysis2013591099111410.4155/bio.13.3723641699
    [Google Scholar]
  53. GunaydinG. GedikM.E. AyanS. Photodynamic therapy for the treatment and diagnosis of cancer–a review of the current clinical status.Front Chem.2021968630310.3389/fchem.2021.68630334409014
    [Google Scholar]
  54. SuZ. YangZ. XuY. ChenY. YuQ. Apoptosis, autophagy, necroptosis, and cancer metastasis.Mol. Cancer20151414810.1186/s12943‑015‑0321‑525743109
    [Google Scholar]
  55. BoyaP. ReggioriF. CodognoP. Emerging regulation and functions of autophagy.Nat. Cell Biol.201315771372010.1038/ncb278823817233
    [Google Scholar]
  56. ZhangL. JiZ. ZhangJ. YangS. Photodynamic therapy enhances skin cancer chemotherapy effects through autophagy regulation.Photodiagn. Photodyn. Ther.20192815916510.1016/j.pdpdt.2019.08.02331445100
    [Google Scholar]
  57. ZhuB. LiS. YuL. HuW. ShengD. HouJ. ZhaoN. HouX. WuY. HanZ. WeiL. ZhangL. Inhibition of autophagy with chloroquine enhanced sinoporphyrin sodium mediated photodynamic therapy-induced apoptosis in human colorectal cancer cells.Int. J. Biol. Sci.2019151122310.7150/ijbs.2715630662343
    [Google Scholar]
  58. DewaeleM. MartinetW. RubioN. VerfaillieT. de WitteP.A. PietteJ. AgostinisP. Autophagy pathways activated in response to PDT contribute to cell resistance against ROS damage.J. Cell. Mol. Med.20111561402141410.1111/j.1582‑4934.2010.01118.x20626525
    [Google Scholar]
  59. XiongL. LiuZ. OuyangG. LinL. HuangH. KangH. ChenW. MiaoX. WenY. Autophagy inhibition enhances photocytotoxicity of Photosan-II in human colorectal cancer cells.Oncotarget2017846419643210.18632/oncotarget.1411728031534
    [Google Scholar]
  60. JiH.T. ChienL.T. LinY.H. ChienH.F. ChenC.T. 5-ALA mediated photodynamic therapy induces autophagic cell death via AMP-activated protein kinase.Mol. Cancer2010919110.1186/1476‑4598‑9‑9120426806
    [Google Scholar]
  61. LinS. YangL. ShiH. DuW. QiY. QiuC. LiangX. ShiW. LiuJ. Endoplasmic reticulum-targeting photosensitizer Hypericin confers chemo-sensitization towards oxaliplatin through inducing pro-death autophagy.Int. J. Biochem. Cell Biol.201787546810.1016/j.biocel.2017.04.00128392376
    [Google Scholar]
  62. HuangX. ChenJ. WuW. YangW. ZhongB. QingX. ShaoZ. Delivery of MutT homolog 1 inhibitor by functionalized graphene oxide nanoparticles for enhanced chemo-photodynamic therapy triggers cell death in osteosarcoma.Acta Biomater.202010922924310.1016/j.actbio.2020.04.00932294550
    [Google Scholar]
  63. CoupienneI. BontemsS. DewaeleM. RubioN. HabrakenY. FuldaS. AgostinisP. PietteJ. NF-kappaB inhibition improves the sensitivity of human glioblastoma cells to 5-aminolevulinic acid-based photodynamic therapy.Biochem. Pharmacol.201181560661610.1016/j.bcp.2010.12.01521182827
    [Google Scholar]
  64. ValliF. García ViorM.C. RoguinL.P. MarinoJ. Crosstalk between oxidative stress-induced apoptotic and autophagic signaling pathways in Zn(II) phthalocyanine photodynamic therapy of melanoma.Free Radic. Biol. Med.202015274375410.1016/j.freeradbiomed.2020.01.01831962157
    [Google Scholar]
  65. GremkeN. PoloP. DortA. SchneikertJ. ElmshäuserS. BrehmC. KlingmüllerU. SchmittA. ReinhardtH.C. TimofeevO. WanzelM. StieweT. mTOR-mediated cancer drug resistance suppresses autophagy and generates a druggable metabolic vulnerability.Nat. Commun.2020111468410.1038/s41467‑020‑18504‑732943635
    [Google Scholar]
  66. LahiriV. HawkinsW.D. KlionskyD.J. Watch what you (self-) eat: Autophagic mechanisms that modulate metabolism.Cell Metab.201929480382610.1016/j.cmet.2019.03.00330943392
    [Google Scholar]
  67. KongF. ZouH. LiuX. HeJ. ZhengY. XiongL. MiaoX. miR-7112-3p targets PERK to regulate the endoplasmic reticulum stress pathway and apoptosis induced by photodynamic therapy in colorectal cancer CX-1 cells.Photodiagn. Photodyn. Ther.20202910166310.1016/j.pdpdt.2020.10166331945549
    [Google Scholar]
  68. KesselD. Autophagic death probed by photodynamic therapy.Autophagy201511101941194310.1080/15548627.2015.107896026313747
    [Google Scholar]
  69. XueL. ChiuS. OleinickN.L. Atg7 deficiency increases resistance of MCF-7 human breast cancer cells to photodynamic therapy.Autophagy20106224825510.4161/auto.6.2.1107720083906
    [Google Scholar]
  70. HuangQ. OuY.S. TaoY. YinH. TuP.H. Apoptosis and autophagy induced by pyropheophorbide-α methyl ester-mediated photodynamic therapy in human osteosarcoma MG-63 cells.Apoptosis201621674976010.1007/s10495‑016‑1243‑427108344
    [Google Scholar]
  71. LangeC. LehmannC. MahlerM. BednarskiP.J. Comparison of cellular death pathways after mTHPC-mediated photodynamic therapy (PDT) in five human cancer cell lines.Cancers201911570210.3390/cancers1105070231117328
    [Google Scholar]
  72. PanzariniE. InguscioV. FimiaG.M. DiniL. Rose bengal acetate photodynamic therapy (RBAc-PDT) induces exposure and release of Damage-Associated Molecular Patterns (DAMPs) in human HeLa cells.PLoS One201498e10577810.1371/journal.pone.010577825140900
    [Google Scholar]
  73. PizovaK. TomankovaK. DaskovaA. BinderS. BajgarR. KolarovaH. Photodynamic therapy for enhancing antitumour immunity.Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub201215629310210.5507/bp.2012.056
    [Google Scholar]
  74. TanakaM. KataokaH. YanoS. SawadaT. AkashiH. InoueM. SuzukiS. InagakiY. HayashiN. NishieH. ShimuraT. MizoshitaT. MoriY. KubotaE. TanidaS. TakahashiS. JohT. Immunogenic cell death due to a new photodynamic therapy (PDT) with glycoconjugated chlorin (G-chlorin).Oncotarget2016730472424725110.18632/oncotarget.972527363018
    [Google Scholar]
  75. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell20111445646674
    [Google Scholar]
  76. HendersonB.W. GollnickS.O. SnyderJ.W. BuschT.M. KousisP.C. CheneyR.T. MorganJ. Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors.Cancer Res.20046462120212610.1158/0008‑5472.CAN‑03‑351315026352
    [Google Scholar]
  77. ShamsM. OwczarczakB. Manderscheid-KernP. BellnierD.A. GollnickS.O. Development of photodynamic therapy regimens that control primary tumor growth and inhibit secondary disease.Cancer Immunol. Immunother.201564328729710.1007/s00262‑014‑1633‑925384911
    [Google Scholar]
  78. RodriguesJ.A. CorreiaJ.H. Photodynamic therapy for colorectal cancer: An update and a look to the future.Int. J. Mol. Sci.202324151220410.3390/ijms24151220437569580
    [Google Scholar]
  79. ShiG. WangH. HanH. GanJ. WangH. Verteporfin enhances the sensitivity of LOVO/TAX cells to taxol via YAP inhibition.Exp. Ther. Med.20181632751275510.3892/etm.2018.644730210616
    [Google Scholar]
  80. AbdulrehmanG. XvK. LiY. KangL. Effects of meta-tetrahydroxyphenylchlorin photodynamic therapy on isogenic colorectal cancer SW480 and SW620 cells with different metastatic potentials.Lasers Med. Sci.20183371581159010.1007/s10103‑018‑2524‑729796953
    [Google Scholar]
  81. SongC. XuW. WuH. WangX. GongQ. LiuC. LiuJ. ZhouL. Photodynamic therapy induces autophagy-mediated cell death in human colorectal cancer cells via activation of the ROS/JNK signaling pathway.Cell Death Dis.2020111093810.1038/s41419‑020‑03136‑y33130826
    [Google Scholar]
  82. ZhaoL.P. ZhengR.R. KongR.J. HuangC.Y. RaoX.N. YangN. ChenA.L. YuX.Y. ChengH. LiS.Y. Self-delivery ternary bioregulators for photodynamic amplified immunotherapy by tumor microenvironment reprogramming.ACS Nano20221611182119710.1021/acsnano.1c0897835023720
    [Google Scholar]
  83. ChoiH.W. LimJ.H. KimC.W. LeeE. KimJ.M. ChangK. ChungB.G. Near-Infrared light-triggered generation of reactive oxygen species and induction of local hyperthermia from indocyanine green encapsulated mesoporous silica-coated graphene oxide for colorectal cancer therapy.Antioxidants202211117410.3390/antiox1101017435052678
    [Google Scholar]
  84. DandashF. LegerD.Y. Diab-AssafM. SolV. LiagreB. Porphyrin/chlorin derivatives as promising molecules for therapy of colorectal cancer.Molecules20212623726810.3390/molecules2623726834885849
    [Google Scholar]
  85. WuR.W.K. YowC.M.N. LawE. ChuE.S.M. HuangZ. Effect of Foslip® mediated photodynamic therapy on 5-fluorouracil resistant human colorectal cancer cells.Photodiagn. Photodyn. Ther.20203110194510.1016/j.pdpdt.2020.10194532768589
    [Google Scholar]
  86. NkuneN.W. KrugerC.A. AbrahamseH. Possible enhancement of photodynamic therapy (PDT) colorectal cancer treatment when combined with cannabidiol.Anticancer. Agents Med. Chem.202121213714810.2174/187152062066620041510232132294046
    [Google Scholar]
  87. SunZ. ZhaoM. WangW. HongL. WuZ. LuoG. LuS. TangY. LiJ. WangJ. ZhangY. ZhangL. 5-ALA mediated photodynamic therapy with combined treatment improves anti-tumor efficacy of immunotherapy through boosting immunogenic cell death.Cancer Lett.202355421603210.1016/j.canlet.2022.21603236493899
    [Google Scholar]
  88. HuiY.J. ChenH. PengX.C. LiL.G. DiM.J. LiuH. HuX.H. YangY. ZhaoK.L. LiT.F. YuT.T. WangW.X. Up-regulation of ABCG2 by MYBL2 deletion drives Chlorin e6-mediated photodynamic therapy resistance in colorectal cancer.Photodiagn. Photodyn. Ther.20234210355810.1016/j.pdpdt.2023.10355837030434
    [Google Scholar]
  89. Kawczyk-KrupkaA. BugajA.M. LatosW. ZarembaK. WawrzyniecK. KucharzewskiM. SierońA. Photodynamic therapy in colorectal cancer treatment—The state of the art in preclinical research.Photodiagn. Photodyn. Ther.20161315817410.1016/j.pdpdt.2015.07.17526238625
    [Google Scholar]
  90. RobertsJ.E. Techniques to improve photodynamic therapy.Photochem. Photobiol.202096352452810.1111/php.1322332027382
    [Google Scholar]
  91. NaeimiR. NajafiR. MolaeiP. AminiR. PecicS. Nanoparticles: The future of effective diagnosis and treatment of colorectal cancer?.Eur J Pharmacol202293617535010.1016/j.ejphar.2022.175350
    [Google Scholar]
  92. WangK. ShenR. MengT. HuF. YuanH. Nano-drug delivery systems based on different targeting mechanisms in the targeted therapy of colorectal cancer.Molecules.2022279298110.3390/molecules27092981
    [Google Scholar]
  93. YusefiM. Lee-KiunM.S. ShameliK. TeowS.Y. AliR.R. SiewK.K. ChanH.Y. WongM.M.T. LimW.L. KučaK. 5-Fluorouracil loaded magnetic cellulose bionanocomposites for potential colorectal cancer treatment.Carbohydr. Polym.202127311852310.1016/j.carbpol.2021.11852334560940
    [Google Scholar]
  94. HuJ. TangY. ElmenoufyA.H. XuH. ChengZ. YangX. Nanocomposite-based photodynamic therapy strategies for deep tumor treatment.Small201511445860588710.1002/smll.20150192326398119
    [Google Scholar]
  95. WangX. OuyangX. ChenJ. HuY. SunX. YuZ. Nanoparticulate photosensitizer decorated with hyaluronic acid for photodynamic/photothermal cancer targeting therapy.Nanomedicine201914215116710.2217/nnm‑2018‑020430511886
    [Google Scholar]
  96. JungS. JungS. KimD.M. LimS.H. ShimY.H. KwonH. KimD.H. LeeC.M. KimB.H. JeongY.I. Hyaluronic acid-conjugated with hyperbranched chlorin e6 using disulfide linkage and its nano photosensitizer for enhanced photodynamic therapy of cancer cells.Materials20191219308010.3390/ma1219308031546620
    [Google Scholar]
  97. SuM. TianH. ZhouL. LiQ. WangS. HaungC. NiceE.C. ZhengS. LiJ. Brigatinib-repurposed chemo-photodynamic therapy nanoplatform via effective apoptosis against colorectal cancer.Mater. Des.202322611161310.1016/j.matdes.2023.111613
    [Google Scholar]
  98. JahediM. MeshkiniA. Tumor tropic delivery of FU.FA@NSs using mesenchymal stem cells for synergistic chemo-photodynamic therapy of colorectal cancer.Colloids Surf. B Biointerfaces202322611333310.1016/j.colsurfb.2023.11333337141773
    [Google Scholar]
  99. SardoiwalaM.N. KushwahaA.C. DevA. ShrimaliN. GuchhaitP. KarmakarS. Roy ChoudhuryS. Hypericin-loaded transferrin nanoparticles induce PP2A-regulated BMI1 degradation in colorectal cancer-specific chemo-photodynamic therapy.ACS Biomater. Sci. Eng.2020653139315310.1021/acsbiomaterials.9b0184433463265
    [Google Scholar]
  100. AlkahtaneA.A. AlghamdiH.A. AljashamA.T. AlkahtaniS. A possible theranostic approach of chitosan-coated iron oxide nanoparticles against human colorectal carcinoma (HCT-116) cell line.Saudi J. Biol. Sci.202229115416010.1016/j.sjbs.2021.08.07835002403
    [Google Scholar]
  101. JinF. LiuD. XuX. JiJ. DuY. Nanomaterials-based photodynamic therapy with combined treatment improves antitumor efficacy through boosting immunogenic cell death.Int. J. Nanomedicine2021164693471210.2147/IJN.S31450634267518
    [Google Scholar]
  102. WinifredN.S.N. AbrahamseH. Nanoparticle-mediated delivery systems in photodynamic therapy of colorectal cancer.Int. J. Mol. Sci.202122221240510.3390/ijms22221240534830287
    [Google Scholar]
  103. SahinO. MeiyazhaganA. AjayanP.M. KrishnanS. Immunogenicity of externally activated nanoparticles for cancer therapy.Cancers20201212355910.3390/cancers1212355933260534
    [Google Scholar]
  104. ZhangS. Emerging photodynamic nanotherapeutics for inducing immunogenic cell death and potentiating cancer immunotherapy.Biomaterials.202228212143310.1016/j.biomaterials.2022.121433
    [Google Scholar]
  105. HuX. HouB. XuZ. SaeedM. SunF. GaoZ. LaiY. ZhuT. ZhangF. ZhangW. YuH. Supramolecular prodrug nanovectors for active tumor targeting and combination immunotherapy of colorectal cancer.Adv. Sci.202078190333210.1002/advs.20190333232328426
    [Google Scholar]
  106. YangW. ZhuG. WangS. YuG. YangZ. LinL. ZhouZ. LiuY. DaiY. ZhangF. ShenZ. LiuY. HeZ. LauJ. NiuG. KiesewetterD.O. HuS. ChenX. In situ dendritic cell vaccine for effective cancer immunotherapy.ACS Nano20191333083309410.1021/acsnano.8b0834630835435
    [Google Scholar]
  107. HeH. LiuL. LiangR. ZhouH. PanH. ZhangS. CaiL. Tumor-targeted nanoplatform for in situ oxygenation-boosted immunogenic phototherapy of colorectal cancer.Acta Biomater.202010418819710.1016/j.actbio.2020.01.01231945508
    [Google Scholar]
  108. HeC. DuanX. GuoN. ChanC. PoonC. WeichselbaumR.R. LinW. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy.Nat. Commun.2016711249910.1038/ncomms1249927530650
    [Google Scholar]
  109. YuanZ. FanG. WuH. LiuC. ZhanY. QiuY. ShouC. GaoF. ZhangJ. YinP. XuK. Photodynamic therapy synergizes with PD-L1 checkpoint blockade for immunotherapy of CRC by multifunctional nanoparticles.Mol. Ther.202129102931294810.1016/j.ymthe.2021.05.01734023507
    [Google Scholar]
  110. GaoA. ChenB. GaoJ. ZhouF. SaeedM. HouB. LiY. YuH. Sheddable prodrug vesicles combating adaptive immune resistance for improved photodynamic immunotherapy of cancer.Nano Lett.202020135336210.1021/acs.nanolett.9b0401231793787
    [Google Scholar]
  111. LiY. DuY. LiangX. SunT. XueH. TianJ. JinZ. EGFR-targeted liposomal nanohybrid cerasomes: theranostic function and immune checkpoint inhibition in a mouse model of colorectal cancer.Nanoscale20181035167381674910.1039/C8NR05803B30156250
    [Google Scholar]
  112. LuK. HeC. GuoN. ChanC. NiK. WeichselbaumR.R. LinW. Chlorin-based nanoscale metal–organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy.J. Am. Chem. Soc.201613838125021251010.1021/jacs.6b0666327575718
    [Google Scholar]
  113. XuJ. XuL. WangC. YangR. ZhuangQ. HanX. DongZ. ZhuW. PengR. LiuZ. Near-infrared-triggered photodynamic therapy with multitasking upconversion nanoparticles in combination with checkpoint blockade for immunotherapy of colorectal cancer.ACS Nano20171154463447410.1021/acsnano.7b0071528362496
    [Google Scholar]
  114. Huis in ’t VeldR.V. Da SilvaC.G. JagerM.J. CruzL.J. OssendorpF. Combining photodynamic therapy with immunostimulatory nanoparticles elicits effective anti-tumor immune responses in preclinical murine models.Pharmaceutics2021139147010.3390/pharmaceutics1309147034575546
    [Google Scholar]
  115. GanS. TongX. ZhangY. WuJ. HuY. YuanA. Covalent organic framework-supported molecularly dispersed near-infrared dyes boost immunogenic phototherapy against tumors.Adv. Funct. Mater.20192946190275710.1002/adfm.201902757
    [Google Scholar]
  116. NiK. LanG. VeroneauS.S. DuanX. SongY. LinW. Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy.Nat. Commun.201891432110.1038/s41467‑018‑06655‑730333489
    [Google Scholar]
  117. KimD.H. HwangH.S. NaK. Photoresponsive micelle-incorporated doxorubicin for chemo-photodynamic therapy to achieve synergistic antitumor effects.Biomacromolecules20181983301331010.1021/acs.biomac.8b0060729864270
    [Google Scholar]
  118. WeiM.F. ChenM.W. ChenK.C. LouP.J. LinS.Y.F. HungS.C. HsiaoM. YaoC.J. ShiehM.J. Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells.Autophagy20141071179119210.4161/auto.2867924905352
    [Google Scholar]
  119. LiX. Innovative strategies for photodynamic therapy against hypoxic tumor.Asian J. Pharm. Sci.202318110077510.1016/j.ajps.2023.100775
    [Google Scholar]
  120. RodriguesJ.A. AmorimR. SilvaM.F. BaltazarF. WolffenbuttelR.F. CorreiaJ.H. Photodynamic therapy at low-light fluence rate: In vitro assays on colon cancer cells.IEEE J. Sel. Top. Quantum Electron.20192511610.1109/JSTQE.2018.2889426
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673267788231208073338
Loading
/content/journals/cmc/10.2174/0109298673267788231208073338
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test