Skip to content
2000
Volume 32, Issue 17
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Long-chain acyl-coenzyme A synthases (ACSLs) are responsible for the catalysis of fatty acids into their corresponding fatty acyl-CoAs. The dysregulation of ACSLs has been increasingly recognized in cancer patients. However, the function of ACSL6 in triple-negative breast cancer (TNBC) is still completely unknown.

Methods

In this study, immunohistochemistry was applied to detect ACSL6 protein expression using a TNBC tissue microarray. Additionally, the mRNA levels of ACSL6 in human normal tissues and pancancer tissues were analyzed using Genotype Tissue Expression (GTEx) datasets and The Cancer Genome Atlas (TCGA) database. The correlations between the levels of ACSL6 expression and clinical characteristics were analyzed. The survival analysis of ACSL6 in TNBC was carried out using the Kaplan‒Meier Plotter online tool. Associations of ACSL6 with immune infiltration analyses were conducted using the ESTIMATE, CIBERSORT, and TISIDB databases. The relationship between ACSL6 and sensitivity to drugs was analyzed from Genomics of Drug Sensitivity in Cancer (GDSC).

Results

The results indicated a significant increase in ACSL6 expression in TNBC tissues compared to adjacent normal tissues. However, high ACSL6 expression was significantly associated with favorable survival outcomes in TNBC patients. Enrichment analysis revealed that coexpressed genes of ACSL6 were significantly enriched in various immunity processes. ACSL6 was positively correlated with the infiltration of memory CD4 T cells, while a negative correlation was found between ACSL6 and M2 macrophages and resting dendritic cells. Further analysis revealed that high levels of ACSL6 correlated with increased survival outcomes in cancer patients who received immunotherapy.

Conclusion

Altogether, the current findings highlight the potential value of ACSL6 as a diagnostic and prognostic marker in the treatment of TNBC.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673278846231222103420
2024-01-17
2025-09-06
Loading full text...

Full text loading...

References

  1. LiY. ZhangH. MerkherY. ChenL. LiuN. LeonovS. ChenY. Recent advances in therapeutic strategies for triple-negative breast cancer.J. Hematol. Oncol.202215112110.1186/s13045‑022‑01341‑036038913
    [Google Scholar]
  2. SoJ.Y. OhmJ. LipkowitzS. YangL. Triple negative breast cancer (TNBC): Non-genetic tumor heterogeneity and immune microenvironment: Emerging treatment options.Pharmacol. Ther.202223710825310.1016/j.pharmthera.2022.10825335872332
    [Google Scholar]
  3. ZhangJ. PanS. JianC. HaoL. DongJ. SunQ. JinH. HanX. Immunostimulatory properties of chemotherapy in breast cancer: From immunogenic modulation mechanisms to clinical practice.Front. Immunol.20221281940510.3389/fimmu.2021.81940535069604
    [Google Scholar]
  4. ZhuY. HuY. TangC. GuanX. ZhangW. Platinum-based systematic therapy in triple-negative breast cancer.Biochim. Biophys. Acta Rev. Cancer20221877118867810.1016/j.bbcan.2022.18867835026309
    [Google Scholar]
  5. YuZ. ZhouX. WangX. Metabolic reprogramming in hematologic malignancies: Advances and clinical perspectives.Cancer Res.202282172955296310.1158/0008‑5472.CAN‑22‑091735771627
    [Google Scholar]
  6. KhodaeiT. InamdarS. SureshA.P. AcharyaA.P. Drug delivery for metabolism targeted cancer immunotherapy.Adv. Drug Deliv. Rev.202218411424210.1016/j.addr.2022.11424235367306
    [Google Scholar]
  7. CurrieE. SchulzeA. ZechnerR. WaltherT.C. FareseR.V.Jr Cellular fatty acid metabolism and cancer.Cell Metab.201318215316110.1016/j.cmet.2013.05.01723791484
    [Google Scholar]
  8. ZhouX. HuangF. MaG. WeiW. WuN. LiuZ. Dysregulated ceramides metabolism by fatty acid 2-hydroxylase exposes a metabolic vulnerability to target cancer metastasis.Signal Transduct. Target. Ther.20227137010.1038/s41392‑022‑01199‑136274060
    [Google Scholar]
  9. ZekovićM. BumbaširevićU. ŽivkovićM. PejčićT. Alteration of lipid metabolism in prostate cancer: Multifaceted oncologic implications.Int. J. Mol. Sci.2023242139110.3390/ijms2402139136674910
    [Google Scholar]
  10. ZhaoJ. ZhiZ. WangC. XingH. SongG. YuX. ZhuY. WangX. ZhangX. DiY. Exogenous lipids promote the growth of breast cancer cells via CD36.Oncol. Rep.20173842105211510.3892/or.2017.586428765876
    [Google Scholar]
  11. XiaoY. MaD. YangY.S. YangF. DingJ.H. GongY. JiangL. GeL.P. WuS.Y. YuQ. ZhangQ. BertucciF. SunQ. HuX. LiD.Q. ShaoZ.M. JiangY.Z. Comprehensive metabolomics expands precision medicine for triple-negative breast cancer.Cell Res.202232547749010.1038/s41422‑022‑00614‑035105939
    [Google Scholar]
  12. YangF. XiaoY. DingJ.H. JinX. MaD. LiD.Q. ShiJ.X. HuangW. WangY.P. JiangY.Z. ShaoZ.M. Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy.Cell Metab.202335184100.e810.1016/j.cmet.2022.09.02136257316
    [Google Scholar]
  13. TangJ.X. ThompsonK. TaylorR.W. OláhováM. Mitochondrial oxphos biogenesis: Co-regulation of protein synthesis, import, and assembly pathways.Int. J. Mol. Sci.20202111382010.3390/ijms2111382032481479
    [Google Scholar]
  14. QuanJ. BodeA.M. LuoX. ACSL family: The regulatory mechanisms and therapeutic implications in cancer.Eur. J. Pharmacol.202190917439710.1016/j.ejphar.2021.17439734332918
    [Google Scholar]
  15. RoelandsJ. GarandM. HinchcliffE. MaY. ShahP. ToufiqM. AlfakiM. HendrickxW. BoughorbelS. RinchaiD. JazaeriA. BedognettiD. ChaussabelD. Long-Chain Acyl-CoA synthetase 1 role in sepsis and immunity: perspectives from a parallel review of public transcriptome datasets and of the literature.Front. Immunol.201910241010.3389/fimmu.2019.0241031681299
    [Google Scholar]
  16. Pérez-NúñezI. KarakyM. FedetzM. BarrionuevoC. IzquierdoG. MatesanzF. AlcinaA. Splice-site variant in ACSL5: A marker promoting opposing effect on cell viability and protein expression.Eur. J. Hum. Genet.201927121836184410.1038/s41431‑019‑0414‑531053784
    [Google Scholar]
  17. RobichaudS. FairmanG. VijithakumarV. MakE. CookD.P. PelletierA.R. HuardS. VanderhydenB.C. FigeysD. Lavallée-AdamM. BaetzK. OuimetM. Identification of novel lipid droplet factors that regulate lipophagy and cholesterol efflux in macrophage foam cells.Autophagy202117113671368910.1080/15548627.2021.188683933590792
    [Google Scholar]
  18. KlassonT.D. LaGoryE.L. ZhaoH. HuynhS.K. PapandreouI. MoonE.J. GiacciaA.J. ACSL3 regulates lipid droplet biogenesis and ferroptosis sensitivity in clear cell renal cell carcinoma.Cancer Metab.20221011410.1186/s40170‑022‑00290‑z36192773
    [Google Scholar]
  19. LiY.J. FahrmannJ.F. AftabizadehM. ZhaoQ. TripathiS.C. ZhangC. YuanY. AnnD. HanashS. YuH. Fatty acid oxidation protects cancer cells from apoptosis by increasing mitochondrial membrane lipids.Cell Rep.202239911087010.1016/j.celrep.2022.11087035649368
    [Google Scholar]
  20. WrightH.J. HouJ. XuB. CortezM. PotmaE.O. TrombergB.J. RazorenovaO.V. CDCP1 drives triple-negative breast cancer metastasis through reduction of lipid-droplet abundance and stimulation of fatty acid oxidation.Proc. Natl. Acad. Sci.201711432E6556E656510.1073/pnas.170379111428739932
    [Google Scholar]
  21. TemizM.Z. ColakerolA. SonmezS.Z. GokceA. CanitezI.O. OzsoyS. KandiraliE. SemerciozA. MuslumanogluA.Y. Prognostic role of long-chain acyl-coenzyme a synthetase family genes in patients with clear cell renal cell carcinoma: A comprehensive bioinformatics analysis confirmed with external validation cohorts.Clin. Genitourin. Cancer20232119110410.1016/j.clgc.2022.11.01136529627
    [Google Scholar]
  22. Lopes-MarquesM. CunhaI. Reis-HenriquesM.A. SantosM.M. CastroL.F.C. Diversity and history of the long-chain acyl-CoA synthetase (Acsl) gene family in vertebrates.BMC Evol. Biol.201313127110.1186/1471‑2148‑13‑27124330521
    [Google Scholar]
  23. FernandezR.F. KimS.Q. ZhaoY. FoguthR.M. WeeraM.M. CounihanJ.L. NomuraD.K. ChesterJ.A. CannonJ.R. EllisJ.M. Acyl-CoA synthetase 6 enriches the neuroprotective omega-3 fatty acid DHA in the brain.Proc. Natl. Acad. Sci.201811549125251253010.1073/pnas.180795811530401738
    [Google Scholar]
  24. NingR. PanS. XiaoD. ZhengY. ZhangJ. ANO10 is a potential prognostic biomarker and correlates with immune infiltration in breast cancer.Am. J. Cancer Res.20231351845186237293146
    [Google Scholar]
  25. HuangL.S. BerdyshevE.V. TranJ.T. XieL. ChenJ. EbenezerD.L. MathewB. GorshkovaI. ZhangW. ReddyS.P. HarijithA. WangG. Feghali-BostwickC. NothI. MaS.F. ZhouT. MaW. GarciaJ.G.N. NatarajanV. Sphingosine-1-phosphate lyase is an endogenous suppressor of pulmonary fibrosis: Role of S1P signalling and autophagy.Thorax201570121138114810.1136/thoraxjnl‑2014‑20668426286721
    [Google Scholar]
  26. LiuY.R. JiangY.Z. XuX.E. HuX. YuK.D. ShaoZ.M. Comprehensive transcriptome profiling reveals multigene signatures in triple-negative breast cancer.Clin. Cancer Res.20162271653166210.1158/1078‑0432.CCR‑15‑155526813360
    [Google Scholar]
  27. RuB. WongC.N. TongY. ZhongJ.Y. ZhongS.S.W. WuW.C. ChuK.C. WongC.Y. LauC.Y. ChenI. ChanN.W. ZhangJ. TISIDB: An integrated repository portal for tumor–immune system interactions.Bioinformatics201935204200420210.1093/bioinformatics/btz21030903160
    [Google Scholar]
  28. SunQ. DuJ. DongJ. PanS. JinH. HanX. ZhangJ. Systematic investigation of the multifaceted role of SOX11 in cancer.Cancers20221424610310.3390/cancers1424610336551589
    [Google Scholar]
  29. GyőrffyB. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer.Comput. Struct. Biotechnol. J.2021194101410910.1016/j.csbj.2021.07.01434527184
    [Google Scholar]
  30. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv00725605792
    [Google Scholar]
  31. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.011822455463
    [Google Scholar]
  32. NewmanA.M. LiuC.L. GreenM.R. GentlesA.J. FengW. XuY. HoangC.D. DiehnM. AlizadehA.A. Robust enumeration of cell subsets from tissue expression profiles.Nat. Methods201512545345710.1038/nmeth.333725822800
    [Google Scholar]
  33. YoshiharaK. ShahmoradgoliM. MartínezE. VegesnaR. KimH. Torres-GarciaW. TreviñoV. ShenH. LairdP.W. LevineD.A. CarterS.L. GetzG. Stemke-HaleK. MillsG.B. VerhaakR.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data.Nat. Commun.201341261210.1038/ncomms361224113773
    [Google Scholar]
  34. LiT. FuJ. ZengZ. CohenD. LiJ. ChenQ. LiB. LiuX.S. TIMER2.0 for analysis of tumor-infiltrating immune cells.Nucleic Acids Res.202048W1W509W51410.1093/nar/gkaa40732442275
    [Google Scholar]
  35. GeeleherP. CoxN. HuangR.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels.PLoS One201499e10746810.1371/journal.pone.010746825229481
    [Google Scholar]
  36. CharoentongP. FinotelloF. AngelovaM. MayerC. EfremovaM. RiederD. HacklH. TrajanoskiZ. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade.Cell Rep.201718124826210.1016/j.celrep.2016.12.01928052254
    [Google Scholar]
  37. KovácsS.A. GyőrffyB. Transcriptomic datasets of cancer patients treated with immune-checkpoint inhibitors: A systematic review.J. Transl. Med.202220124910.1186/s12967‑022‑03409‑435641998
    [Google Scholar]
  38. HaleB.J. FernandezR.F. KimS.Q. DiazV.D. JacksonS.N. LiuL. BrennaJ.T. HermannB.P. GeyerC.B. EllisJ.M. Acyl-CoA synthetase 6 enriches seminiferous tubules with the ω-3 fatty acid docosahexaenoic acid and is required for male fertility in the mouse.J. Biol. Chem.201929439143941440510.1074/jbc.RA119.00997231399511
    [Google Scholar]
  39. ChenW.C. WangC.Y. HungY.H. WengT.Y. YenM.C. LaiM.D. Systematic analysis of gene expression alterations and clinical outcomes for long-chain acyl-coenzyme a synthetase family in cancer.PLoS One2016115e015566010.1371/journal.pone.015566027171439
    [Google Scholar]
  40. Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S.; Ou Yang, T.H.; Porta-Pardo, E.; Gao, G.F.; Plaisier, C.L.; Eddy, J.A.; Ziv, E.; Culhane, A.C.; Paull, E.O.; Sivakumar, I.K.A.; Gentles, A.J.; Malhotra, R.; Farshidfar, F.; Colaprico, A.; Parker, J.S.; Mose, L.E.; Vo, N.S.; Liu, J.; Liu, Y.; Rader, J.; Dhankani, V.; Reynolds, S.M.; Bowlby, R.; Califano, A.; Cherniack, A.D.; Anastassiou, D.; Bedognetti, D.; Mokrab, Y.; Newman, A.M.; Rao, A.; Chen, K.; Krasnitz, A.; Hu, H.; Malta, T.M.; Noushmehr, H.; Pedamallu, C.S.; Bullman, S.; Ojesina, A.I.; Lamb, A.; Zhou, W.; Shen, H.; Choueiri, T.K.; Weinstein, J.N.; Guinney, J.; Saltz, J.; Holt, R.A.; Rabkin, C.S.; Lazar, A.J.; Serody, J.S.; Demicco, E.G.; Disis, M.L.; Vincent, B.G.; Shmulevich, I., The Immune Landscape of Cancer. Immunity, 2018, 48(4), 812-830.e81429628290
  41. WangY. CaiX. ZhangS. CuiM. LiuF. SunB. ZhangW. ZhangX. YeL. HBXIP up-regulates ACSL1 through activating transcriptional factor Sp1 in breast cancer.Biochem. Biophys. Res. Commun.2017484356557110.1016/j.bbrc.2017.01.12628132807
    [Google Scholar]
  42. CastilloA.F. OrlandoU.D. MalobertiP.M. PradaJ.G. DattiloM.A. SolanoA.R. BigiM.M. Ríos MedranoM.A. TorresM.T. IndoS. CarocaG. ContrerasH.R. MarelliB.E. SalinasF.J. SalvettiN.R. OrtegaH.H. Lorenzano MennaP. SzajnmanS. GomezD.E. RodríguezJ.B. PodestaE.J. New inhibitor targeting Acyl-CoA synthetase 4 reduces breast and prostate tumor growth, therapeutic resistance and steroidogenesis.Cell. Mol. Life Sci.20217862893291010.1007/s00018‑020‑03679‑533068124
    [Google Scholar]
  43. HudsonW.H. WielandA. Technology meets TILs: Deciphering T cell function in the -omics era.Cancer Cell2023411415710.1016/j.ccell.2022.09.01136206755
    [Google Scholar]
  44. ThomasR. Al-RashedF. AkhterN. Al-MullaF. AhmadR. ACSL1 Regulates TNFα-Induced GM-CSF production by breast cancer MDA-MB-231 cells.Biomolecules201991055510.3390/biom910055531581558
    [Google Scholar]
  45. ZhouX. ZhaoR. LvM. XuX. LiuW. LiX. GaoY. ZhaoZ. ZhangZ. LiY. XuR. WanQ. CuiY. ACSL4 promotes microglia-mediated neuroinflammation by regulating lipid metabolism and VGLL4 expression.Brain Behav. Immun.202310933134310.1016/j.bbi.2023.02.01236791893
    [Google Scholar]
  46. YangY. ZhuT. WangX. XiongF. HuZ. QiaoX. YuanX. WangD. ACSL3 and ACSL4, distinct roles in ferroptosis and cancers.Cancers20221423589610.3390/cancers1423589636497375
    [Google Scholar]
  47. OshiM. AsaokaM. TokumaruY. YanL. MatsuyamaR. IshikawaT. EndoI. TakabeK. CD8 T cell score as a prognostic biomarker for triple negative breast cancer.Int. J. Mol. Sci.20202118696810.3390/ijms2118696832971948
    [Google Scholar]
  48. FernandezR.F. PereyraA.S. DiazV. WilsonE.S. LitwaK.A. Martínez-GardeazabalJ. JacksonS.N. BrennaJ.T. HermannB.P. EellsJ.B. EllisJ.M. Acyl-CoA synthetase 6 is required for brain docosahexaenoic acid retention and neuroprotection during aging.JCI Insight2021611e14435110.1172/jci.insight.14435134100386
    [Google Scholar]
  49. YanL. ChenX. BianZ. GuC. JiH. ChenL. XuH. TangQ. A ferroptosis associated gene signature for predicting prognosis and immune responses in patients with colorectal carcinoma.Front. Genet.20221397136410.3389/fgene.2022.97136436160009
    [Google Scholar]
  50. ZhangL. FangJ. TangZ. LuoY. A bioinformatics perspective on the dysregulation of ferroptosis and ferroptosis-related immune cell infiltration in alzheimer’s disease.Int. J. Med. Sci.202219131888190210.7150/ijms.7666036438927
    [Google Scholar]
  51. Rossi SebastianoM. PozzatoC. SaliakouraM. YangZ. PengR.W. GalièM. ObersonK. SimonH.U. KaramitopoulouE. KonstantinidouG. ACSL3–PAI-1 signaling axis mediates tumor-stroma cross-talk promoting pancreatic cancer progression.Sci. Adv.2020644eabb920010.1126/sciadv.abb920033127675
    [Google Scholar]
  52. LiaoP. WangW. WangW. KryczekI. LiX. BianY. SellA. WeiS. GroveS. JohnsonJ.K. KennedyP.D. GijónM. ShahY.M. ZouW. CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4.Cancer Cell2022404365378.e610.1016/j.ccell.2022.02.00335216678
    [Google Scholar]
  53. XiaL. OyangL. LinJ. TanS. HanY. WuN. YiP. TangL. PanQ. RaoS. LiangJ. TangY. SuM. LuoX. YangY. ShiY. WangH. ZhouY. LiaoQ. The cancer metabolic reprogramming and immune response.Mol. Cancer20212012810.1186/s12943‑021‑01316‑833546704
    [Google Scholar]
  54. YadavU.P. SinghT. KumarP. SharmaP. KaurH. SharmaS. SinghS. KumarS. MehtaK. Metabolic adaptations in cancer stem cells.Front. Oncol.202010101010.3389/fonc.2020.0101032670883
    [Google Scholar]
  55. PatsoukisN. BardhanK. ChatterjeeP. SariD. LiuB. BellL.N. KarolyE.D. FreemanG.J. PetkovaV. SethP. LiL. BoussiotisV.A. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation.Nat. Commun.201561669210.1038/ncomms769225809635
    [Google Scholar]
  56. MashimaT. Oh-haraT. SatoS. MochizukiM. SugimotoY. YamazakiK. HamadaJ. TadaM. MoriuchiT. IshikawaY. KatoY. TomodaH. YamoriT. TsuruoT. p53-defective tumors with a functional apoptosome-mediated pathway: A new therapeutic target.J. Natl. Cancer Inst.2005971076577710.1093/jnci/dji13315900046
    [Google Scholar]
  57. Rossi SebastianoM. KonstantinidouG. Targeting long chain Acyl-CoA synthetases for cancer therapy.Int. J. Mol. Sci.20192015362410.3390/ijms2015362431344914
    [Google Scholar]
  58. BlairH.A. Fedratinib: First approval.Drugs201979151719172510.1007/s40265‑019‑01205‑x31571162
    [Google Scholar]
  59. WangT. FahrmannJ.F. LeeH. LiY.J. TripathiS.C. YueC. ZhangC. LifshitzV. SongJ. YuanY. SomloG. JandialR. AnnD. HanashS. JoveR. YuH. JAK/STAT3-Regulated Fatty Acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance.Cell Metab.2018271136150.e510.1016/j.cmet.2017.11.00129249690
    [Google Scholar]
  60. BarnésC.M. ProxD. Christison-LagayE.A. LeH.D. ShortS. CassiolaF. PanigrahyD. ChaponisD. ButterfieldC. NehraD. FallonE.M. KieranM. FolkmanJ. PuderM. Inhibition of neuroblastoma cell proliferation with omega-3 fatty acids and treatment of a murine model of human neuroblastoma using a diet enriched with omega-3 fatty acids in combination with sunitinib.Pediatr. Res.201271216817810.1038/pr.2011.2822258128
    [Google Scholar]
  61. Leon-FerreR.A. GoetzM.P. Advances in systemic therapies for triple negative breast cancer.BMJ2023381e07167410.1136/bmj‑2022‑07167437253507
    [Google Scholar]
  62. LotfinejadP. Asghari JafarabadiM. Abdoli ShadbadM. KazemiT. PashazadehF. Sandoghchian ShotorbaniS. Jadidi NiaraghF. BaghbanzadehA. VahedN. SilvestrisN. BaradaranB. Prognostic role and clinical significance of tumor-infiltrating lymphocyte (TIL) and programmed death ligand 1 (PD-L1) expression in triple-negative breast cancer (tnbc): a systematic review and meta-analysis study.Diagnostics2020109
    [Google Scholar]
  63. El BairiK. HaynesH.R. BlackleyE. International Immuno-Oncology Biomarker Working Group Fineberg, S.; Shear, J.; Turner, S.; de Freitas, J.R.; Sur, D.; Amendola, L.C.; Gharib, M.; Kallala, A.; Arun, I.; Azmoudeh-Ardalan, F.; Fujimoto, L.; Sua, L.F.; Liu, S.W.; Lien, H.C.; Kirtani, P.; Balancin, M.; El Attar, H.; Guleria, P.; Yang, W.; Shash, E.; Chen, I.C.; Bautista, V.; Do Prado Moura, J.F.; Rapoport, B.L.; Castaneda, C.; Spengler, E.; Acosta-Haab, G.; Frahm, I.; Sanchez, J.; Castillo, M.; Bouchmaa, N.; Md Zin, R.R.; Shui, R.; Onyuma, T.; Yang, W.; Husain, Z.; Willard-Gallo, K.; Coosemans, A.; Perez, E.A.; Provenzano, E.; Ericsson, P.G.; Richardet, E.; Mehrotra, R.; Sarancone, S.; Ehinger, A.; Rimm, D.L.; Bartlett, J.M.S.; Viale, G.; Denkert, C.; Hida, A.I.; Sotiriou, C.; Loibl, S.; Hewitt, S.M.; Badve, S.; Symmans, W.F.; Kim, R.S.; Pruneri, G.; Goel, S.; Francis, P.A.; Inurrigarro, G.; Yamaguchi, R.; Garcia-Rivello, H.; Horlings, H.; Afqir, S.; Salgado, R.; Adams, S.; Kok, M.; Dieci, M.V.; Michiels, S.; Demaria, S.; Loi, S.; International Immuno-Oncology Biomarker Working Group. The tale of TILs in breast cancer: A report from the international immuno-oncology biomarker working group.NPJ Breast Cancer20217115010.1038/s41523‑021‑00346‑134853355
    [Google Scholar]
  64. ErberR. HartmannA. Understanding PD-L1 testing in breast cancer: A practical approach.Breast Care202015548149010.1159/00051081233223991
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673278846231222103420
Loading
/content/journals/cmc/10.2174/0109298673278846231222103420
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test